Math 280 Tutorial 2: Derivatives

September 28, 2004

The partial derivative, $\partial F / \partial x_{i}\left(x_{1}, \ldots, x_{m}\right)$ is the rate of change of F at $\left(x_{1}, \ldots, x_{m}\right)$ in the direction of the positive x_{i} axis (at unit speed). Usually it suffices to regard the other variables as constant and differentiate normally, but sometimes the definition must be used:

$$
\frac{\partial F}{\partial x_{i}}\left(x_{1}, \ldots, x_{m}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+h, \ldots, x_{m}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{m}\right)}{h}
$$

If F is vector valued, then we define the partial derivatives of each of the component functions.

We can generalize this notion to find the rate of change at a point in any direction. For a 'nice' function, the rate of change will be a linear function of the direction vector. This means, among other things, that for $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, the rate of change at some point x_{0} in any direction can be determined from knowing the rate of change at x_{0} in m linearly independent directions. The m partial derivatives provide these m rates of change.

If a function is 'nice' at a point x_{0} we call it differentiable at x_{0}. More precisely we say F is differentiable at x_{0} if the matrix $D F\left(x_{0}\right)$ of partial derivatives at x_{0} satisfies the following equation:

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{\left\|F(x)-F\left(x_{0}\right)-D F\left(x_{0}\right)\left(x-x_{0}\right)\right\|}{\left\|x-x_{0}\right\|}=0 \tag{1}
\end{equation*}
$$

If Equation (1) holds, then we say $D F\left(x_{0}\right)$ is the derivative of F at x_{0}. We say F is differentiable on an open set $U \subset \mathbb{R}^{m}$ if it is differentiable at every point in U.

Checking that (1) holds can be cumbersome, but fortunately we don't always have to do it. If all the partial derivatives exist at x_{0} AND are continuous at x_{0} then F is differentiable at x_{0}. Note that existence alone does not guarantee differentiability. Consider the following example. To construct the graph of this function, we start with the unit circle in the $x y$ plane. Now we put some sort of oscillating function on the circle such that it is 0 on either of the coordinate axes, but not equal to 0 at any other points on the circle. Now fill in the rest of the function by connecting each point on the circle to the origin by a line starting at $(0,0,0)$ and ending at the correct height on the circle. Now the partials at $(0,0)$ are both 0 , since we made sure the function was 0 uniformly
on both axes. So the derivative should be the zero-matrix. But if we approach 0 in any other direction, the rate of change is non-zero or undefined. See the figure below for the sketch of such a function.

Tutorial Problems and Solutions

1. Find the partial derivatives of the following functions.

- $F(x, y)=x^{y}+y \ln x$
$\partial F / \partial x=y x^{y-1}+y / x$
$\partial F / \partial y=(\ln x) x^{y}+\ln x$
- $F(x, y)=\sin \left(e^{x y}\right)$
$\partial F / \partial x=y e^{x y} \cos \left(e^{x y}\right)$
$\partial F / \partial y=x e^{x y} \cos \left(e^{x y}\right)$
- $F(x, y, z)=\ln \left(x+y+z^{2}\right)$
$\partial F / \partial x=\left(x+y+z^{2}\right)^{-1}$
$\partial F / \partial y=\left(x+y+z^{2}\right)^{-1}$
$\partial F / \partial z=2 z\left(x+y+z^{2}\right)^{-1}$
- $F(x, y)=\left(x^{4}+y^{4}\right)^{1 / 2}$
$\partial F / \partial x=2 x^{3}\left(x^{2}+y^{2}\right)^{-1}$ For $(x, y) \neq(0,0)$
$\partial F / \partial y=2 y^{3}\left(x^{2}+y^{2}\right)^{-1}$ For $(x, y) \neq(0,0)$
For $(x, y)=(0,0)$, we have to use the definition since the functions above are not defined at $(0,0)$. Since $F(x, y)=F(y, x)$ we only have to do the calculation for one of the partials.
$\partial f / \partial x(0,0)=\lim _{h \rightarrow 0} \frac{F(h, 0)-F(0,0)}{h}=\lim _{h \rightarrow 0} h^{2} / h=\lim _{h \rightarrow 0} h=0$
So both partials are 0 at $(0,0)$.

2. Let $F(x, y, z)=\frac{x y z}{x^{2}+y^{2}+z^{2}}$ when $(x, y, z) \neq(0,0,0)$ and $F(0,0,0)=0$. Where is F differentiable?
F is differentiable at a point if all of its partials exist and are continuous at that point. Note that $F(x, y, z)=F(y, x, z)=F(x, z, y)$, so we only need to compute one partial.

$$
\frac{\partial F}{\partial x}=\frac{y z\left(x^{2}+y^{2}+z^{2}\right)+2 x^{2} y z}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
$$

This is continuous everywhere but the origin, and so the y and z partials will also be continuous everywhere but the origin. To see if F is differentiable at the origin we must use the definition of differentiability. First we compute the matrix of partials.

$$
\frac{\partial F}{\partial x}(0,0,0)=\lim _{h \rightarrow 0} \frac{0 / h^{2}-0}{h}=0
$$

