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Let a be a natural number greater than 1. For each prime p, let ia(p) denote the index
of the group generated by a in F∗

p. Assuming the generalized Riemann hypothesis and
Conjecture A of Hooley, Fomenko proved in 2004 that the average value of ia(p) is
constant. We prove that the average value of ia(p) is constant without using Conjecture
A of Hooley. More precisely, we show upon GRH that for any α with 0 ≤ α < 1, there
is a positive constant cα > 0 such that

X

p≤x

(log ia(p))α ∼ cαπ(x),

where π(x) is the number of primes p ≤ x. We also study related questions.20
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1. Introduction23

Let p ∈ N be a prime number. Let us consider (Z/pZ)∗ := {a (mod p) : p � a}. Then24

(Z/pZ)∗ is cyclic. That is, there exists a ∈ Z such that (Z/pZ)∗ = 〈a (mod p)〉.25

In this case we say that a is a primitive root modulo p. In fact, it can also be shown26

that the number of generators of (Z/pZ)∗ which have the form a (mod p) in (Z/pZ)∗27

is ϕ(p − 1) where ϕ(n) = #{1 ≤ k ≤ n : gcd(k, n) = 1}. In [16, Article 57], Gauss28

used primitive roots to discuss the periodicity of the decimal expansion of 1/p for29

primes p not equal to 2 or 5. Both Euler and Jacobi used primitive roots before30

Gauss.31
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In 1927, Artin made the following conjecture (see [1, Introduction; 19]): let a

be a fixed integer such that a �= 0,±1 or a perfect square. Let a = bh where b is
an integer which is not a perfect power and h ∈ N. Define Na(x) := #{p ≤ x :
(Z/pZ)∗ = 〈a (mod p)〉}. That is, Na(x) is the number of primes p ≤ x for which a

is a primitive root modulo p. Then

Na(x) ∼ Ahπ(x), (1.1)

where π(x) := #{p ≤ x : p prime} and

Ah =
∏
q|h

q prime

(
1 − 1

q − 1

) ∏
q�h

q prime

(
1 − 1

q(q − 1)

)
> 0. (1.2)

The heuristic behind this conjecture is based on the following idea: we have a

is primitive root modulo p if and only if for all q which are prime the following
conditions do not occur:

p ≡ 1 (mod q), (1.3)

a
p−1

q ≡ 1 (mod q). (1.4)

The first condition above occurs with a density of 1/ϕ(q) = 1/(q − 1) of the primes1

by Dirichlet’s theorem on primes in arithmetic progression. The second condition2

above occurs with a density of 1/q of the primes since a
p−1

q is a qth root of unity,3

and there are exactly q of those.4

Artin’s conjecture is still unresolved. However, Hooley [19] provided the following5

conditional resolution.6

Theorem 1.1 (Hooley). Suppose a ∈ Z such that a �= 0,±1 or a perfect square.
Suppose further that the generalized Riemann hypothesis holds for Dedekind zeta
functions for the fields Q(ζk, a1/k) with k ∈ N squarefree and where ζk is a primitive
kth root of unity. Then,

Na(x) = A(a)π(x) + O

(
x log log x

(log x)2

)
, (1.5)

where the implied constant depends on a.7

Hereafter, the generalized Riemann hypothesis will be denoted by GRH.8

It should be noted that A(a) in (1.5) is different from Ah in (1.2). It was discov-
ered by Lehmer and Lehmer [26] that the constant deviated from the conjectural
constant, and once informed, Artin made the corresponding correction (see [34]).
In fact, let h be as above and let a = a1a

2
2 where a1, a2 ∈ Z and a1 is squarefree. If

a1 �≡ 1 (mod 4), then A(a) = Ah, and if a1 ≡ 1 (mod 4), then

A(a) = Ah


1 − µ(|a1|)

∏
q|gcd(h,a1)

q prime

1
q − 2

∏
q�h
q|a1

q prime

1
q2 − q − 1


. (1.6)
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The best unconditional results are of the following flavor: one of 2, 3, or 5 is a
primitive root modulo p for infinitely many primes p. In fact, we have

#{p ≤ x : a is a primitive root modulo p} ≥ cx

(log x)2
, (1.7)

where c > 0 is a constant, and a is one of 2, 3, or 5. This result originates in the1

work of Gupta and Murty [17] and Heath-Brown [18]. It should be noted that 2,2

3, and 5 are not the only set of integers for which this result is applicable. In fact,3

we need three non-zero multiplicatively independent integers a, b, and c such that4

none of a, b, c, −3ab, −3ac, −3bc, or abc is a square for the result to be true for5

one of a, b, or c.6

1.1. Generalizing Artin’s conjecture7

Let a be as before, and let p be a prime such that p � a. Then, define the order of a

(mod p), denoted fa(p), as

fa(p) := min{k ∈ N : ak ≡ 1 (mod p)} = |〈a (mod p)〉|. (1.8)

Since p �a, fa(p) is well-defined by Fermat’s little theorem. Define the index of a

(mod p), denoted ia(p), as

ia(p) := [(Z/pZ)∗ : 〈a (mod p)〉] =
p − 1
fa(p)

. (1.9)

We now reformulate Artin’s conjecture in the following manner:

Na(x) =
∑
p≤x

χ{1}(ia(p)), (1.10)

where, for S ⊂ N,

χS(n) =

{
0 if n /∈ S,

1 if n ∈ S.
(1.11)

We would like to know what would occur if we change χ{1} to a generic function
f : N → C. That is, can we obtain the following relation∑

p≤x

f(ia(p)) ∼ ca,fπ(x), (1.12)

where ca,f is a constant dependent on f and a? This question was first studied8

by Stephens [33], and then by Wagstaff [36], Murata [28], Elliott and Murata [8],9

Pappalardi [31], Bach et al. [2], and Fomenko [12] among others. It is investigated10

in detail in [11]. Of course, the functions f will have reasonable restrictions so as to
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not force an impossibility with the above relation. For example, f(x) = x does not1

satisfy the above relation.2

The function f(x) = log x and a = 2 was first studied by Bach, Lukes, Shallit,
and Williams [2]. We refer to the following relation as Fomenko’s conjecture since
Fomenko [12] proved it using GRH and Conjecture A of Hooley [20, p. 112]:

∑
p≤x

log(ia(p)) ∼ cali(x) (1.13)

for some constant ca > 0. The authors of [2] mention heuristics that suggest the3

above relation is true for a ≥ 2 and give computational evidence for a = 2, a = 34

and a = 5.5

Pappalardi [31] proved the following related theorem.6

Theorem 1.2 (Pappalardi). Let a be an integer different from 0 and ±1.
We have

x

log x
�
∑
p≤x

log(ia(p)) �a
x log log x

log x
, (1.14)

where the lower bound is unconditional, and we suppose the GRH holds for the7

Dedekind zeta functions for the fields Q(ζk, a1/k) where ζk is a primitive kth root8

of unity as k ranges over prime powers for the upper bound.9

Before we can state a result of Fomenko’s we need to state the following conjec-10

ture of Hooley [20, p. 112].11

Conjecture 1.3 (Conjecture A of Hooley). Let Pb(y; �, t) be the number of
primes p ≤ y such that 2tb is an �th-power residue modulo p and for which �|p− 1.
Then, for y

1
4 < � < y, we have

Pb(y; �, t) � y

ϕ(�)(log(2y/�))2
, (1.15)

where the implied constant is absolute.12

For any integer a not equal to 0, ±1, we have the following theorem of13

Fomenko [12].14

Theorem 1.4 (Fomenko). Suppose the GRH holds for Dedekind zeta functions
for the fields Q(ζk, a1/k) where ζk is a primitive kth root of unity and where k

ranges over prime powers. Suppose further that Conjecture A of Hooley holds.
Then

∑
p≤x

log(ia(p)) = cali(x) + O

(
x log log x

(log x)2

)
, (1.16)
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where ca is an effectively computable constant dependent on a, and

li(x) =
∫ x

2

1
log t

dt. (1.17)

In fact, letting t = 0 and restricting � to the range (
√

y

(log y)4 ,
√

y(log y)2] in Con-1

jecture A of Hooley is all that is needed to prove the above theorem.2

Our goal is to remove Conjecture A of Hooley from the work of Fomenko. We3

note that we will not be able to remove Conjecture A from the above case of4

f(n) = log n. However, our technique narrowly misses this case. We will prove a5

similar result for f(n) = (log n)α where α ∈ (0, 1) is fixed upon GRH but not upon6

