1. This problem is related to the change of variables example from class.
(a) If for any two positive numbers a and b, show either geometrically or algebraically that there is only one solution (x, y) in the positive quadrant to $x y=a$ and $y=b x$.
(b) The previous part shows that the functions $x y$ and y / x are good coordinates on the positive quadrant - they're sufficient to distinguish any two points in that quadrant. If $x y=u$ and $y / x=v$ are these new coordinates, find formulas for x and y in terms of u and v.
(c) Sketch the region R in the $x y$-plane bounded by $x y=1, x y=3, y=x$ and $y=4 x$. How would you describe R in terms of u, v coordinates?
(d) Compute the Jacobian of the change of coordinates (the determinant of the derivative matrix).
(e) If $f(x, y)$ is the function $f(x, y)=x^{3} y^{7}$, find the integral $\iint_{R} f(x, y) d A$ by changing to u, v coordinates.
2. In the picture at right, the solid lines are the curves $x y=1$ and $x y=2$, while the dotted lines are the curves $x^{2} y=1$ and $x^{2} y=3$. Let R be the shaded region between these curves.
The purpose of this question is to compute $\iint_{R} f(x, y) d A$ where $f(x, y)=x^{2} y^{2}$.
(a) Find parameterizations $x(u, v)$ and $y(u, v)$ in terms of u
 and v so that $x^{2} y=u$ and $x y=v$.
(b) In terms of the u, v parameterization, what are the limits of integration?
(c) What is the function f in terms of u and v ?
(d) Compute the Jacobian of this parameterization.
(e) Write down and compute the integral in terms of the u and v parameterization. (i.e., use the change of variables theorem to compute the integral above.)
3. Describe the volume being integrated over, and compute the iterated integral
(a) $\int_{-\sqrt{8}}^{\sqrt{8}} \int_{-\sqrt{8-x^{2}}}^{\sqrt{8-x^{2}}} \int_{-3}^{8-x^{2}-y^{2}} 2 d z d y d x$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}}(2 x-y) d z d x d y$
4. Sketch the region of integration for the iterated integral $\int_{0}^{1} \int_{0}^{y} \int_{0}^{x} x^{2} y z d z d x d y$, and express it in the five other possible orders of integration.
5. For each of the following surfaces, find a parameterization, and compute the tangent vectors and normal vectors in terms of that parameterization:
(a) The graph of $f(x, y)=9-x^{2}-y^{2}$ over the points where the function is positive.
(b) The part of the paraboloid $z=x^{2}+y^{2}$ in the first octant.
(c) The surface obtained by rotating the circle $(y-3)^{2}+z^{2}=1, x=0$ about the z-axis.
