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1. Introduction. For z € R with 0 < z <1 and s € C with Re(s) > 1,

one defines the Hurwitz zeta function as
oo

1
((s,z) = —_—
2 vy
For x = 1, note that ((s,1) is the classical Riemann zeta function. Let
q,k > 1 be integers and consider the ¢(¢) numbers

((k,a/q), (a,q)=1,1<a<q.

The Q-linear independence of these numbers, suggested by Chowla and
Milnor, is linked to irrationality of zeta values and has been investigated in
an earlier work [5]. In this work, we attempt to extend our investigation to
linear independence over number fields.

Let F be a number field. Let us define the following F-linear spaces:

DEFINITION 1. Let ¢ > 1 be an integer. For integers k > 1, let Vi (q,F)
be the F-linear space defined by

V(g F) = F-span of {C(k,a/q) : 1 < a < q, (a,q) = 1}.

We want to study the dimension of this space. At the outset, we note
that this dimension, for fixed ¢ and k, depends on the number field F. In
other words, the dimension can be different for different choices of the base
field F.

Suppose that F is the gth cyclotomic field Q((,;). Then we have the
following upper bound.
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PROPOSITION 1.1. The dimension of the space Vi(q,Q((y)) is at most
plg)/2+ 1.

Though we do not have a non-trivial lower bound for the above dimen-
sion, we have the following conditional lower bound.

PROPOSITION 1.2. There exists an integer r > 1 such that for all integers
q > 2 which are co-prime to r and all odd integers k > 1, the dimension of

the space Vi(q,Q(¢y)) is at least 2.

However, for integers k,q > 1 and number fields F such that Q(¢,) N F
= Q, we expect a different answer. More precisely, we expect that the di-
mension of the space Vi (g,F) in this case is equal to ¢(q). Here, we have
the following lower bound:

THEOREM 1.3. Let ¢ > 1 be an integer and F be a number field such
that FNQ(¢y) = Q. Then

dimp Vi (q,F) > p(q)/2  for integers k > 1.

Any improvement of the above lower bound would have non-trivial con-
sequences. For instance, we prove the following theorems in Section 5.

THEOREM 1.4. Let F be a number field such that F N Q(i) = Q and
k > 1 be an odd integer. Then dimy Vi(4,F) = 2 for all such F implies that
C(k)/7* is transcendental.

THEOREM 1.5. Let F be a number field such that F N Q((3) = Q and
k > 1 be an odd integer. Then

dimp Vi (3,F) =2 s equivalent to ((k)/V/3n" & F.
In this connection, we prove the following theorem.

THEOREM 1.6. Let k > 1 be an odd integer and q,r > 2 be two co-prime
integers. Also, let F be a subfield of the real numbers such that F N Q((y) =
Q=FnNQ(¢) and also F(¢;) NF(¢,) =F. Then either

dimp Vi(¢,F) > w(q)/24+1 or dimg Vi(r,F) > ¢(r)/2 + 1.
As an immediate corollary, we have for F as above:
COROLLARY 1.7. Let k be an odd integer. Then either dimp Vi (3,F) = 2
or dimp Vi (4,F) = 2.
The following theorem suggests a recipe for constructing number fields F

of the type alluded to in Theorem

THEOREM 1.8. Let F be a finite Galois extension of Q with discrim-
inant dp. Also, let (dg,qr) = 1, where q,r > 1 with (q,7) = 1. Then
F(¢q) NEF(Gr) =F.
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As we mentioned before, we believe a much stronger statement than
Theorem [1.6] should be true. More precisely:

CONJECTURE 1. Let ¢ > 1 be an integer and F be a number field such
that F N Q(¢;) = Q. Then dimy Vi(q,F) = ¢(q) for all integers k > 1.

This conjecture can be thought of as a generalization of a conjecture of
P. Chowla and S. Chowla [3] for ¥ = 2 and its further generalization by
Milnor [8] for all k£ > 1 (see [5] for further details).