Conjecture A of Hooley.7

We also note that in the above range it is sufficient to assume the Pair8

Correlation Conjecture instead of Conjecture A of Hooley. For a formulation9

of this conjecture see [29]. In fact, this conjecture allows us to obtain error10

terms which are significantly better than in Theorem 1.1 as well as in the above11

theorem.12

1.2. Conventions13

Throughout, a will denote an integer different from 0 and ±1. The letters p and14

q will denote prime numbers with p �a. We note that this will not affect the15

proofs as there are only finitely many primes which divide a. Also, d, k, m, n,16

and w will denote positive integers, and x, y, and z will denote positive real17

numbers.18

By the notation f(x) = O(g(x)) or f(x) � g(x), we mean that there exists a
constant C such that for all x in the domain of f and g we have |f(x)| ≤ Cg(x). By
f(x) = Oa(g(x)) or f(x) �a g(x) we mean that the above constant is dependent
on a. This notation may be dropped in proofs for convenience. By f(x) ∼ g(x) we
mean

lim
x→∞

f(x)
g(x)

= 1, (1.18)

where x in the above limit is restricted to the domain of f and g.19

The statement “GRH holds for a on A ⊂ N” will hereafter signify “GRH holds20

for all Dedekind zeta functions for the fields Q(ζn, a1/n) where ζn is a primitive21

nth root of unity and n ranges over all values of A ⊂ N”. The statement “quasi-22

Riemann hypothesis holds for a on A ⊂ N (at ε)” will hereafter signify “there exists23

ε ∈ (0, 1/2] such that if 
(s) > 1−ε, then ζKn(s) �= 0 for all Kn = Q(ζn, a1/n) with24

n ranging over all values of A ⊂ N.”25

For b, k ∈ N with gcd(b, k) = 1, define π(x; k, b) = #{p ≤ x : p ≡ b (mod k)}.
For d ∈ N, define

πd(x) := #{p ≤ x : d | ia(p)}. (1.19)
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We also define the following arithmetic functions: for all n ∈ N, we have

Λ(n) :=

{
log p if n = pα for some α ∈ N,

0 otherwise,

ω(n) := #{p|n},
Ω(n) := #{pα|n : α ∈ N},
τ(n) := #{d|n},

(1.20)

and, for k ∈ N,

τk(n) := #{(a1, a2, . . . , ak) ∈ Nk : n = a1a2 · · · ak}. (1.21)

The function Λ is known as the von Mangoldt function. Also, the index of a (mod p)1

and order of a (mod p) are defined as before and denoted by ia(p) and fa(p),2

respectively.3

1.3. Problem setup4

Let f : N → C. We now ask when does the following relation hold for f : N → C:∑
p≤x

f(ia(p)) ∼ ca,fπ(x), (1.22)

where ca,f is a constant dependent on at most a and f?5

We note that if we write

f(n) =
∑
d|n

g(d), (1.23)

where g : N → C, then∑
p≤x

f(ia(p)) =
∑
p≤x

∑
d|ia(p)

g(d) =
∑
d≤x

g(d)
∑
p≤x

d|ia(p)

1 =
∑
d≤x

g(d)πd(x). (1.24)

We note that it is always possible to write

f(n) =
∑
d|n

g(d) (1.25)

by the Möbius inversion formula (see [6, Theorem 1.2.2]).6

Assuming g : N → C is well-behaved, we have no difficulty applying standard
techniques to obtain results of this nature. This is due to the fact that d|ia(p) if
and only if p splits completely in Q(ζd, a

1/d) where ζd is a primitive dth root of
unity (see Sec. 2.1). For example, f(n) = ω(n) and f(n) = Ω(n) easily fall into this
category (see Sec. 7). However, more complicated functions cause difficulties if we
try to use the standard techniques. For example, f(n) = log n or f(n) = τ(n) cause
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difficulties when considering intermediate primes and large divisors, respectively.
To see this, let us consider the following summation:∑

p≤x

log(ia(p)) =
∑
p≤x

∑
d|ia(p)

Λ(d)

=
∑

d≤
√

x

(log x)B

Λ(d)πd(x) +
∑

√
x

(log x)B
<d≤√

x(log x)A

Λ(d)πd(x)

+
∑

√
x(log x)A<d≤x

Λ(d)πd(x), (1.26)

where A, B > 0 are fixed. Here we have used the fact that

log n =
∑
d|n

Λ(d) (1.27)

for all n ∈ N.1

Now, the effective Chebotarev density theorem and GRH allow us to handle the2

first summation (see Sec. 3). Techniques of Hooley [19, Eq. (3)] allow us to handle3

the last summation. However, there is currently no method that allows us to bound4

the second summation adequately without assuming something beyond the reach5

of GRH and the Chebotarev density theorem. This is where Fomenko [12] assumed6

Conjecture A of Hooley. Similar difficulties exist for f(n) = τ(n), but they are more7

difficult because in the last summation Hooley’s argument [19, Eq. (3)] no longer8

applies.9

1.4. Statement of theorems10

We will discuss a new technique that eliminates some of the aforementioned difficul-11

ties if we only assume GRH. The only aforementioned difficulty which we have dis-12

cussed which this technique does not resolve is the case of the function f(n) = log n.13

We will prove the following theorem in Sec. 4.14

Theorem 1.5. Suppose GRH holds for a on N. Let α ∈ (0, 1) be fixed. Then, for
any ε > 0, we have∑

p≤x

(log ia(p))α = ca,αli(x) + Oa

(
x

(log x)2−ε−α

)
, (1.28)

where ca,α is a constant.15

In Sec. 5, we will prove the following theorem.16

Theorem 1.6. Suppose GRH holds for a on N. Then, for any ε > 0, we have
∑
p≤x

τ(ia(p)) = ca,τ li(x) + Oa

(
x

(log x)2−ε

)
, (1.29)
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where

ca,τ =
∑
d≥1

1
[Kd : Q]

(1.30)

is a positive constant.1

We will give an alternate proof of Theorem 1.6 in Sec. 6. This proof will gener-2

alize to the following theorem, which is also proven in Sec. 6.3

Theorem 1.7. Suppose GRH holds for a on N. Let f : N → C and g : N → C be
such that

f(n) =
∑
d|n

g(d) (1.31)

for all n ∈ N. Let α ∈ R be fixed with 0 ≤ α < 1, and let k, r ∈ N be fixed such
that |g(n)| � τk(n)r(log n)α for all n ∈ N where the implied constant may depend
on r, k and α. Then, there exists a constant ca,f such that

∑
p≤x

f(ia(p)) = ca,f li(x) + Oa

(
x

(log x)2−ε−α

)
(1.32)

for all ε > 0.4

Note that this immediately implies the following corollary.5

Corollary 1.8. Suppose GRH holds for a on N. Then, for any ε > 0, we have∑
p≤x

ω(ia(p))k = ca,ωk li(x) + Oa

(
x

(log x)2−ε

)
, (1.33)

∑
p≤x

Ω(ia(p))k = ca,Ωk li(x) + Oa

(
x

(log x)2−ε

)
, (1.34)

∑
p≤x

2kω(ia(p)) = c′a,Ω,kli(x) + Oa

(
x

(log x)2−ε

)
, (1.35)

and ∑
p≤x

τk(ia(p))r = ca,τr
k
li(x) + Oa

(
x

(log x)2−ε

)
, (1.36)

where ca,ωk , ca,Ωk , c′a,Ω,k, and ca,τr
k

are positive constants.6

Proof. Let f : N → C be one of the functions ω(n)k, Ω(n)k, 2kω(ia(p)) or τk(n)r

with k, r ∈ N fixed. Then, by the Möbius inversion formula [6, Theorem 1.2.2],
there exists g : N → C such that

f(n) =
∑
d|n

g(d) (1.37)
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for all n ∈ N. In fact, we have

g(n) =
∑
d|n

µ(d)f
(n

d

)
(1.38)

for all n ∈ N. Hence,

|g(n)| ≤
∑
d|n

f
(n

d

)
≤
∑
d|n

f(n) ≤ τ(n)f(n) � τk(n)r+1 (1.39)

since ω(n) ≤ Ω(n), 2ω(ia(p)) ≤ τ(n) ≤ τk(n) for all n and k, and since f(d) ≤ f(n)1

for all choices of f and d|n, and 2ω(n) is the number of squarefree divisors of n.2

