# How Google works

or How linear algebra powers the search engine

M. Ram Murty, FRSC

Queen's Research Chair

Queen's University

# Google as a noun!



"They're encyclopedias, Timmy. . . they're an early form of Google."



"I'M STUCK. CHECK IT OUT ON GOOGLE."

# Google is now a Verb!



"YOU'VE STUMPED ME WITH THAT QUESTION. I THINK THAT'S SOMETHING YOU NEED TO GOOGLE."



## From: gomath.com/geometry/ellipse.php



Area and Perimeter of Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Perimeter = 
$$2\pi a^2 + b^2$$

Area = 
$$\pi$$
 ab

# Metric mishap causes loss of Mars orbiter (Sept. 30, 1999)



## The limitations of Google!



The web at a glance PageRank Algorithm Document IDs crawl the web create inverted index Rank Search Inverted engine index servers Query-independent user query

## The web is a directed graph

- The nodes or vertices are the web pages.
- The edges are the links coming into the page and going out of the page.

This graph has more than 10 billion vertices and it is growing every second!



## The PageRank Algorithm

- PageRank Axiom:

   A webpage is important if it is pointed to by other important pages.
- The algorithm was patented in 2001.



Sergey Brin and Larry Page

### Example

C has a higher rank than E, even though there are fewer links to C since the one link to C comes from an "important" page.





Cartoon illustrating basic principle of PageRank

#### Mathematical formulation

- Let r(J) be the "rank" of page J.
- Then r(K) satisfies the equation r(K)=  $\Sigma_{J\to K}$  r(J)/deg<sup>+</sup>(J), where deg<sup>+</sup>(J) is the outdegree of J.



#### The web and Markov chains

- Let p<sub>uv</sub> be the probability of reaching node u from node v.
- For example,  $p_{AB}=1/2$  and  $p_{AC}=1/3$  and  $p_{AE}=0$ .



Notice the columns add up to 1. Thus, (1 1 1 1 1)P=(1 1 1 1 1). Pt has eigenvalue 1

P is called the transition matrix.

$$P = \begin{pmatrix} A & B & C & D & E \\ 0 & \frac{1}{2} & \frac{1}{3} & 1 & 0 \\ 1 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} & 0 & 0 \end{pmatrix}$$

### Markov process

• If a web user is on page C, where will she be after one click? After 2 clicks? ... After n clicks?

$$p^{0} = \begin{pmatrix} p(X_{0} = A) \\ p(X_{0} = B) \\ p(X_{0} = C) \\ p(X_{0} = D) \\ p(X_{0} = E) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}.$$

$$p^{1} = \begin{pmatrix} p(X_{1} = A) \\ p(X_{1} = B) \\ p(X_{1} = C) \\ p(X_{1} = D) \\ p(X_{1} = E) \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{3} & 1 & 0 \\ 1 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 0 \\ \frac{1}{3} \end{pmatrix}$$

$$p^{2} = \begin{pmatrix} p(X_{2} = A) \\ p(X_{2} = B) \\ p(X_{2} = C) \\ p(X_{2} = D) \\ p(X_{2} = E) \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{3} & 1 & 0 \\ 1 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ 0 \\ 0 \\ \frac{1}{3} \end{pmatrix} = \begin{pmatrix} \frac{1}{6} \\ \frac{4}{9} \\ \frac{1}{9} \\ 0 \\ 0 \end{pmatrix}$$

After n steps,  $P^np^0$ .



A.A. Markov (1856-1922)



## Eigenvalues and eigenvectors of P

$$\Delta_{P^t}(\lambda) = \det(\lambda I - P^t) = \det(\lambda I - P)^t = \det(\lambda I - P) = \Delta_P(\lambda),$$

- Therefore, P and P<sup>t</sup> have the same eigenvalues.
- In particular, P also has an eigenvalue equal to 1.

#### Theorem of Frobenius

- All the eigenvalues of the transition matrix P have absolute value ≤ 1.
- Moreover, there exists an eigenvector corresponding to the eigenvalue 1, having all non-negative entries.



Georg Frobenius (1849-1917)

SIAM REVIEW Vol. 48, No. 3, pp. 569–581 © 2006 Society for Industrial and Applied Mathematics

The \$25,000,000,000 Eigenvector: The Linear Algebra behind Google\*

> Kurt Bryan<sup>†</sup> Tanya Leise<sup>‡</sup>

#### Perron's theorem

Theorem (Perron): Let A be a square matrix with strictly positive entries. Let  $\lambda^* = \max\{$  $|\lambda|$ :  $\lambda$  is an eigenvalue of A}. Then  $\lambda^*$  is an eigenvalue of A of multiplicity 1 and there is an eigenvector with all its entries strictly positive. Moreover,  $|\lambda| < \lambda^*$  for any other eigenvalue.



