1. Let f be a function, and \mathbf{F} and \mathbf{G} vector fields on \mathbb{R}^{3}. State whether each of the following expressions is a function, a vector field, or meaningless.
(a) $\operatorname{grad}(\operatorname{grad}(f))$
(b) $\operatorname{Curl}(\operatorname{grad}(f))-\mathbf{F}$
(c) $\operatorname{Curl}(\operatorname{Curl}(\mathbf{F}))-\mathbf{G}$
(d) $\operatorname{Curl}(\mathbf{F}) \cdot \mathbf{G}$
(e) $\operatorname{Div}(\operatorname{Div}(\mathbf{F}))$
(f) $\operatorname{Div}(\operatorname{Curl}(\operatorname{grad}(f)))$
2. Compute Div and Curl for the following vector fields:
(a) $\mathbf{F}(x, y, z)=(x, y, z)$
(b) $\mathbf{F}(x, y, z)=(y z, x z, x y)$
(c) $\mathbf{F}(x, y, z)=\left(3 x^{2} y, x^{3}+y^{3}, z^{4}\right)$
(d) $\mathbf{F}(x, y, z)=\left(e^{x} \cos (y)+z^{2}, e^{x} \sin (y)+x z, x y\right)$
3.

(a) Is there a vector field \mathbf{F} such that $\operatorname{Curl}(\mathbf{F})=\left(x y^{2}, y z^{2}, z x^{2}\right)$? Explain.
(b) Is there a vector field \mathbf{F} so that $\operatorname{Curl}(\mathbf{F})=(2,1,3)$? If so, find one.
4. A vector field \mathbf{F} is called incompressible if $\operatorname{Div}(\mathbf{F})=0$, and irrotational if $\operatorname{Curl}(\mathbf{F})=0$. A function f is called harmonic if $\Delta f=0$. (Note: Δ isn't the gradient, it's the Laplacian.)
(a) Show that any vector field of the form $\mathbf{F}(x, y, z)=(f(x), g(y), h(z))$ is irrotational.
(b) Show that any vector field of the form $\mathbf{F}(x, y, z)=(f(y, z), g(x, z), h(x, y))$ is incompressible.
(c) Find constants a, b, and c so that the vector field $\mathbf{F}(x, y, z)=(3 x-y+a z, b x-$ $z, 4 x+c y)$ is irrotational. For these values of a, b, and c, find the function f with $\nabla f=\mathbf{F}$.
(d) If \mathbf{F} is a vector field defined on all of \mathbb{R}^{3} which is both incompressible and irrotational, show that \mathbf{F} is the gradient of a harmonic function f.
5. Decompose each of these vector fields \mathbf{F} as the sum of an irrotational and an incompressible vector field. Is such a decomposition unique?
(a) $\mathbf{F}(x, y, z)=\left(x^{2}+e^{y z}, x^{2} z^{2}, \sin (z)\right)$
(b) $\mathbf{F}(x, y, z)=\left(x+y+z, y^{2}+1, \ln (x y z)\right)$.