These are new functions for which this relation holds. See [31] for more functions3

which can be developed from previous techniques.4

In Sec. 7, we will prove the following theorems.5

Theorem 1.9. Suppose GRH holds for a on primes. Then∑
p≤x

ω(ia(p)) = ca,ωli(x) + Oa

(
x log log x

(log x)2

)
, (1.40)

where ca,ω > 0 is a constant dependent on a.6

Theorem 1.10. Suppose GRH holds for a on prime powers. Then∑
p≤x

Ω(ia(p)) = ca,Ωli(x) + Oa

(
x log log x

(log x)2

)
, (1.41)

where ca,Ω > 0 is a constant dependent on a.7

2. Outline of Proofs8

In order to evaluate the summations in question and πd(x) = #{p ≤ x : d|ia(p)} in9

particular, we need the following classical result.10

Lemma 2.1. Let d ∈ N be fixed. Let p be a prime with p � a. Then, d|ia(p) if and11

only if p splits completely in the field Q(ζd, a
1/d).12

Proof. We note that d|ia(p) if and only if p ≡ 1 (mod d) and a
p−1

d ≡ 1 (mod p).13

This second condition is equivalent to the νd ≡ a (mod p) having a solution modulo14

p. Thus, d|ia(p) if and only if p ≡ 1 (mod d) and νd ≡ a (mod p) has a solution15

modulo p. These two conditions together imply that the polynomial xd − a splits16

into linear factors in Fp[x] by [10, Theorem 5.5.1]. Thus, if d|ia(p), then p splits17

completely in Q(a1/d). The condition p ≡ 1 (mod d) gives us p splits completely18

in Q(ζd). Thus, by algebraic number theory, p splits completely in Q(ζd, a
1/d). If19

d � ia(p), then either p �≡ 1 (mod d) or a
p−1

d �≡ 1 (mod p). The first condition implies20

p does not split in Q(ζd) ⊂ Q(ζd, a
1/d). The second condition implies that xd − a21

does not have a solution modulo p. Hence, xd − a cannot split into linear factors by22
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[10, Theorem 5.5.1]. Thus, p does not split completely in Q(a1/d), and hence, does1

not split in Q(ζd, a
1/d). Therefore, the result holds.2

This lemma will allow us to obtain an asymptotic formula for πd(x), which will
then allow us to handle the behavior of our summations in question. To see this,
let us first review Hooley’s conditional proof of Artin’s conjecture [19]: recall that

Na(x) = #{p ≤ x : ia(p) = 1}. (2.1)

Hooley then introduced the following relation, which he called R(q, p):

p ≡ 1 (mod q),

a
p−1

q ≡ 1 (mod p).
(2.2)

Note that a is a primitive root modulo p if and only if R(q, p) is false for all primes
q. Define

Na(x, η) := #{p ≤ x : R(q, p) is false for all q ≤ η} (2.3)

and

Ma(x, η1, η2) := #{p ≤ x : R(q, p) is true for some η1 < q ≤ η2}. (2.4)

Then, Hooley noted for any choice of ξ1 with ξ1 ≤ x − 1, we have

Na(x) = Na(x, ξ1) + O(Ma(x, ξ1, x − 1)). (2.5)

The error term Ma(x, ξ1, x − 1) can be handled using the Chebotarev density the-
orem assuming the GRH (which will be presented in Sec. 3), Mertens theorem
[6, Theorem 1.4.3], and the Brun–Titchmarsh theorem [6, Theorem 7.3.1]. Hooley’s
bound is

Ma(x, ξ1, x − 1) � x log log x

(log x)2
(2.6)

for an appropriate choice of ξ1.3

By the inclusion–exclusion principle (also known as the Möbius inversion formula
[6, Theorem 1.2.2]), we have

Na(x, ξ1) =
∑

d

′µ(d)πd(x), (2.7)

where the ′ indicates that d is squarefree and has no prime factors exceeding ξ1. Now,4

Lemma 2.1 along with GRH will give an asymptotic relation for this summation.5

Our technique is similar to this last portion involving the inclusion–exclusion
principle. For any function f : N → C, we can find g : N → C such that

f(n) =
∑
d|n

g(d) (2.8)
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for all n ∈ N by the Möbius inversion formula [6, Theorem 1.2.2]. By (1.24), we
have ∑

p≤x

f(ia(p)) =
∑
d≤x

g(d)πd(x). (2.9)

Let y be a real number such that 1 ≤ y ≤ x. Then, we have∑
p≤x

f(ia(p)) =
∑
d≤y

g(d)πd(x) +
∑

y<d≤x

g(d)πd(x). (2.10)

Using Lemma 2.1, GRH, and the Chebotarev density theorem, we will give an1

asymptotic relation for the first summation (after a suitable choice for y). The2

second summation will require a new idea. This new idea will be discussed in Sec. 33

and involves truncated divisor summations.4

Note that Hooley’s technique relied on R(q, p) where q was prime. However, for5

many functions already discussed, we need q to be an arbitrary positive integer,6

and so, Hooley’s technique will not work for these results.7

3. Preliminaries8

3.1. The Chebotarev density theorem9

The Chebotarev density theorem is one of the main tools we will need in order to10

prove the results stated within.11

Let K be a finite Galois extension of Q with Galois group G, degree nK , and
discriminant dK . Let P(K/Q) be the set of prime numbers p which ramify in K

over Q. Let πK(x) denote the prime numbers p ≤ x for which p splits completely
in K over Q. Then, the Chebotarev density theorem [4, 5] states

πK(x) ∼ li(x)
|G| (3.1)

as x → ∞. The original statement of this theorem is a more general statement12

about how frequent the conjugacy class of the Frobenius automorphism associated13

to p is equal to a fixed conjugacy class of G. In order to use this result, we need14

error terms. Such a result is due to Lagarias and Odlyzko [23]. It has been improved15

by Serre [32], Murty et al. [30], and Murty and Murty [29]. The following version is16

Serre’s [32] refinement of Lagarias and Odlyzko’s result [23].17

Theorem 3.1. Let K be as above. Assuming GRH for the Dedekind zeta function
of K, we have

πK(x) =
li(x)
|G| + O

(√
x

(
log |dK |

nK
+ log x

))
, (3.2)

where the implied constant is absolute.18
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The following result known as Hensel’s inequality is useful for bounding the error1

term in Theorem 3.1 (see [32, p. 130]).2

Lemma 3.2. Let K be a finite Galois extension with degree nK and discriminant
dK . Then

log |dK | ≤ nK

(
log nK +

∑
p∈P(K/Q)

log p

)
. (3.3)

3.2. Kummerian fields3

In order to compute Eq. (3.2), we will use (3.3). So we need to determine nK = |G|,4

the size of the Galois group for K over Q, and the discriminant dK , or at least the5

primes which ramify in K over Q by (3.3) when K = Q(ζn, a1/n).6

Let us first consider |G| = nQ(ζn,a1/n) = [Q(ζn, a1/n) : Q] since Q(ζn, a1/n) is the7

splitting field of xn−a over Q and hence, a Galois extension of Q. One expects that8

the subfields Q(ζn) and Q(a1/n) of Q(ζn, a1/n) have relatively small intersection.9

That is, we expect [Q(ζn) ∩ Q(a1/n) : Q] is bounded by some absolute constant.10

Hooley proved this for n squarefree (see [19, Eq. (12)]). This result is well-known11

if we assume xn − a is irreducible (see [7, Sec. 14.7, Exercises 4–6], and for cases of12

when xn − a is irreducible, see [25, Sec. VI.9]).13

For the generic n, we have the following result of Wagstaff [36, Proposition 4.1]:
let a ∈ Z be different from 0 and ±1. Write a = bc2 where b is a squarefree integer
and a > 0 if and only if b > 0. Define

d(a) =

{
b if b ≡ 1 (mod 4),

4b if b ≡ 2, 3 (mod 4).
(3.4)

Write a = ±ah
0 where h = max{m ∈ N : |a|1/m ∈ Z} and a0 > 0. That is, a0 is not14

a perfect mth power of any positive integer unless m = 1. Let n′ = n
gcd(n,h) for all15

n ∈ N. Write a0 = a1a
2
2 with a1, a2 ∈ Z and a1 is squarefree.16

Proposition 3.3. Let a ∈ Z be different from 0 and ±1. Let a0, a1, a2, and h be as
above. Let n ∈ N and let n′ be as above. Write

[Q(ζn, a1/n) : Q] =
n′ϕ(n)
ε(n)

=
nϕ(n)

ε(n) gcd(n, h)
.

(a) If a > 0, then we have

ε(n) =

{
2 if 2|n′, and d(a0)|n,

1 otherwise.

