1. Which of the following sets are connected? Which are simply connected?
(a) \mathbb{R}^{2} with the circle $x^{2}+y^{2}=1$ removed.
(b) \mathbb{R}^{3} with the circle $x^{2}+y^{2}=1, z=0$ removed.
(c) The set $\left\{(x, y) \mid 1<x^{2}+y^{2}<2\right\}$ in \mathbb{R}^{2}.
(d) \mathbb{R}^{3} with the helix $(\cos (t), \sin (t), t), t \in[0, \pi]$ removed.
(e) The set $\left\{(x, y) \mid x^{2}-y^{2}<0\right\}$ in \mathbb{R}^{2}.
2. Here are three curves connecting the point $(1,0,0)$ to the point $(-1,0,0)$ in \mathbb{R}^{3} :
\mathbf{c}_{1} : The half-circle $(\cos (t), \sin (t), 0), t \in[0, \pi]$.
\mathbf{c}_{2} : The segment $\left(-t, t^{2}-1,1-t^{2}\right)$ of a parabola, $t \in[-1,1]$.
\mathbf{c}_{3} : The straight line $(-t, 0,0), t \in[-1,1]$.
(a) For $\mathbf{F}=(-y, x, z)$, compute $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s, \int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s$, and $\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s$.
(b) For $\mathbf{G}=\left(e^{y z}, x z e^{y z}, x y e^{y z}\right)$, compute $\int_{\mathbf{c}_{1}} \mathbf{G} \cdot d s, \int_{\mathbf{c}_{2}} \mathbf{G} \cdot d s$, and $\int_{\mathbf{c}_{3}} \mathbf{G} \cdot d s$.
(c) Is \mathbf{F} a conservative vector field? Is \mathbf{G} ?
3. Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y)=\left(\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{-x}{\sqrt{x^{2}+y^{2}}}\right)
$$

and \mathbf{c} the unit circle, oriented counterclockwise.
(a) What is the domain of definition of the vector field \mathbf{F} ? Is it simply connected?
(b) Compute $\operatorname{Curl}(\mathbf{F})$ (the " \mathbb{R}^{2} " curl, which is a function, and not a vector field).
(c) Compute $\int_{\mathbf{c}} \mathbf{F} \cdot d s$.
(d) If \mathbf{G} is a vector field, and $\mathbf{G}=\nabla g$ for some function g, what would $\int_{\mathbf{c}} \mathbf{G} \cdot d s$ have to be? (Hint: Think of \mathbf{c} as a curve whose ending point is the same as its starting point).
(e) Explain how you know that \mathbf{F} cannot be the gradient of any function, even though by a local calculation (the curl) it looks like it should be.
4. Let f be the function $f(x, y)=x^{2} y$, and
\mathbf{c}_{1} : The half circle $(\sqrt{2} \cos (t), \sqrt{2} \sin (t)), t \in[-3 \pi / 4, \pi / 4]$.
\mathbf{c}_{2} : The half circle $(\sqrt{2} \cos (t),-\sqrt{2} \sin (t)), t \in[3 \pi / 4,7 \pi / 4]$.
\mathbf{c}_{3} : The straight line $(t, t) t \in[-1,1]$.
All three curves connect the point $(-1,-1)$ to the point $(1,1)$.
(a) compute $f(1,1)-f(-1,-1)$
(b) Let $\mathbf{F}=\nabla f$. Compute \mathbf{F}.
(c) Compute $\int_{\mathbf{c}_{1}} \mathbf{F} \cdot d s, \int_{\mathbf{c}_{2}} \mathbf{F} \cdot d s$, and $\int_{\mathbf{c}_{3}} \mathbf{F} \cdot d s$.
(d) Explain the connection between (a) and (c).

