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The limitations of Google!



The web at a glance

Query-independent

PageRank

 

Algorithm



The web is a directed graph



 

The nodes or vertices are the web pages.


 

The edges are the links coming into the page 
and going out of the page.

This graph has more than 
10 billion vertices and it is
growing every second!



The PageRank
 

Algorithm



 

PageRank
 

Axiom: 
A webpage is 
important if it is 
pointed to by other 
important pages.



 

The algorithm was 
patented in 2001. Sergey Brin

 

and Larry Page



Example



 

C has a higher 
rank than E, 
even though 
there are fewer 
links to C since 
the one link to C 
comes from an 
“important”

 page.





Mathematical formulation



 

Let r(J) be the “rank”
 of page J.  



 

Then r(K) satisfies 
the equation  r(K)=               
ΣJ→K

 

r(J)/deg+(J),                                      
where deg+(J) is the 
outdegree

 
of J.
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The web and Markov chains



 

Let puv

 

be the 
probability of reaching 
node u from node v.



 

For example, pAB

 

=1/2 
and pAC

 

=1/3 and 
pAE

 

=0.

Notice the columns add up to 1.
Thus, (1 1 1 1 1)P=(1 1 1 1 1). 
Pt

 

has eigenvalue

 

1

P is called the transition matrix.



Markov process


 

If a web user is on page C, where will she be 
after one click? After 2 clicks? …

 

After n clicks?

A.A. Markov (1856-1922)

After n steps, Pnp0.



Eigenvalues
 

and eigenvectors of P



 

Therefore, P and Pt

 
have the same 

eigenvalues.


 

In particular, P also has an eigenvalue
 

equal 
to 1.



Theorem of Frobenius


 

All the eigenvalues
 

of the 
transition matrix P have 
absolute value ≤

 
1.



 

Moreover, there exists an 
eigenvector corresponding to 
the eigenvalue

 
1, having all 

non-negative entries.
Georg

 

Frobenius

 

(1849-1917)



Perron’s
 

theorem



 

Theorem (Perron):  Let 
A be a square matrix 
with strictly positive 
entries.  Let λ* = max{ 
|λ|: λ

 
is an eigenvalue

 of A}.  Then λ* is an 
eigenvalue

 
of A of 

multiplicity 1 and there 
is an eigenvector with 
all its entries strictly 
positive.  Moreover, 
|λ|< λ* for any other 
eigenvalue.   

O. Perron

 

(1880-1975)



Frobenius’s
 

refinement



 

Call a matrix A irreducible if An

 
has strictly 

positive entries for some n.  


 

Theorem (Frobenius):  If A is an irreducible 
square matrix with non-negative entries, then 
λ* is again an eigenvalue

 
of A with 

multiplicity 1.  Moreover, there is a 
corresponding eigenvector with all entries 
strictly positive.  



Why are these theorems important?


 

We assume the following concerning the matrix P:


 

(a)  P has exactly one eigenvalue
 

with absolute value 
1 (which is necessarily =1);



 

(b)  The corresponding eigenspace
 

has dimension 1;


 

(c)   P is diagonalizable; that is, its eigenvectors form 
a basis.



 

Under these hypothesis, there is a unique 
eigenvector v such that Pv

 
= v, with non-negative 

entries and total sum equal to 1.


 

Frobenius’s
 

theorem together with (a) implies all the 
other eigenvalues

 
have absolute value strictly less 

than 1.  



Computing Pnp0.



 

Let v1

 

, v2

 

, …, v5

 

be a basis of eigenvectors of P, with 
v1

 

corresponding to the eigenvalue
 

1.


 

Write p0

 

= a1

 

v1

 

+ a2

 

v2

 

+ …
 

+ a5

 

v5

 

.


 

It is not hard to show that a1

 

=1.


 

Indeed, p0= a1

 

v1

 

+ a2

 

v2

 

+ …
 

+ a5

 

v5 


 

Let J=(1,1,1,1,1).  


 

Then 1 = J p0= a1 Jv1

 

+ a2 Jv2

 

+ …
 

+ a5 Jv5 


 

Now Jv1

 

=1, by construction.  


 

For i≥2, J(Pvi

 

) = (JP)vi

 

= Jvi

 

.  But Pvi

 

= λi

 

vi

 

.


 

Hence λi  Jvi

 

= Jvi

 

.  Since λi  ≠1, we get Jvi

 

=0.


 

Therefore a1

 

=1.
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Computing Pnp0
 

continued



 

Pnp0= Pnv1

 

+ a2

 

Pnv2

 

+ …
 

+ a5

 

Pnv5 


 

= v1

 

+ λ2
n

 
a2

 

v2

 

+ …
 

+ λ5
n  a5

 

v5

 

.


 

Since the eigenvalues
 

λ2

 

, …, λ5

 

have absolute 
value strictly less than 1, we see that Pnp0→v1

 as n tends to infinity.


 

Moral:  It doesn’t matter what p0

 
is, the 

stationary vector for the Markov process is 
v1

 

.



Returning to our example …



 

The vector (12, 16, 9, 1, 3) 
is an eigenvector of P 
with eigenvalue

 
1.



 

We can normalize it by 
dividing by 41 so that 
the sum of the 
components is 1.



 

But this suffices to give 
the ranking of the 
nodes:B, A, C, E, D.

20



How to compute the eigenvector



 

We can apply the power method:  Compute 
Pnp0

 
for very large n to get an approximation 

for v1

 

.


 

This is called the power method and there 
are efficient algorithms for this large matrix 
computation.



 

It seems usually 50 iterations (i.e. n=50) are 
sufficient to get a good approximation of v1

 

.



Improved PageRank


 

If a user visits F, then she is 
caught in a loop and it is not 
surprising that the stationary 
vector for the Markov process is 
(0,0,0,0,0, ½, ½

 

)t.  


 

To get around this difficulty, the 
authors of the PageRank

 
algorithm suggest adding to P a 
stochastic matrix Q that 
represents the “taste”

 

of the surfer 
so that the final transition matrix 
is P’

 

=xP

 

+ (1-x)Q for some 0≤x≤1.


 

Note that P’

 

is again stochastic.


 

One can take Q=J/N where N is 
the number of vertices and J is the 
matrix consisting of all 1’s.  



 

Brin

 

and Page suggested x=.85 is 
optimal.
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Mathematical genealogy

P.L.Chebychev
(1821-1894) A.A.Markov

(1856-1922)
J.D.Tamarkin
(1888-1945) D.H. Lehmer

(1905-1991)

H.M. Stark
(1939-



Thank you for your attention.



 

Have a                                  day!
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