(b) If a < 0, then we have ε(n) = 1 if n is odd. Suppose n is even. If n′ is odd,

then ε(n) = 1/2. If n′ is even, then we have two cases n′ ≡ 2 (mod 4) or 4|n′.
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Assume n is even and n′ ≡ 2 (mod 4). Then, we have

ε(m) =




2 if n ≡ 2 (mod 4) and d(−a0)|n,

2 if n ≡ 4 (mod 8) and d(2a0)|n,

1 otherwise.

If n is even and 4|n′, then we have

ε(n) =

{
2 if d(a0)|n,

1 if d(a0) � n.

Note that the function ε(n) is absolutely bounded as it can only take the values1

1/2, 1, and 2. Also, 1 ≤ gcd(n, h) ≤ h is absolutely bounded as h is fixed. Therefore,2

we have the following immediate corollary.3

Corollary 3.4. Let a be an integer different from 0 and ±1. Let n ∈ N. Then

[Q(ζn, a1/n) : Q] � nϕ(n). (3.5)

This corollary is crucial for the both the main term and error term of the4

Theorem 3.1 as well as for determining when infinite summations of interest are5

convergent.6

Let us now consider the discriminant of Q(ζn, a1/n). By Lemma 3.2, we need7

only consider the primes which ramify in Q(ζn, a1/n). By [22, Theorem 7.3], the8

primes which ramify in a number field K are exactly those primes which divide the9

discriminant of K over Q. We have the following lemma.10

Lemma 3.5. If the prime p ramifies in Q(ζn, a1/n), then p divides a or n.11

Proof. We note that by [3, Lemma 5, Sec. 2], we have that the discriminant of12

Q(ζn, a1/n) over Q(ζn) divides nnan−1. By [10, Exercise 4.5.25], we have the dis-13

criminant Q(ζn) over Q is divisible by primes only dividing n. Thus, by [10, Exer-14

cise 5.6.25] and the standard properties of the relative norm, we have that a prime15

p divides dQ(ζn,a1/n) implies that p divides a or n. The result now follows from the16

remark in the preceding paragraph.17

Corollary 3.6. Let n ∈ N be fixed. Suppose GRH holds for the Dedekind zeta
function of Q(ζn, a1/n). Then

πn(x) =
li(x)

[Q(ζn, a1/n) : Q]
+ Oa(

√
x log(nx)), (3.6)

where the implied constant is dependent on a and can be explicitly computed.18

Proof. By Lemma 3.2, we have

log |dK |
nK

≤ log nK + log

( ∏
p∈P(K/Q)

p

)
(3.7)
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for any number field K. For K = Q(ζn, a1/n), we have

log |dQ(ζn,a1/n)|
nQ(ζn,a1/n)

�a log(nϕ(n)) + log an �a log an �a log n (3.8)

by Proposition 3.3 and Lemma 3.5. The result now follows by Lemma 2.1 and the1

definition of πQ(ζn,a1/n)(x).2

We note that if we assume that the quasi-Riemann hypothesis is true for a at n,3

then we obtain the following corollary of the above discussion in the same manner.4

Corollary 3.7. Let n ∈ N be fixed. Suppose the quasi-Riemann hypothesis holds
for the Dedekind zeta function of Q(ζn, a1/n) (at ε). Then

πn(x) =
li(x)

[Q(ζn, a1/n) : Q]
+ Oa(x1−ε log(nx)), (3.9)

where the implied constant is dependent on a and can be explicitly computed.5

3.3. Truncated divisor summations6

The general idea of truncating the range of interest in summations involving divisor7

functions originates with van der Corput [35]. The following development was first8

initiated by Landreau [24] and continued by Iwaniec and Munshi [21] and Friedlan-9

der and Iwaniec [14].10

We record the following result for completeness (see [15, Corollary 22.11]).11

Lemma 3.8. Let k ≥ 2, r ≥ 1, and n ≥ 1. We have

τr(n) ≤
∑
d|n

d≤n1/k

(2τ(d))(r−1)k(log k)/ log 2. (3.10)

We also have the following lemma.12

Lemma 3.9. Let r ≥ 1 and k ≥ 2 be fixed integers. Suppose the quasi-Riemann
hypothesis holds for a on N. Then∑

p≤x

τk(ia(p))r �a,r,k π(x). (3.11)

Proof. Let A = r(k−1)t log t
log 2 . We will see that our choice of t is bounded and thus13

A is bounded. This will be important in the sequel.14

Let us recall some facts about τ(m):

∑
m≤x

τ(m)A

m
� (log x)2

[A]+1
(3.12)
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and

τ(m) � mδ (3.13)

for any δ > 0 (see [6, Exercises 10.5.3 and 1.5.3]). Thus, by Lemma 3.8, Corollar-
ies 3.4, and 3.7, we have∑

p≤x

τk(ia(p))r ≤
∑
p≤x

∑
m|ia(p)

m≤x1/t

(2τ(m))A

�
∑

m≤x1/t

τ(m)Aπm(x)

� li(x)
∑

m≤x1/t

τ(m)A

mϕ(m)
+ O

(
x1−ε log x

∑
m<x1/t

τ(m)A

)

� li(x)
∑
m≥1

τ(m)A

mϕ(m)
+ O(x1+ 1

t −ε(log x)2
[A]+1+1). (3.14)

Choosing t ∈ N so that 1
t < ε ≤ 1

t−1 , recalling that ε is a fixed number, and
analyzing the O term give us

∑
p≤x

τk(ia(p))r � li(x)
∑
m≥1

τ(m)A

mϕ(m)
+ O(xθ) (3.15)

for some θ < 1. Now,

∑
m≥1

τ(m)A

mϕ(m)
�
∑
m≥1

1
m1−δϕ(m)

(3.16)

for any δ > 0 by (3.13), and this last term can be seen to be bounded for any δ < 11

by [6, Exercise 5.5.3]. Therefore, the result holds.2

We also have the following corollary of Theorem 1.2.3

Corollary 3.10. Suppose GRH holds for a on prime powers. Then, we have

#{p ≤ x : ia(p) > y} �a
x log log x

(log x)(log y)
. (3.17)

Proof. By Theorem 1.2, we have

log y#{p ≤ x : ia(p) > y} ≤
∑
p≤x

log ia(p) �a
x log log x

log x
. (3.18)

Dividing both sides by log y gives the desired result.4
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Note that the above results give the following lemma.1

Lemma 3.11. Suppose GRH holds for a on N. Then, we have∑
p≤x

ia(p)>
√

x

(log x)B

τk(ia(p))r �a
x

(log x)2−ε
(3.19)

for all ε > 0 and B ∈ R fixed.2

Proof. To see this, let s, t > 1 be real numbers such that 1
s + 1

t = 1. Then, by
Hölder’s inequality, GRH, Lemma 3.9, and Corollary 3.10, we have

∑
p≤x

ia(p)>
√

x

(log x)B

τk(ia(p))r ≤




∑
p≤x

ia(p)>
√

x

(log x)B

1



1
s



∑
p≤x

ia(p)>
√

x

(log x)B

τk(ia(p))rt




1
t

�
(

π(x) log log x

log x

) 1
s

(π(x))
1
t

� π(x)(log log x)
1
s

(log x)
1
s

� x(log log x)
1
s

(log x)1+
1
s

. (3.20)

The result now follows upon noting that we may choose s > 1 arbitrarily close to 13

and that log log x � (log x)δ for every δ > 0.4

4. The Function (log n)α
5

In this section, we are going to prove Theorem 1.5.6

Let 0 < α < 1 be a fixed real number. Write

(log n)α =
∑
d|n

g(d). (4.1)

Then, by the Möbius inversion formula [6, Theorem 1.2.2], we have

g(n) =
∑
d|n

µ(d)
(
log

n

d

)α

, (4.2)

and so,

|g(n)| ≤ (log n)α
∑
d|n

1 = (log n)ατ(n). (4.3)
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By (1.24), we have

∑
p≤x

(log ia(p))α =
∑
m≤x

g(m)πm(x)

=
∑
m≤y

g(m)πm(x) +
∑

y<m≤x

g(m)πm(x), (4.4)

where y with y ≤ x will be chosen later.1

By GRH and Corollary 3.6, we have

∑
m≤y

g(m)πm(x) = li(x)
∑
m≤y

g(m)
[Q(ζm, a1/m) : Q]

+ O

(√
x log x

∑
m≤y

|g(m)|
)

= li(x)
∑
m≤y

g(m)
[Q(ζm, a1/m) : Q]