By symmetry, the y and z partials are 0 at the origin, so $D F(0,0,0)=$ $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$. Now we must check to see if (1) holds:

$$
\begin{aligned}
& \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\|F(x, y, z)-F(0,0,0)-D F(0,0,0)(x, y, z)\|}{\|(x, y, z)\|} \\
= & \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\left|\frac{x y z}{x^{2}+y^{2}+z^{2}}\right|}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}} \\
= & \lim _{(x, y, z) \rightarrow(0,0,0)} \frac{|x y z|}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

If we approach along the line $x y z$ we get $\lim _{x \rightarrow 0}\left|x^{3}\right| /\left(3 x^{3}\right)$ which does not exist since it is $-1 / 3$ if we approach from the left and $1 / 3$ if we approach from the right. So F is differentiable on $\mathbb{R}^{3} /\{0,0,0\}$.
3. What is the rate of change at $(1,1,0)$ of the function $F(x, y, z)=\left(\ln \left(x^{2}+\right.\right.$ $\left.\left.y^{2}+z^{2}\right), 2 x y+z\right)$ in the direction $(2,1,-1) ?$

First we must compute the derivative $D F(1,1,0)$:

$$
\left[\begin{array}{ccc}
\frac{2 x}{x^{2}+y^{2}+z^{2}} & \frac{2 y}{x^{2}+y^{2}+z^{2}} & \frac{2 z}{x^{2}+y^{2}+z^{2}} \\
2 y & 2 x & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]
$$

Now we multiply by the direction vector:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

4. For a function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$, we have that the rate of change at $(0,0,0)$ in the direction $(2,3,0)$ is -1 , in the direction $(1,1,1)$ is 1 , in the direction $(-1,1,1)$ is -1 and in the direction $(2,1,1)$ is 3 . Show that F is not differentiable at $(0,0,0)$.

Suppose F is differentiable at $(0,0,0)$. Then there exists a 1×3 matrix $\operatorname{DF}(0,0,0)$ such that $\operatorname{DF}(0,0,0)(2,3,0)=-1, \operatorname{DF}(0,0,0)(1,1,1)=1$, $D F(0,0,0)(-1,1,1)=-1$ and $D F(0,0,0)(2,1,1)=3$. This can be written as:

$$
D F(0,0,0)\left(\begin{array}{cccc}
2 & 1 & -1 & 2 \\
3 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
-1 & 1 & -1 & 3
\end{array}\right)
$$

Taking the transpose of both sides gives the more familiar:

$$
\left(\begin{array}{ccc}
2 & 3 & 0 \\
1 & 1 & 1 \\
-1 & 1 & 1 \\
2 & 1 & 1
\end{array}\right) D F(0,0,0)^{T}=\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
3
\end{array}\right)
$$

Row reducing the associated augmented matrix gives the following:

$$
\left(\begin{array}{ccc|c}
2 & 3 & 0 & -1 \\
1 & 1 & 1 & 1 \\
-1 & 1 & 1 & -1 \\
2 & 1 & 1 & 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 1 & -2 & -3 \\
0 & 2 & 2 & 0 \\
0 & -1 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 3 & 4 \\
0 & 1 & -2 & -3 \\
0 & 0 & 6 & 6 \\
0 & 0 & -3 & -2
\end{array}\right)
$$

We see at this point that the last two equations cannot simultaneously hold and therefore no such $D F(0,0,0)$ can exist.
5. I have a differentiable function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and I know that at $(0,0)$ the rate of change in the direction $(1,1)$ is 2 and in the direction $(-1,2)$ is 1 . Find $D F(0,0)$.

Following the same procedure as in the previous question, we get the following:

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right) D F(0,0)^{T}=\binom{2}{1}
$$

Multiplying by the inverse of the matrix on the left we get:

$$
D F(0,0)^{T}=\frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right)\binom{2}{1}=\binom{1}{1}
$$

So $D F(0,0)=\left[\begin{array}{ll}1 & 1\end{array}\right]$.
6. Let $F(x, y) x^{2}+y^{3}$. In what direction from the point $(1,1)$ would I have to travel at unit speed to get the rate of change to be $-1 / \sqrt{2}$?

First we compute $D F(1,1)=\left[\begin{array}{ll}2 & 3\end{array}\right]$. Now the rate of change in direction (a, b) is $\operatorname{DF}(1,1)(a, b)^{T}=(2,3) \cdot(a, b)=|(2,3)||(a, b)| \cos \theta$ where θ is the angle between $(2,3)$ and (a, b). Now we know that $|(a, b)|=1$. So we put $D F(1,1)(a, b)^{T}=-1 / \sqrt{2}$ and we get $\sqrt{13} \cos \theta=-1 / \sqrt{2}$. Now let $\alpha=\arctan (3 / 2), \beta=\alpha+\theta$ and $\gamma=\alpha-\theta$. Then the two unit speed directions that give us a rate of change of $-1 / \sqrt{2}$ are $(\cos \beta, \sin \beta)=$ $(-0.9247 \ldots, 0.3807 \ldots)$ and $(\cos \gamma, \sin \gamma)=(1 / \sqrt{2},-1 / \sqrt{2})$. This question could also be done solving the simultaneous system of equations $2 x+3 y=-1 / \sqrt{2}, x^{2}+y^{2}=1$.