We note that the linear independence of the Hurwitz zeta values ((k, a/q)
for £ > 1 is related to the non—vanishing of the L-series

Z ns . R(s)>1,

at s = k, where f is a periodic functlon with period q. This link is established
through the following identity:

Zf C(s,a/q), R(s) > 1.

The question of non-vanishing of L(1, f) when f is rational-valued was raised
by Chowla. The work of Baker, Birch and Wirsing [I] gave a satisfactory
answer to Chowla’s question. In conformity with the generalization envis-
aged here for £ > 1, we extend their investigation to more general number
fields. More precisely, we derive the following generalization of the Baker—
Birch—Wirsing Theorem in the penultimate section.

THEOREM 1.9. For an integer q > 1, let f be a periodic function with
period q taking values in a number field F. Further, f(a) = 0 whenever
1 < (a,q) < gq. Also, let K=FNQ({,) and H = Gal(Q({y)/K) C (Z/qZ)*.
Assume that supp(f), the support of f in Z/qZ, is contained in H U {q}.
Then L(1, f) = 0 if and only if f = 0.

If K = Q, this is the original Baker—Birch—Wirsing theorem. We also
apply this to derive linear independence of certain L-values associated to
Dirichlet characters.

In the final section, we link the linear independence of the Hurwitz zeta
values ((k,a/q) to the Polylog Conjecture formulated in [5]. Let us recall
the definition of polylogs.

DEFINITION 2. For an integer k > 2 and complex numbers z € C with
|z| <1, the polylogarithm function Lig(z) is defined by

n

n=1



300 S. Gun et al.

For k = 1, the series is —log(1 — z) provided |z| < 1,z # 1. Analogous
to Baker’s theorem on linear forms in logarithms, the following conjecture
about polylogarithms was formulated in [5].

PoryLoG CONJECTURE. Suppose that aq, ..., a, are algebraic numbers
with absolute values |a;| < 1 such that Lig(aq),. .., Lig(ay,) are linearly in-
dependent over Q. Then they are linearly independent over the field of al-

gebraic numbers Q.

Apart from the case k = 1, which is a special case of Baker’s theorem, al-
most nothing is known about the above conjecture. We deduce the following
theorem:

THEOREM 1.10. Assume that the Polylog Conjecture is true. Then Con-
jecture 1 s true.

2. The case F = Q(¢,)

Proof of Proposition We have the following identity (see [10], for

instance):

-1 k—1 dkfl
(1) Cka/g) + (=1)¢(k, 1 - a/q) = ((k_)l)' iy (meot ) /
z=a/q
Note that
dkfl
W(W cotwz) = Z Brscot” mz (1 + cot? 72)*,
z
r,5>0
r+2s==k

where f3,. s € Q. Since i cot % € Q(¢y), we see that

C(k,a/q) + (—=1)*¢(k,1 — a/q) = i**aq,

where a4 € Q((y). This proves Proposition

Proof of Pmposition For co-prime integers ¢;, 7 = 1,2, and k odd,
by the above observations we see that

((k,a/qs) = C(k, 1= a/g;) = it"qay,
where aq 4, € Q((g;). If the dimension of both the spaces Vi(q;, Q((y;)) is 1,
then
iﬂ_ik € Q(Cq1) Q(CQQ) - QJ since (q17q2) - +-

This is a contradiction since (k) /i is a purely imaginary complex number.

3. The case FNQ(¢;,) = Q and proofs of Theorems and
We need the following theorem of Okada [I1] (see also [4] and [10]).
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LEMMA 3.1. Let k and q be positive integers with k > 0 and q > 2. Let

T be a set of p(q)/2 representatives mod q such that the union T U (=T)

constitutes a complete set of co-prime residue classes mod q. Let F be a
number field such that F N Q((,;) = Q. Then the set of real numbers

dk—l

dok—1

is linearly independent over IF.

cotmz , a€T,
z=a/q

The polylogarithm function Lik(z) defined in the introduction for inte-
gers k > 2 and complex z with |z| < 1 can be extended for all integers k
and for all z in C — [1,00). We refer to the paper of Milnor ([8, p. 285]) for
details. Let, for real z # 0, lig(x) := Lig(e?™*®). Then, since (see [§])

% lip(z) = 2milip_y(z) and lig(z) = w
Lemma is an instance of linear independence of polylog values (for neg-
ative values of k) over certain number fields.