+ O

(√
x log x

∑
m≤y

(log m)ατ(m)
)

= li(x)
∑
m≤y

g(m)
[Q(ζm, a1/m) : Q]

+ O(
√

x(log x)1+αy log y). (4.5)

Choose y =
√

x
(log x)B where B is a fixed real number. Thus, we have

√
x(log x)1+αy

log y � x
(log x)B−2−α . Also, by Corollary 3.4, (4.3), and (3.13), we have

∑
m≤y

g(m)
[Q(ζm, a1/m) : Q]

=
∑
m≥1

g(m)
[Q(ζm, a1/m) : Q]

+ O

(∑
m>y

|g(m)|
mϕ(m)

)

= ca,α + O

(
log y

y1−δ

)
(4.6)

for any δ > 0, and where

ca,α :=
∑
m≥1

g(m)
[Q(ζm, a1/m) : Q]

(4.7)

is a constant. Thus,

∑
d≤

√
x

(log x)B

g(d)πd(x) = ca,αli(x) + O

(
x

(log x)B−2−α

)
. (4.8)

Also, by Lemma 3.11, from the fact

τk+1(n) =
∑
d|n

τk(d) (4.9)
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for all positive integers n and k, and since y =
√

x
(log x)B for some fixed B ∈ R,

we have ∣∣∣∣∣
∑

y<m≤x

g(m)πm(x)
∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p≤x

∑
y<m≤x
m|ia(p)

g(m)
∣∣∣∣∣∣

≤ (log x)α
∑
p≤x

∑
m>y

m|ia(p)

τ(m)

≤ (log x)α
∑
p≤x

ia(p)>y

∑
m|ia(p)

τ(m)

≤ (log x)α
∑
p≤x

ia(p)>y

τ3(ia(p))

� x

(log x)2−ε−α
. (4.10)

Therefore, Theorem 1.5 holds by letting B > 3+α since ε can be chosen arbitrarily1

close to 0 and α < 1.2

We should note that this technique will not work for α = 1 unless we can improve
upon results of the following flavor

#{p ≤ x : ia(p) > y} � π(x) log log x

log y
, (4.11)

or prove related results about the number of primes with divisors in a specified
range. The work of Erdős and Murty [9] and continuation by Ford [13] have shown
that it is possible to obtain non-trivial upper bounds for

#
{

p ≤ x : p − 1 has a divisor in
( √

x

(log x)B
,
√

x(log x)B

)}
. (4.12)

However, these bounds do not resolve the problem for α = 1 but also do not require3

the use of GRH for large divisors.4

5. The Divisor Function5

In this section, we will prove Theorem 1.6.6

Recall the following theorem of Fomenko [12].7

Theorem 5.1 (Fomenko). Let w ∈ N be fixed. Suppose the GRH holds for a

on N. Define

Na(x; w) := #{p ≤ x : ia(p) = w}. (5.1)

Then

Na(x; w) = Aa(w)li(x) + OA

(
x log log x

ϕ(w)(log x)2

)
+ Oa

(
x

(log x)A

)
, (5.2)
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where

Aa(w) =
∑
k≥1

µ(k)
[Q(ζkw , a1/kw) : Q]

(5.3)

and A is any fixed real number.1

We should note that if we are not interested in the dependence of w, then the
above result is due to Wagstaff [36]. Also, if one is interested in the dependence on
a, then the following result of Moree [27] is of interest:

Na(x; w) = Aa(w)li(x) + O

(
x log log x

ϕ(w)(log x)2

)
+ O

(
x log |a|
(log x)2

)
. (5.4)

We will also need the following fact:

τ(n) = 2
∑
d|n

d≤√
n

1 − δ(n), (5.5)

where

δ(n) :=
{

1 if n is a square,
0 otherwise.

(5.6)

Thus, we have

∑
p≤x

τ(ia(p)) =
∑
p≤x


2

∑
d|ia(p)

d≤
√

ia(p)

1 − δ(ia(p))



= 2
∑

d≤√
x

∑
p≤x

d|ia(p)

1 − 2
∑

d≤√
x

∑
p≤x

d|ia(p)

ia(p)<d2

1 −
∑
p≤x

δ(ia(p))

= 2
∑

d≤√
x

πd(x) − 2
∑

d≤√
x

d−1∑
m=1

Na(x; md) −
∑
p≤x

δ(ia(p)). (5.7)

We will evaluate each of these summations separately.2

5.1. The first summation3

We have ∑
d≤√

x

πd(x) =
∑
d≤y

πd(x) +
∑

y<d≤√
x

πd(x), (5.8)
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where y with y ≤ √
x will be chosen later. By Corollary 3.4, GRH, and Corollary 3.6,

we have

∑
d≤y

πd(x) =
∑
d≤y

li(x)
[Kd : Q]

+ O(
√

x log(dx))

= li(x)
∑
d≥1

1
[Kd : Q]

+ O

(
li(x)

∑
d>y

1
dϕ(d)

)

+ O

(√
x log x

∑
d≤y

1
)

= c1li(x) + O

(
x log y

y log x

)
+ O(y

√
x log x), (5.9)

where

c1 =
∑
d≥1

1
[Kd : Q]

(5.10)

is a constant by Corollary 3.4. Choosing y =
√

x
(log x)B for any fixed real number B

gives us

∑
d≤

√
x

(log x)B

πd(x) = c1li(x) + O

(
x

(log x)B−1

)
. (5.11)

Now,

∑
√

x

(log x)B
<d≤√

x

πd(x) =
∑

√
x

(log x)B
<d≤√

x

∑
p≤x

d|ia(p)

1 =
∑
p≤x

∑
√

x

(log x)B
<d≤√

x

d|ia(p)

1

≤
∑
p≤x

ia(p)>
√

x

(log x)B

∑
d|ia(p)

1 =
∑
p≤x

ia(p)>
√

x

(log x)B

τ(ia(p))

� x

(log x)2−ε
(5.12)

for any ε > 0 by Lemma 3.11. Thus,

∑
d≤√

x

πd(x) = c1li(x) + O

(
x

(log x)2−ε

)
. (5.13)
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5.2. The second summation1

Let C be a fixed positive real number. For the second summation, we have

∑
d≤√

x

d−1∑
m=1

Na(x; md) =
∑

d≤(log x)C

d−1∑
m=1

Na(x; md) +
∑

(log x)C<d≤
√

x

(log x)C

d−1∑
m=1

Na(x; md)

+
∑

√
x

(log x)C
<d≤√

x

d−1∑
m=1

Na(x; md). (5.14)

By Theorem 5.1, we have

∑
d≤(log x)C

d−1∑
m=1

Na(x; md)

=
∑

d≤(log x)C

d−1∑
m=1

(
Aa(md)li(x) + O

(
x log log x

ϕ(md)(log x)2

)
+ O

(
x

(log x)A

))

= li(x)
∑

d≤(log x)C

d−1∑
m=1

Aa(md) + O


x log log x

(log x)2
∑

d≤(log x)A

d−1∑
m=1

1
ϕ(md)




+ O

(
x

(log x)A−2C

)
. (5.15)

Now,

∑
d≤(log x)C

d−1∑
m=1

1
ϕ(md)

�
∑

d≤(log x)C

log d

ϕ(d)

� (log log x)2. (5.16)

So, the first error term is � x(log log x)3

(log x)2 .2

By Corollary 3.4, we have

Aa(w) :=
∑
k≥1

µ(k)
[Q(ζkw , a1/kw) : Q]

�
∑
k≥1

1
kwϕ(kw)

� 1
wϕ(w)

∑
k≥1

1
kϕ(k)

� 1
wϕ(w)

(5.17)

for all w ∈ N. With this, it can be shown that

∑
d≤(log x)C

d−1∑
m=1

Aa(md) = c2 + O

(
(log log x)2

(log x)C

)
(5.18)
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where

c2 :=
∑
k≥1

∑
1≤m<k

Aa(mk) =
∑
k≥1

k−1∑
m=1

∑
w≥1

µ(w)
[Kkmw : Q]

. (5.19)

Hence,

∑
d≤(log x)C

d−1∑
m=1

Na(x; md) = c2li(x) + O

(
x(log log x)3

(log x)2

)
. (5.20)

For the other summations, we have
d−1∑
m=1

Na(md) ≤ πd(x). (5.21)

Thus, by GRH and Corollary 3.6, we have

∑
(log x)C<d≤

√
x

(log x)C

d−1∑
m=1

Na(x; md) ≤
∑

(log x)C<d≤
√

x

(log x)C

πd(x)

