1. Let f be a function, and **F** and **G** vector fields on \mathbb{R}^3 . State whether each of the following expressions is a function, a vector field, or meaningless.

(a) $\operatorname{grad}(\operatorname{grad}(f))$ (b) $\operatorname{Curl}(\operatorname{grad}(f)) - \mathbf{F}$ (c) $\operatorname{Curl}(\operatorname{Curl}(\mathbf{F})) - \mathbf{G}$ (d) $\operatorname{Curl}(\mathbf{F}) \cdot \mathbf{G}$ (e) $\operatorname{Div}(\operatorname{Div}(\mathbf{F}))$ (f) $\operatorname{Div}(\operatorname{Curl}(\operatorname{grad}(f)))$

2. Compute Div and Curl for the following vector fields:

(a) $\mathbf{F}(x, y, z) = (x, y, z)$ (b) $\mathbf{F}(x, y, z) = (yz, xz, xy)$ (c) $\mathbf{F}(x, y, z) = (3x^2y, x^3 + y^3, z^4)$ (d) $\mathbf{F}(x, y, z) = (e^x \cos(y) + z^2, e^x \sin(y) + xz, xy)$

3.

(a) Is there a vector field **F** such that $\operatorname{Curl}(\mathbf{F}) = (xy^2, yz^2, zx^2)$? Explain.

(b) Is there a vector field **F** so that $Curl(\mathbf{F}) = (2, 1, 3)$? If so, find one.

4. A vector field **F** is called *incompressible* if $\text{Div}(\mathbf{F}) = 0$, and *irrotational* if $\text{Curl}(\mathbf{F}) = 0$. A function f is called *harmonic* if $\Delta f = 0$. (NOTE: Δ isn't the gradient, it's the Laplacian.)

- (a) Show that any vector field of the form $\mathbf{F}(x, y, z) = (f(x), g(y), h(z))$ is irrotational.
- (b) Show that any vector field of the form $\mathbf{F}(x, y, z) = (f(y, z), g(x, z), h(x, y))$ is incompressible.
- (c) Find constants a, b, and c so that the vector field $\mathbf{F}(x, y, z) = (3x y + az, bx z, 4x + cy)$ is irrotational. For these values of a, b, and c, find the function f with $\nabla f = \mathbf{F}$.
- (d) If **F** is a vector field defined on all of \mathbb{R}^3 which is both incompressible and irrotational, show that **F** is the gradient of a harmonic function f.

5. Decompose each of these vector fields \mathbf{F} as the sum of an irrotational and an incompressible vector field. Is such a decomposition unique?

(a)
$$\mathbf{F}(x, y, z) = (x^2 + e^{yz}, x^2 z^2, \sin(z))$$
 (b) $\mathbf{F}(x, y, z) = (x + y + z, y^2 + 1, \ln(xyz)).$