
Math 280 Tutorial 3

One of the most powerful tools for differentiating functions is the chain rule. We
are all familiar with the one dimensional version, d

dx
(f ◦ g)(x) = df

dx
(g(x)) dg

dx
(x) and this

generalizes to the multivariable case. Suppose we have a function F : R
n → R

m and
another function G : R

m → R
l. Then the composition, G ◦ F is defined. Now if F is

differentiable on an open subset U of R
n containing a point a and G is differentiable on

an open subset of R
m containing F(U) then G ◦ F is differentiable at a, and:

D(G ◦ F)(a) = DG(F(a)) · DF(a)

Here · denotes matrix multiplication. If we apply this to two single variable functions
we get the traditional chain rule.

This rule can be useful in many situations, and can even be used to derive many other
differentiation rules. For example, if you let F : R → R

2 such that F(x) = (f(x), g(x))
and G : R

2 → R such that G(u, v) = uv then applying the chain rule to G ◦ F yields
the well known product rule from single variable calculus.

Many times a function can be decomposed into the composition of functions. When
computing the derivatives of such functions, we can either try to attack it as is, likely
using the single variable chain rule when computing the partials, or we can decompose
it and use the multivariable chain rule. Either approach will give the same results.

Tutorial Problems

1. Let F(x, y) = f(g(x), h(y), k(x, y)), where f : R
3 → R. Assume all functions are

differentiable. Find Fx and Fy.

Let u(x, y) = (g(x), h(y), k(x, y)). Then F = f ◦u, so DF(x, y) = Df(u(x, y)) ·Du(x, y).
Now Df(u(x, y)) = [ D1f D2f D3f ], where Dif is the ith partial of f evaluated at
u(x, y).

Du(x, y) =





g′(x) 0
0 h′(y)

∂k/∂x(x, y) ∂k/∂y(x, y)





Multiplying gives Fx = D1fg′(x)+D3f∂f/∂x(x, y) and Fy = D2fh′(y)+D3f∂f/∂y(x, y).

2. Let F (x, y) = x3y, where x3 + tx = 8 and yey = t. Find dF
dt

(0).

Considering F as a function of t, we have F (t) = u ◦ v(t) where u(x, y) = x3y and
v(t) = (x(t), y(t)), such that x(t) satisfies x3 + tx = 8 and y(t) satisfies yey = t. Now
DF (0) = Du(v(0)) ·Dv(0). Now we find v(0) by solving the equations x3 + 0x = 8 and
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yey = 0. We get v(0) = (2, 0). Now Du = [ 3x2y x3 ], so Du(v(0)) = [ 0 8 ]. We find
Dv(0) by implicitly differentiating the constaining equations for x and y. For x, we get
3x2x′+x+tx′ = 0. Subbing in t = 0, x = 2, we get 12x′(0)+2+0x′(0) = 0, x′(0) = −1/6.
For y, we get y′ey + y′yey = 1. Subbing in y = 0, t = 0, we get y′(0) + 0y′(0) = 1 and
so y′(0) = 1. So Dv(0) = [−1/6 1 ]T . Multiplying the matrices we get dF/dx(0) = 8.

3. For F,G : R → R
2, both differentiable, find D(F ·G) where · denotes the dot product

in R
n.

F•G = F1G1+F2G2. We define two functions u and v such that u◦v(x) = F(x)•G(x).
Let v(x) = (F1(x),F2(x),G1(x),G2(x)). Let u(x1, x2, y1, y2) = x1y1 + x2y2. Now
Du ◦ v(x) = Du(v(x)) · Dv(x). We have Du(v(x)) = [G1 G2 F1 F2 ] and Dv(x) =
[F′

1(x) F
′

2(x) G
′

1 G
′

2 ]T . Multiplying gives DF •G = F
′

1G1 + F
′

2G2 +F1G
′

1 + F2G
′

2 =
DF • G + F • DG.

4. I have a differentiable function F : R
2 → R. I switched into polar coordinates and

found that at (r, θ) = (1, π/4) we have ∂F/∂r = 2 and ∂F/∂θ = −1. What are the
partials with respect to x and y at the point (1/

√
2, 1/

√
2)?

Considering F as a function of r and θ, we put F = u◦v, where v(r, θ) = (r cos θ, r sin θ)
and u is a real valued function in x and y. We are given that DF = [ 2 − 1 ],
but we can also calculate it in terms of Du and Dv using the chain rule. (Note
that v(1, π/4) = (1/

√
2, 1/

√
2.) Now DF (1, π/4) = Du(1/

√
2, 1/

√
2) · Dv(1, π/4).

Du(1/
√

2, 1/
√

2 = [ ux(1/
√

2, 1/
√

2) uy(1/
√

2, 1/
√

2) ] which are the values we are try-
ing to find. Next we have:

Dv(1, π/4) =

[

cos θ −r sin θ
sin θ r cos θ

]

(1,π/4)

=

[

1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]

Note that Dv(1, π/4)−1 = Dv(1, π/4)T . Now we have Du(1/
√

2, 1/
√

2) · Dv(1, π/4) =
[ 2 − 1 ]. Multiplying both sides on the right by Dv(1, π/4)T gives Du(1/

√
2, 1/

√
2) =

[ 3/
√

2 1/
√

2 ].
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5. I have a function that measures temperature and pressure at a point in R
3, given by

F (x, y, z) = (−z1/2+sin(x+y), 1/z3+e−xy). I want to know what the rates of change are
as I move along the surface z = e−xy. Find the partial derivatives with respect to x and y.

We define G : R
2 → R

2 to be the value of F on the surface. That is G = F ◦ u
where u(x, y) = (x, y, e−xy). Now DG(a, b) = DF (u(a, b)) · Du(a, b). We find that:

DF (u(a, b)) =

[

cos(x + y) cos(x + y) −1/2z−1/2

−ye−xy −xe−xy −3/z4

]

u(a,b)

=

[

cos(a + b) cos(a + b) −1/2e1/2ab

−be−ab −ae−ab −3e4ab

]

Next we have:

Du(a, b) =





1 0
0 1

−be−ab −ae−ab





Multiplying gives:

DG(a, b) =

[

cos(a + b) + b/2e−1/2ab cos(a + b) + a/2e−1/2ab

−be−ab + 3be3ab −ae−ab + 3ae3ab

]

6. Let f(x, y) = (eexy+sin y, exy sin y). Calculate Df first directly from the definition,
then by writing f as the composition of two functions.

First we calculate Df directly:

Df =

[

yexyeexy+sin y (xexy + cos y)eexy+sin y

yexy sin y xexy sin y + exy cos y

]

Next we write f = u ◦ v where v(x, y) = (exy, sin y) and u(x̂, ŷ) = (ex̂+ŷ, x̂ŷ). Now we
compute Df(x, y) = Du(v(x, y)) · Dv(x, y). First, we have:

Du(v(x, y)) =

[

ex̂+ŷ ex̂+ŷ

ŷ x̂

]

v(x,y)

=

[

eexy+sin y eexy+sin y

sin y exy

]

Secondly, we have:

Dv(x, y) =

[

yexy xexy

0 cos y

]

Multiplying we see that we get the same result.
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