= li(x)
∑

(log x)C<d≤
√

x

(log x)C

1
[Kd : Q]

+ O

(
x

(log x)C−1

)

� li(x)
∑

(log x)C<d≤
√

x

(log x)C

1
dϕ(d)

+ O

(
x

(log x)C−1

)

� x log log x

(log x)C+1
+

x

(log x)C−1
. (5.22)

Finally, by (5.12), we have ∑
√

x

(log x)C
<d≤√

x

πd(x) � x

(log x)2−ε
(5.23)

for any ε > 0. Therefore,

∑
d≤√

x

d−1∑
m=1

Na(x; md) = c2li(x) + O

(
x

(log x)2−ε

)
(5.24)

for any ε > 0.1

5.3. The third summation2

For the last summation, we have∑
p≤x

δ(ia(p)) =
∑

m≤√
x

#{p ≤ x : ia(p) = m2}

=
∑

m≤√
x

Na(x; m2). (5.25)
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Now,

∑
m≤√

x

Na(x; m2) =
∑
m≤y

Na(x; m2) +
∑

y<m≤√
x

Na(x; m2), (5.26)

where y with y ≤ √
x will be chosen later.1

We will handle each of these summations separately.2

By Theorem 5.1, for a fixed real number A, we have

∑
m≤y

Na(x; m2) =
∑
m≤y

(
Aa(m2)li(x) + O

(
x log log x

ϕ(m2)(log x)2

)
+ O

(
x

(log x)A

))

= li(x)
∑
m≤y

Aa(m2) + O

(
x log log x

(log x)2

)
+ O

(
yx

(log x)A

)
.

(5.27)

Choose y = (log x)C for some fixed real number C and A = C + 2. Then, we have

∑
m≤(log x)C

Na(x; m2) = li(x)
∑

m≤(log x)C

Aa(m2) + O

(
x log log x

(log x)2

)
. (5.28)

Now, by (5.17), we have

∑
m≤(log x)C

Aa(m2) = c3 + O

(
log log x

(log x)C

)
, (5.29)

where

c3 :=
∑
m≥1

Aa(m2) =
∑
m≥1

∑
w≥1

µ(w)
[Q(ζk2w, a1/k2w) : Q]

. (5.30)

Thus,

∑
m≤(log x)C

Na(x; m2) = c3li(x) + O

(
x log log x

(log x)2

)
. (5.31)

For the second summation, we have

∑
(log x)C<m≤√

x

Na(x; m2) ≤
∑

(log x)C<m≤√
x

π(x; m2, 1)

=
∑

(log x)C<m≤x
1
2−δ

π(x; m2, 1) +
∑

x
1
2−δ<m≤√

x

π(x; m2, 1) (5.32)
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for any fixed δ ∈ (0, 1/2). Thus, by the Brun–Titchmarsh inequality (see [6, Theo-
rem 7.3.1]) and the multiplicativity of the Euler totient function, we have∑

(log x)C<m≤x
1
2−δ

π(x; m2, 1) �
∑

m>(log x)C

x

ϕ(m2) log x

=
x

log x

∑
m>(log x)C

1
mϕ(m)

� Cx log log x

(log x)1+C
(5.33)

for any ε > 0. Thus, for C > 1, we have∑
(log x)C<m≤x

1
2−δ

π(x; m2, 1) � x

(log x)2
. (5.34)

We also have, by the trivial bound π(x, d, 1) ≤ x/d, the following relation:∑
x

1
2−δ<m≤√

x

π(x; m2, 1) �
∑

m>x
1
2−δ

x

m2
� x

1
2+δ. (5.35)

Thus,

∑
p≤x

δ(ia(p)) = c3li(x) + O

(
x log log x

(log x)2

)
. (5.36)

Therefore,

∑
p≤x

τ(ia(p)) = (2c1 − 2c2 − c3)li(x) + O

(
x

(log x)2−ε

)
(5.37)

for any ε > 0.1

5.4. Computation of the constant2

To finish the proof, we need to prove∑
n≥1

1
[Kn : Q]

= 2c1 − 2c2 − c3. (5.38)

Note that

c1 =
∑
n≥1

1
[Kn : Q]

. (5.39)

Therefore, we need to show c1 = 2c2 + c3. That is,∑
n≥1

1
[Kn : Q]

= 2
∑
k≥1

∑
1≤m<k

Aa(mk) +
∑
k≥1

Aa(k2). (5.40)
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However, by Theorem 5.1, we have

2
∑
k≥1

∑
1≤m<k

Aa(mk) +
∑
k≥1

Aa(k2)

= 2
∑
k≥1

k−1∑
m=1

∑
w≥1

µ(w)
[Q(ζkmw , a1/kmw) : Q]

+
∑
k≥1

∑
w≥1

µ(w)
[Q(ζk2w, a1/k2w) : Q]

= 2
∑
n≥1

1
[Q(ζn, a1/n) : Q]

∑
w|n

µ(w)
∑

n
w =mk
m<k

1 +
∑
n≥1

1
[Q(ζn, a1/n) : Q]

∑
k2|n

µ
( n

k2

)
.

(5.41)

Now, let

g(n) =
∑
k2|n

µ
( n

k2

)
. (5.42)

We claim g is multiplicative. To see this, we note that if gcd(m, n) = 1, then d2|mn

if and only if d = d1d2 with gcd(d1, d2) = 1 such that d2
1|m and d2

2|n. Thus, g is
multiplicative. Hence,

g(n) =
∏

pα‖n


 ∑

p2d|pα

µ(pα−2d)


 =

∏
pα‖n

(−1)α = (−1)Ω(n). (5.43)

Let

f(n) =
∑

n=mk
m<k

1 =
∑
d|n

d<
√

n

1. (5.44)

This is true since n = mk with m < k if and only if k|n and n
k < k. This last pair

of conditions is equivalent to k|n and
√

n < k. However,

τ(n) =
∑
d|n

1 = 2
∑
d|n

d<
√

n

1 + δ(n) (5.45)

where

δ(n) =
{

1 if
√

n ∈ Z,

0 otherwise.
(5.46)

Therefore,

f(n) =
τ(n) − δ(n)

2
. (5.47)
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Hence, we will be finished if we can prove

1 = 2
∑
w|n

µ(w)
(

τ(n/w) − δ(n/w)
2

)
+ (−1)Ω(n), (5.48)

or equivalently,

∑
w|n

µ(w)
(

τ(n/w) − δ(n/w)
2

)
=

{
0 if Ω(n) is even,

1 if Ω(n) is odd.
(5.49)

By the Möbius inversion formula [6, Theorem 1.2.2], all we need to show is that

τ(n) − δ(n)
2

= #{d|n : Ω(d) is odd}. (5.50)

In order to do this, we need the following lemma about generating functions.1

Lemma 5.2. Let α1, α2, . . . , αr be positive integers. For all i ∈ {1, 2, . . . , r}, let

fi(x) = 1 + x + x2 + · · · + xαi . (5.51)

Let

f(x) = f1(x)f2(x) · · · fr(x) =
∑
k≥0

akxk, (5.52)

where ak = 0 for all k > α1 + α2 + · · · + αr.2

(a) If there exists i ∈ {1, 2, . . . , r} such that αi is odd, then∑
k≥0

a2k =
∑
k≥0

a2k+1. (5.53)

That is, the sum of the coefficients to an even power is equal to the sum of the3

coefficients to an odd power.4

(b) If all of α1, α2, . . . , αr are even, then∑
k≥0

a2k = 1 +
∑
k≥0

a2k+1. (5.54)

That is, the sum of the coefficients to an even power is equal to 1 plus the sum5

of the coefficients to an odd power.6

Proof. (a) We will prove this by induction on r. The result holds for r = 1. Suppose
it is true for r − 1 with r ≥ 2. Let f1(x), f2(x), . . . , fr(x) be as in (a). Without
loss of generality, we may assume that α1 is odd. Therefore, the result holds
for g(x) = f1(x)f2(x) · · · fr−1(x). Let {bk}∞k=0 be the coefficients of xk for g(x).
Then, we have ∑

k≥0

b2k =
∑
k≥0

b2k+1. (5.55)
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Now,

f(x) = g(x)fr(x)

=

(∑
k≥0

bkxk

)
(1 + x + x2 + · · · + xαr )