Proof of Theorem . Note that the space Vi(q,F) is spanned by the
following set of real numbers:

{C(k,a/q) £ ¢(k, 1 —a/q): (a,q) =1,1 < a <q/2}.
Identity along with Okada’s result completes the proof.

Proof of Theorem[I.6 For the proof, we need a more refined analysis of
the terms appearing on the right hand side of . A periodic function with
period ¢ is called odd if f(a) = —f(q—a) for 1 < a < q. Given any a with
(a,q) = 1, let §, be the odd g-periodic function which takes the value 1 at
a and is supported in {a,q — a}. Then

)= 5 D a0)0(h o) = lC(kva/a) = (ki1 = /)]
b=1

q
On the other hand,

[}

(k 5 a Bk b/q
b=1
where
—k! & eQﬂinx
B = -
k() @mi)k = = nk
n#0

is the kth periodic Bernoulli polynomial and

q
= lz Ja(b)e /4 = (11[ an— (" with ¢ = e*™/1.
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Thus, we have

e (2m() 0 _ q2kl Z = ¢ ")Bx(b/9) € Q&) S F(Gy)-

Now, let ¢ and r be two co-prime integers. Suppose that
dimg Vi(¢, F) = ¢(q)/2.
Since k is odd, the numbers
((k,a/q) = C(k,1 —a/q), where (a,q) =1,1<a<q/2

generate Vi (¢, IF). Hence

mk - Z N Lk afa) (2171'() 120/9) ), where g € F.

1<a<q/2
Similarly, if dimp Vi (r, F) = (1) /2, then ((k)/ir* € F((,). Hence

W) e ric)nF) =

as q and r are co-prime. This is a contradiction as F C R. Thus
dimp Vi(¢,F) > ¢(q)/24+1 or dimp Vi(r,F) > ¢(r)/2 + 1.
4. Proof of Theorem Let F be a finite Galois extension of Q

with discriminant dg. Suppose that for integers ¢, > 1, (dr, gr) = 1. Hence
FNQ(¢) =Q and FNQ(¢-) = Q. Consider the diagram

Q) NF=Q

where n = g or r. Since Q(¢,)/Q is Galois, also F(¢,)/F is Galois and (for
details, see [0, p. 266])

Gal(F(¢,) /F) =~ Gal(Q(G)/Q)-

Hence [F((y) : F] = p(n) for n = ¢,r. Now set A = F((,) NF({;). We want
to show that A = F. To do this, we just need to compare degrees. Clearly,

[F(G) « F] = [F(G) = A
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But we have

F(¢rs Co)
~ N
F(¢r) F(¢q)

All these extensions are Galois extensions and we have

Gal(F(¢)/A) ~ Gal(F(Cr, ¢g) /F(C))
so that

(2) [F(Gr) = A = [F(Crs Gg) = F(Cg)]-

Since (dp, qr) = 1 = (¢,r) and every non-trivial extension of Q is ramified,
we have Q(¢,) NF(¢;) = Q by ramification considerations. Now, from the
diagram

it follows that [F((r, () : F(¢g)] = [Q(&r) : Q] = ¢(r). Thus, returning to
with this information we have
[F(Gr) = A] = [F(Gr, Gg) s F(G)] = o(r).

But [F(¢) : F] = ¢(r). Hence A = F. This completes the proof of the
theorem.