O. Perron (1880-1975)

#### Frobenius's refinement

- Call a matrix A <u>irreducible</u> if A<sup>n</sup> has strictly positive entries for some n.
- Theorem (Frobenius): If A is an irreducible square matrix with non-negative entries, then λ\* is again an eigenvalue of A with multiplicity 1. Moreover, there is a corresponding eigenvector with all entries strictly positive.

### Why are these theorems important?

- We assume the following concerning the matrix P:
- (a) P has exactly one eigenvalue with absolute value
   1 (which is necessarily =1);
- (b) The corresponding eigenspace has dimension 1;
- (c) P is diagonalizable; that is, its eigenvectors form a basis.
- Under these hypothesis, there is a unique eigenvector v such that Pv = v, with non-negative entries and total sum equal to 1.
- Frobenius's theorem together with (a) implies all the other eigenvalues have absolute value strictly less than 1.

# Computing Pnp<sup>0</sup>.

- Let  $v_1, v_2, ..., v_5$  be a basis of eigenvectors of P, with  $v_1$  corresponding to the eigenvalue 1.
- Write  $p^0 = a_1 v_1 + a_2 v_2 + ... + a_5 v_5$ .
- It is not hard to show that  $a_1=1$ .
- Indeed,  $p^0 = a_1 v_1 + a_2 v_2 + ... + a_5 v_5$
- Let J=(1,1,1,1,1).
- Then 1 =  $J p^0 = a_1 J v_1 + a_2 J v_2 + ... + a_5 J v_5$
- Now  $Jv_1=1$ , by construction.
- For  $i \ge 2$ ,  $J(Pv_i) = (JP)v_i = Jv_i$ . But  $Pv_i = \lambda_i v_i$ .
- Hence  $\lambda_i$  Jv<sub>i</sub> = Jv<sub>i</sub>. Since  $\lambda_i \neq 1$ , we get Jv<sub>i</sub> =0.
- Therefore  $a_1=1$ .

# Computing Pnp<sup>0</sup> continued

- $P^{n}p^{0} = P^{n}v_{1} + a_{2}P^{n}v_{2} + ... + a_{5}P^{n}v_{5}$
- $= v_1 + \lambda_2^n a_2 v_2 + \dots + \lambda_5^n a_5 v_5.$
- Since the eigenvalues  $\lambda_2$ , ...,  $\lambda_5$  have absolute value strictly less than 1, we see that  $P^n p^0 \rightarrow v_1$  as n tends to infinity.
- Moral: It doesn't matter what  $p^0$  is, the stationary vector for the Markov process is  $v_1$ .

## Returning to our example ...

- The vector (12, 16, 9, 1, 3) is an eigenvector of P with eigenvalue 1.
- We can normalize it by dividing by 41 so that the sum of the components is 1.
- But this suffices to give the ranking of the nodes:B, A, C, E, D.



$$P = \begin{pmatrix} A & B & C & D & E \\ 0 & \frac{1}{2} & \frac{1}{3} & 1 & 0 \\ 1 & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & \frac{1}{3} & 0 & 0 \end{pmatrix} \quad \begin{array}{c} A \\ B \\ C \\ D \\ E \end{array}$$

## How to compute the eigenvector

- We can apply the power method: Compute Pnp<sup>0</sup> for very large n to get an approximation for v<sub>1</sub>.
- This is called the power method and there are efficient algorithms for this large matrix computation.
- It seems usually 50 iterations (i.e. n=50) are sufficient to get a good approximation of  $v_1$ .

## Improved PageRank

- If a user visits F, then she is caught in a loop and it is not surprising that the stationary vector for the Markov process is (0,0,0,0,0, ½, ½) t.
- To get around this difficulty, the authors of the PageRank algorithm suggest adding to P a stochastic matrix Q that represents the "taste" of the surfer so that the final transition matrix is P' =xP + (1-x)Q for some 0≤x≤1.
- Note that P' is again stochastic.
- One can take Q=J/N where N is the number of vertices and J is the matrix consisting of all 1's.
- Brin and Page suggested x=.85 is optimal.



#### References

- Mathematics and Technology, by C.
   Rousseau and Y. Saint-Aubin, Springer, 2008.
- Google's PageRank and Beyond, The Science of Search Engines, A. Langville and C. Meyer, Princeton University Press, 2006.
- The 25 billion dollar eigenvector, K. Bryan and T. Liese, SIAM Review, 49 (2006), 569-581.

## Mathematical genealogy



P.L.Chebychev (1821-1894)



A.A.Markov (1856-1922)



J.D.Tamarkin (1888-1945)



D.H. Lehmer (1905-1991)



H.M. Stark (1939-



### Thank you for your attention.

Have a Goooooooogle day!



© Randy Glasbergen glasbergen.com



"I looked up your symptoms on Google. If you want a second opinion, I can check Yahoo."