=

(∑
k≥0

b2kx2k +
∑
k≥0

b2k+1x
2k+1

) ∑
0≤m≤αr
m is even

xm +
∑

0≤m≤αr

m is odd

xm




=
∑

0≤m≤αr
m is even

∑
k≥0

b2kx2k+m +
∑

0≤m≤αr
m is odd

∑
k≥0

b2k+1x
2k+1+m

+
∑

0≤m≤αr
m is odd

∑
k≥0

b2kx2k+m +
∑

0≤m≤αr
m is even

∑
k≥0

b2k+1x
2k+1+m. (5.56)

Therefore, ∑
k≥0

a2k =
∑

0≤m≤αr
m is even

∑
k≥0

b2k +
∑

0≤m≤αr
m is odd

∑
k≥0

b2k+1

=
∑

0≤m≤αr
m is even

∑
k≥0

b2k+1 +
∑

0≤m≤αr

m is odd

∑
k≥0

b2k

=
∑
k≥0

a2k+1. (5.57)

Hence, part (a) holds.1

(b) Again, we will prove this by induction on r. It is clear for r =1. Suppose it
is true for r − 1 where r ≥ 2. Let f1(x), f2(x), . . . , fr(x) be as in (b). Let
g(x) = f1(x)f2(x) · · · fr−1(x). Let {bk}∞k=0 be the coefficients of xk for g(x).
Then, we have ∑

k≥0

b2k = 1 +
∑
k≥0

b2k+1. (5.58)

Now,

f(x) = g(x)fr(x)

=

(∑
k≥0

bkxk

)
(1 + x + x2 + · · · + xαr )

=

(∑
k≥0

b2kx2k +
∑
k≥0

b2k+1x
2k+1

)
 ∑

0≤m≤αr
m is even

xm +
∑

0≤m≤αr

m is odd

xm



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=
∑

0≤m≤αr
m is even

∑
k≥0

b2kx2k+m +
∑

0≤m≤αr
m is odd

∑
k≥0

b2k+1x
2k+1+m

+
∑

0≤m≤αr

m is odd

∑
k≥0

b2kx2k+m +
∑

0≤m≤αr
m is even

∑
k≥0

b2k+1x
2k+1+m. (5.59)

Therefore,∑
k≥0

a2k =
∑

0≤m≤αr
m is even

∑
k≥0

b2k +
∑

0≤m≤αr
m is odd

∑
k≥0

b2k+1

=
∑

0≤m≤αr
m is even

(
1 +

∑
k≥0

b2k+1

)
+

∑
0≤m≤αr
m is odd

(
−1 +

∑
k≥0

b2k

)

=
∑
k≥0

a2k+1 +
∑

0≤m≤αr
m is even

1 −
∑

0≤m≤αr

m is odd

1

= 1 +
∑
k≥0

a2k+1 (5.60)

since αr is even. Hence, part (b) holds.1

We claim that Lemma 5.2 implies

τ(n) − δ(n)
2

= #{d|n : Ω(d) is odd}. (5.61)

Let n = pα1
1 pα2

2 · · · pαr
r be the unique prime power factorization of n. Then, we have∑

d|n
d =

∑
0≤βi≤αi

for all i

pβ1
1 pβ2

2 · · · pβr
r . (5.62)

Thus,

#{d|n : Ω(d) is odd} =
∑

0≤βi≤αi for all i
β1+β2+···+βr is odd

1. (5.63)

For i ∈ {1, 2, . . . , r}, let fi(x) = 1 + x + x2 + · · · + xαi . Let

f(x) = f1(x)f2(x) · · · fr(x) =
∑
k≥0

akxk. (5.64)

Also note that

f(x) =
∑

0≤βi≤αi

for all i

xβ1+β2+···+βr . (5.65)
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Thus, ∑
k≥0

a2k+1 =
∑

0≤βi≤αi for all i
β1+β2+···+βr is odd

1. (5.66)

Similarly, replacing “odd” with “even” gives us∑
k≥0

a2k =
∑

0≤βi≤αi for all i
β1+β2+···+βr is even

1. (5.67)

Therefore, by Lemma 5.2, we have

#{d|n : Ω(d) is odd} = #{d|n : Ω(d) is even} (5.68)

if some αi is odd, and

#{d|n : Ω(d) is odd} + 1 = #{d|n : Ω(d) is even} (5.69)

if all αi are even. This last condition is equivalent to n being a square. Therefore,
we have

#{d|n : Ω(d) is odd} + δ(n) = #{d|n : Ω(d) is even}. (5.70)

Hence,

τ(n) = #{d|n : Ω(d) is odd} + #{d|n : Ω(d) is even}
= 2#{d|n : Ω(d) is odd} + δ(n). (5.71)

Thus,

#{d|n : Ω(d) is odd} =
τ(n) − δ(n)

2
, (5.72)

as required. Therefore, Theorem 1.6 holds.1

6. Alternate Proof of Theorem 1.6 and its Generalization2

6.1. Proof of Theorem 1.63

By (1.24) and since τ(n) =
∑

d|n 1, we have∑
p≤x

τ(ia(p)) =
∑
d≤x

πd(x) =
∑
d≤y

πd(x) +
∑

y<d≤x

πd(x), (6.1)

where y with y ≤ x will be chosen later. Then, by GRH and Corollary 3.6, we have∑
d≤y

πd(x) =
∑
d≤y

(
li(x)

[Q(ζd, a1/d) : Q]
+ O(

√
x log(dx))

)

= li(x)
∑
d≤y

1
[Q(ζd, a1/d) : Q]

+ O(y
√

x log x)

= li(x)
∑
d≥1

1
[Q(ζd, a1/d) : Q]

+ O

(
x log y

y log x

)
+ O(y

√
x log x). (6.2)



2nd Reading

July 21, 2012 13:4 WSPC/S1793-0421 203-IJNT 1250098

30 A. T. Felix & M. R. Murty

Let y =
√

x
(log x)3 . Then

∑
d≤y

πd(x) = ca,τ li(x) + O

(
x

(log x)2

)
, (6.3)

where

ca,τ =
∑
d≥1

1
[Q(ζd, a1/d) : Q]

(6.4)

is a constant by Corollary 3.4.1

We also have∑
√

x

(log x)2
<d≤x

πd(x) =
∑

√
x

(log x)2
<d≤x

∑
p≤x

d|ia(p)

1 =
∑
p≤x

∑
√

x

(log x)2
<d≤x

d|ia(p)

1

≤
∑
p≤x

ia(p)>
√

x

(log x)2

∑
d|ia(p)

1 =
∑
p≤x

ia(p)>
√

x

(log x)2

τ(ia(p))

� x

(log x)2−ε
(6.5)

by Lemma 3.11. Therefore, Theorem 1.6 holds.2

6.2. Proof of Theorem 1.73

By (1.24) and the hypothesis that f(n) =
∑

d|n g(d), we have

∑
p≤x

f(ia(p)) =
∑
d≤x

g(d)πd(x)

=
∑
d≤y

g(d)πd(x) +
∑

y<d≤x

g(d)πd(x), (6.6)

where y with y ≤ x will be chosen later.4

By GRH and Corollary 3.6, we have

∑
d≤y

g(d)πd(x) =
∑
d≤y

(
g(d)

[Q(ζd, a1/d) : Q]
li(x) + O(|g(d)|√x log(dx))

)

= li(x)
∑
d≥1

g(d)
[Q(ζd, a1/d) : Q]

+ O

(
li(x)

∑
d>y

|g(d)|
[Q(ζd, a1/d) : Q]

)

+ O

(√
x log x

∑
d≤y

|g(d)|
)

. (6.7)
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We claim τk(n) � nθ for all θ > 0. To see this, note that it is true for k = 1 and
k = 2 by (3.13). Assume it is true for k. Then,

τk+1(n) =
∑
d|n

τk(d) �
∑
d|n

dθ � nθτ(n) � nθ′
(6.8)

for all θ′ > 0. Hence, the claim holds by induction. By Corollary 3.4 and |g(d)| �
(log d)ατk(d)r � dθ for all θ > 0, we have∣∣∣∣∣

∑
d≥1

g(d)
[Q(ζd, a1/d) : Q]

∣∣∣∣∣�
∑
d≥1

|g(d)|
dϕ(d)

�
∑
d≥1

1
d1−θϕ(d)

< ∞. (6.9)

Therefore,

ca,f :=
∑
d≥1

g(d)
[Q(ζd, a1/d) : Q]

(6.10)

is a constant. Also,

∑
d>y

|g(d)|
[Q(ζd, a1/d) : Q]

