1. If f is a function, and \mathbf{F} a vector field on \mathbb{R}^{3}, prove that

$$
\operatorname{Div}(f \mathbf{F})=f \operatorname{Div}(\mathbf{F})+\mathbf{F} \cdot \operatorname{grad}(f)
$$

2. Find a parameterization of the curve $x^{2 / 3}+y^{2 / 3}=1$. Is your parameterization continuous? Differentiable? Piecewise C^{1} ? Completely C^{1} ?
3. Compute the integral of $f(x, y)=x y-x-y+1$ along the following curves connecting the points $(1,0)$ and $(0,1)$.
(a) $\mathbf{c}_{1}:$ circular $\operatorname{arc} \mathbf{c}_{1}(t)=(\cos (t), \sin (t)), 0 \leq t \leq \pi / 2$.
(b) \mathbf{c}_{2} : straight line segment $\mathbf{c}_{2}(t)=(1-t, t), 0 \leq t \leq 1$.
(c) \mathbf{c}_{3} : from $(1,0)$ horizontally to the origin, then vertically to $(0,1)$.
(d) \mathbf{c}_{4} : from $(1,0)$ vertically to $(1,1)$, then horizontally to $(0,1)$.
(e) $\mathbf{c}_{5}:$ circular $\operatorname{arc} \mathbf{c}_{5}(t)=(\cos (t),-\sin (t)), 0 \leq t \leq 3 \pi / 2$.
4. Find the integral $\int_{\mathbf{c}} f d s$ where $f(x, y, z)=\sqrt{9 x z+4 y+1}$ and \mathbf{c} is the "twisted cubic:" $\mathbf{c}(t)=\left(t, t^{2}, t^{3}\right)$ with $t \in[0,4]$.
5. Find the average value of the function $f(x, y, z)=x y z$ along the helix

$$
\mathbf{c}(t)=(\sin (t), 8 t, \cos (t)), \quad t \in[0,6 \pi]
$$