5. Proofs of Theorems [1.4] and [1.5|

Proof of Theorem[I.J, Let F be a number field such that F N Q(i) = Q.
Since k£ > 1 is an odd integer, by equation , we have

1 dk—l

C(k,1/4) — ¢(k,3/4) = e

(7 cot 72)].=1/4,

where j:k—__ll(w cot mz) ‘Z is a rational multiple of 7*. Also,

—1/4
Clky 1/4) + C(k, 3/4) = (45 — 25)C(k).
Hence by Lemma dimp V;(4,F) = 2 is equivalent to ¢(k)/m* ¢ F.
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Proof of Theorem . Let F be a number field such that FNQ(({3) = Q.
Since k£ > 1 is an odd integer, by equation , we have
1 dkfl

——— ———(mcotmz) ,
(k — 1)' de 1 z=1/3

is a rational multiple of V3 and 7F. Also,

C(k,1/3) — C(k,2/3) =
where jk 1(7”30“”)‘ 2=1/3

C(k, 1/3) + C(k,2/3) = (3% = 1H)C(k).
Hence by Lemma dimg Vi (3,F) = 2 is equivalent to ((k)/v3 7% ¢ F.

6. Proof of Theorem and applications. For the proof of Theo-
rem we shall need the following lemma (see [0, p. 548]).

LEMMA 6.1. Let G be a finite abelian group of order n and F : G — C

be a complex-valued function on G. Also, let B be the Dedekind matriz
(F(xy™"))pnxn. Then

det(B) = [ | (Z x(w)F(w)),

X zeG
where the product is over all characters x of G.

Proof of Theorem . Recall that the digamma function v (z) for z #
—n, where n € N, is the logarithmic derivative of the I'-function and is given

by
1 1 1
‘W—”*ﬁngl (n+z‘n>'

As shown in [9], if - cpyqqy f(a) =0 then L(1, f) exists and

L(1.f) = zf zf b(a/g) + 7).

acH

Here we have used the fact that f(q) = — > qcn f(a) and that (1) = —7.
Also

qg—1
L(1,f)=— (a)log(1 —(g),
a=1
where
~ 1
f(a) = 52 f)¢ "
n=1

is the Fourier transform of f. Let

log(l - Cgl)v s 710g(1 - C((;t)
be a maximal F-linearly independent subset of
{log(1-¢7):1<a<qg-—1}
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Write
log(1— () = ZAablog (1—=¢5),
where Ay, € F. Then by the given hypothe51s L(1, f) = 0, we have

Brlog(l — (o) + -+ Blog(1 = (") =0

where
By="_ f(a)Aa.

Since f takes values in F, f is algebraic-valued. Thus by Baker’s theorem
on linear forms in logarithms, we have

q—1
o(F(a)Am =0, 1<b<t,
a=1
and hence
q—1 R
> o(f(a)log(l—¢f) =
a=1

Since Gal(F(¢;)/F) ~ H by means of the restriction map, for h € H, let
oy, € Gal(F(¢;)/F) be such that

Uh(Cq) = (él
Define fy(n) := f(nh™1!) for h € H. Then we have

> fula) = —fu(@) = —f(q) and on(f(n)) = fu(n).

a€H
Hence

o0 q—
1fh=th z a) log(1 — ¢)
n=1

a=1

==Y ou(f(a))log(1—¢f) =

q—1
a=1

for all h € H. This gives
—th U(a/q) +7) = L(1, fr) = 0.

a€H
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Hence by making a change of variable, we have
(3) > f@)@(ah/q) +7) =0,
acH
where we use the notation ah to indicate the reduced residue class b (mod q)
satisfying
ah = b (mod q).
Now o
A= (P(ah/q) +V)anen
is a Dedekind matrix and its determinant is given by

IT (3 xm@ /) +7)).

xefi  heH

By Pontryagin duality, there is a unique subgroup V C (Z/gZ)* such that

H~ (Z/qZ)*)V.
See [12, Chapter 3| for details. Thus, there is a unique extension My /Q such
that
QC My CQ(¢) and Gal(My/Q) =~

Now the characters x of Gal(My/Q) extend to Gal(Q(¢,)/Q) and so we may
identify, for non-principal characters Yy,

> x (W) (@(h/q) +7) = —¢L(1,x)

heH
since the extended characters are Dirichlet characters in the classical sense.
(This is a special case of a general property of Artin L-series; see for example,

property L3 on p. 233 in [7].) Since L(1,x) # 0 for x # 1, we need only
verify that

> (@(h/a)+7) #0.