� log y

y1−θ
(6.11)

for all θ > 0.1

Let B = 2r(k − 1). By Lemma 3.8 (and an argument similar to that of
Lemma 3.9), we have∑

d≤y

|g(d)| � (log y)α
∑
d≤y

τk(d)r � (log y)α
∑
d≤y

∑
m|d

m≤d1/2

(2τ(m))B

�r,k y(log y)α
∑

m≤y1/2

τ(m)B

m

�r,k y(log y)α+2B+1
(6.12)

by (3.12). Thus, we obtain

∑
d≤y

g(d)πd(x) = ca,f li(x) + O

(
x log y

y1−θ log x

)
+ O(y

√
x(log y)α+2B+1

log x) (6.13)

for all θ > 0. Let y =
√

x/(log x)α+2B+1+4. Then, the above relation becomes

∑
d≤y

g(d)πd(x) = ca,f li(x) + O(xΘ) + O

(
x

(log x)3

)
(6.14)

for some Θ < 1.2
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We also have∣∣∣∣∣
∑

y<d≤x

g(d)πd(x)
∣∣∣∣∣ =

∣∣∣∣∣∣
∑

y<d≤x

g(d)
∑
p≤x

d|ia(p)

1
∣∣∣∣∣∣

≤
∑

y<d≤x

|g(d)|
∑
p≤x

d|ia(p)

1

� (log x)α
∑
p≤x

ia(p)>y

∑
d|ia(p)

τk(d)r

≤ (log x)α
∑
p≤x

ia(p)>y

( ∑
d|ia(p)

τk(d)
)r

= (log x)α
∑
p≤x

ia(p)>y

τk+1(ia(p))r

� x

(log x)2−ε−α
(6.15)

for any ε > 0 by Lemma 3.11.1

Therefore, ∑
p≤x

f(ia(p)) = ca,f li(x) + O

(
x

(log x)2−ε−α

)
(6.16)

for any ε > 0.2

7. The Functions ω(n) and Ω(n)3

7.1. Proof of Theorem 1.94

We have ∑
p≤x

ω(ia(p)) =
∑
p≤x

∑
q|ia(p)

1 =
∑
q≤x

∑
p≤x

q|ia(p)

1 =
∑
q≤x

πq(x)

=
∑
q≤y

πq(x) +
∑

y<q≤z

πq(x) +
∑

z<q≤x

πq(x), (7.1)

where y and z with y ≤ z ≤ x will be chosen later. By GRH and Corollary 3.6, we
have ∑

q≤y

πq(x) =
∑
q≤y

(
li(x)

[Q(ζq, a1/q) : Q]
+ O(

√
x log(qx))

)

= li(x)
∑
q≤y

1
[Q(ζq, a1/q) : Q]

+ O

(
y
√

x log x

log y

)
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= li(x)
∑
q≥2

1
[Q(ζq, a1/q) : Q]

+ O

(
li(x)

∑
q>y

1
[Q(ζq, a1/q) : Q]

)

+ O

(
y
√

x log x

log y

)
. (7.2)

By Corollary 3.4, we have that

ca,ω :=
∑
q≥2

1
[Q(ζq, a1/q) : Q]

(7.3)

is a constant, and ∑
q>y

1
qϕ(q)

�
∑
q>y

1
q2

� 1
y log y

. (7.4)

Thus, ∑
q≤y

πq(x) = ca,ωli(x) + O

(
li(x)

y log y

)
+ O

(
y
√

x log x

log y

)
. (7.5)

Suppose z >
√

x. Then, we have∑
q>z

πq(x) =
∑
q>z

#{p ≤ x : q|ia(p)}

= #
⋃
q>z

{p ≤ x : q|ia(p)}. (7.6)

To see this last equality, note that if p contributes to both πq1(x) and πq2(x), then
q1 and q2 divide ia(p). However, if q1 �= q2, then since they are primes, q1q2|ia(p),
but q1 > z ≥ √

x and q2 > z ≥ √
x. Thus, x < q1q2 ≤ ia(p) ≤ p − 1 < x, which is a

contradiction. Therefore, q1 = q2 and the above inequality holds. Clearly,⋃
q>z

{p ≤ x : q|ia(p)} = {p ≤ x : q|ia(p) for some q > z}

⊂
{
p ≤ x : fa(p) ≤ x

z

}
, (7.7)

where we recall that fa(p) is the order of a modulo p. Therefore,∑
q>z

πq(x) ≤ #
{

p ≤ x : fa(p) ≤ x

z

}

≤ #


p : p

∣∣∣∣ ∏
m≤ x

z

(am − 1)




≤
∑

m≤ x
z

ω(am − 1) �
∑

m≤ x
z

m

log m

� x2

z2 log(x/z)
. (7.8)
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Let y =
√

x
(log x)4 and z =

√
x(log x)2. Then, we have

∑
q≤x

πq(x) = ca,ωli(x) +
∑

y<q≤z

πq(x) + O

(√
x log x +

x

(log x)3
+

x

(log x)5

)

= ca,ωli(x) +
∑

y<q≤z

πq(x) + O

(
x

(log x)3

)
. (7.9)

Then, since q|ia(p) implies q|p − 1, we have∑
y<q≤z

πq(x) �
∑

y<q≤z

π(x; q, 1) � x

log x

∑
y<q≤z

1
q

� x

(log x)2
∑

y<q≤z

log q

q
� x log log x

(log x)2
(7.10)

by Mertens’ theorem [6, Theorem 1.4.3] and the Brun–Titchmarsh inequality [6,
Theorem 7.3.1]. Therefore, we have∑

p≤x

ω(ia(p)) =
∑
q≤x

πq(x) = ca,ωli(x) + O

(
x log log x

(log x)2

)
. (7.11)

7.2. Proof of Theorem 1.101

We have ∑
p≤x

Ω(ia(p)) =
∑
p≤x

∑
qk‖ia(p)

k =
∑
q≤x

∑
p≤x

qk|ia(p)

1 =
∑

qk≤x

πqk(x)

=
∑
qk≤y

πqk(x) +
∑
qk>y

πqk(x), (7.12)

where y with y ≤ x will be chosen later.2

By GRH and Corollary 3.6, we have∑
qk≤y

πqk(x) =
∑
qk≤y

(
li(x)

[Q(ζqk , a1/qk) : Q]
+ O(

√
x log(qkx))

)

= li(x)
∑
qk≤y

1
[Q(ζqk , a1/qk) : Q]

+ O

(
y
√

x log x

log y

)

= li(x)
∑
qk≥2

1
[Q(ζqk , a1/qk) : Q]

+ O


li(x)

∑
qk>y

1
[Q(ζqk , a1/qk) : Q]




+ O

(
y
√

x log x

log y

)
. (7.13)
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By Corollary 3.4,

ca,Ω :=
∑
qk≥2

1
[Q(ζqk , a1/qk) : Q]

(7.14)

is a constant, and ∑
qk>y

1
qkϕ(qk)

�
∑
qk>y

1
q2k

� 1
y log y

. (7.15)

Thus, ∑
qk≤y

πqk (x) = ca,Ωli(x) + O

(
li(x)

y log y

)
+ O

(
y
√

x log x

log y

)
. (7.16)

Let y =
√

x
(log x)4 . Then,

∑
qk≤y

πqk (x) = ca,Ωli(x) + O

(
x

(log x)4

)
. (7.17)

Now, ∑
qk>y

πqk(x) =
∑
q>y

πq(x) +
∑
qk>y
k≥2

πqk (x). (7.18)

However, using the trivial bound πd(x) ≤ x/d, we have∑
qk>y
k≥2

πqk(x) �
∑
qk>y
k≥2

x

qk
� x√

y
= x

3
4 (log x)

3
2 . (7.19)

Finally, we have ∑
q>y

πq(x) =
∑

y<q≤z

πq(x) +
∑
q>z

πq(x). (7.20)

Let z =
√

x(log x)2. Then, as in the previous proof, we have∑
q>z

πq(x) � x

(log x)5
(7.21)

and ∑
y<q≤z

πq(x) � x log log x

(log x)2
. (7.22)

Therefore, we have∑
p≤x

Ω(ia(p)) =
∑

qα≤x

πqα(x) = ca,Ωli(x) + O

(
x log log x

(log x)2

)
. (7.23)

Comment. We note that the coefficients ca,f in Theorem 1.7 may tell us important1

information about the statistics of the sequence of numbers ia(p) as p ranges over2

primes. We relegate the determination of these statistics to a future paper.3
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Nombres Bordeaux 15 (2003) 383–391.32
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