heH

Since (x) is an increasing function and (1) = —v, we have the above
identity. This completes the proof of Theorem

COROLLARY 6.2. Let K = Q(¢) N Q(Cy(g)- Put N = Gal(K/Q).
Then every character of N extends to a Dirichlet character of (Z/qZ)* ~
Gal(Q(¢q)/Q). Let x1,...,Xr be the Dirichlet characters of N. Choose rep-

resentatives Xi,...,X; of (Z//\(MZ)*/ﬁ Let Vi = 7% Xix; and consider
the values

=3 L(L,Xix;), 1<i<t Xx;# L

Then these values are linearly independent over K.
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REMARK. In the case K = QQ, we retrieve the theorem of Baker—Birch—
Wirsing that L(1, x) as x varies over all non-trivial Dirichlet characters are
linearly independent over Q when (g, ¢(q)) = 1.

Proof of Corollary[6.3. Assume that
t

(4) > GL(1,V,) =0

i=1
with ¢; € K. Put

t T
f= Z ciX; Z X+
i=1 j=1

Then equation (4] says that L(1, f) = 0. Since Xj, x; are Dirichlet characters
mod ¢, they take values in Q((y(q)). We first show that
(5) supp(f) € H

where H = Gal(Q(({;)/K). Observe that N ~ (Z/qZ)* /H. In other words,
characters of N are Dirichlet characters mod ¢ which are trivial on H. We
need to show that f(a) =0 if a ¢ H. By the orthogonality relations,

@)+ +vela) {\N|, a € H,
a PR r a) =
X1 X 0, adH,
for the group N ~ (Z/qZ)* /H. Thus,
t T
fla) =Y aXi(a) ) x;a)
i=1 j=1

and the inner sum is zero unless a € H. This proves assertion .
So we can apply our theorem to deduce f = 0. In other words,

r t
Z Z Cin'Xj = 0.
j=1i=1
One needs to observe that X;x;, 1 <j <r, 1 <14 <t, are distinct Dirichlet

characters mod ¢. By the linear independence of characters, we see that
¢; = 0 for all 4. This proves the corollary.

7. Proof of Theorem We shall now give a proof of Theorem [I.10]
following the methodology employed in [I].

Proof of Theorem [1.10. Let k,q > 1 be integers and F be a number
field such that F N Q(¢,;) = Q. Note that Conjecture 1 is equivalent to the
assertion that L(k, f) # 0, where f : Z/qZ — F with f(a) = 0 whenever
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1< (a,q) <qand f#0. This is again because of the identity

ka ((k,a/q).

For simplicity, we prove Theorem when g = p is a prime. The proof
of the general case is identical.

For an F-valued periodic function f with prime period p and f(p) = 0,
suppose that L(k, f) = 0. Then

) _ 1y
= T =Ll Zf @) Lik(G) = 0,
n=1 n=1 a=1

where f is the Fourier inversion of f. Then choosing a maximal F-linearly
independent subset of the above polylogarithms and arguing exactly as in
the proof of Theorem [I.9, we deduce that for any automorphism o in the
Galois group of F((,) over F,

P

> " o(f(a)) Lik(¢h) =

a=1
For 1 <h <p-—1, let o5 € Gal(F((,)/F) be such that

Uh((p) = C;}gl
Define fi,(n) := f(nh™!) for 1 < h < p — 1. Then we have
on(f(n)) = fu(n).

Hence .
—
Lk, fn) = Z fh =p "> fla)((k,a/p) =0.
a=1
A change of variable gives
(6) L(k, fn) = ’“Zf ¢(k,ah/p) =0

forall 1 < h < p—1. We treat thls as a matrix equation with coefficient
matrix B being the (p — 1) x (p — 1) matrix whose (a, h)th entry is given by
C(k,ah/p). Then we have, by Lemma

Det(B) = + [ [ L(k, x) #0.
X
Thus the matrix B is invertible and hence by equation @ we have f = 0.
This completes the proof in the case when ¢ = p is a prime. The proof for
an arbitrary modulus ¢ is identical, the final determinant being associated
to the group (Z/qZ)*.
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