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1 Introduction

In 1918, Ramanujan [10] introduced an exponential sum (now called Ramanujan sum)
and indicated how one can use this sum to study arithmetical functions. More

precisely, we define the Ramanujan sum as:

cr(n) = Z e(an/r), e(t) := >,

(a,r)=1

where the sum is over a complete set of ¢(r) coprime residue classes (mod ). Basic
properties of Ramanujan sums can be found in [4] and [7] as well as in [10]. In his

paper, Ramanujan expressed a variety of arithmetical functions in the form of an

Z arcr(n).
r=1
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For example, for R(s) > 0, he showed

os(n) _ S
S
e s+lz_:s+1,

where
=Y d.
dn

The existence of such series (now called Ramanujan - Fourier series) for a given arith-
metical function as well as their convergence properties has been the object of some
study, most notably recorded in the monographs [11] and [12] (see also the survey
[8]). It seems fair to say that a comprehensive theory has not yet been developed
that embraces all of the results in this area, especially those dealing with conditionally
convergent series, though there are are some notable papers like [6] in this context.

) 5 )

For example, Hardy [3] proved that n) has a conditionally convergent se-

where A(n) is the von Mangoldt function defined as log p when n is a power of a prime

ries:

p and zero otherwise. Our present paper was motivated by a heuristic result presented
in [2] in which the authors noted that one can derive the Hardy-Littlewood conjecture
regarding twin primes using Ramanujan - Fourier series. Indeed, proceeding heuris-
tically, we have using (1),

) B0 S )
Z% o h MR =2 5o 2 almatneh).

We now utilise an orthogonality property for Ramanujan sums (first noticed by Carmichael

[1]):

N—oc n<N 0 otherwise.

.1 cr(h) ifr=s
lim N Z cr(n)es(n+h) = { " (2)
This leads to the heuristic result

3" Am)A(n + k) ~ Ni”

n<N r=1

which agrees with the Hardy-Littlewood conjecture (which they made based on a

heuristic derived from the more complicated circle method).
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As is well-known, the Ramanujan - Fourier series of a function (if it exists) need

not be unique. Given a function f and the existence of a Ramanujan - Fourier series,

oo

fn) = Fla)ey(n).

q=1
Carmichael’s orthogonality relation (2) allows one to associate a set of “natural coeffi-
cients” (also called Ramanujan - Fourier coefficients):

Mdzm—Zf

N—oo N
n<N

provided these limits exist. It is convenient to introduce the notation

so that the Ramanujan - Fourier coefficients can be written as M (fc,)/¢(r).

Our goal in this paper is to study more generally, the question of when such series

can be utilised to derive asymptotic formulas for sums of the form

> f(n)g(n+h).

n<N
We also consider the conjugate problem of the asymptotics for

> f(n)g(N —

n<N
For instance, such asymptotics for f = g = A would give a conjectural formula for the
Goldbach conjecture which again agrees with the Hardy-Littlewood conjecture.

With some care, it turns out that one can obtain sufficiently general results. As
special cases of our theorem, we recover certain formulas of Ingham [5] obtained by
him using different methods. Our methods do not apply to the Goldbach problem or
the twin prime problem because the corresponding Ramanujan - Fourier series are not

absolutely convergent.

2 Preliminary lemmas

Lemma 1.
> er(n)es(n) < d(r)d(s)(r, )N,
n<N

where (r, s) denotes the gcd of r and s.
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Proof. We have
2 erlme(my =3 >, > ulr/du(s/e)de
n<N n<N d|r,d|n e|s,eln

We interchange the summations to get

> oulr/du(sfe)de Y 1.

d|r,e|s n<N;d|n,eln

i

where [d, ] denotes the lcm of d and e. Thus, the sum in question is

<N Z (d,e),

d|r.els

The innermost sum is equal to

using the familiar formula that de = (d, e)[d, e]. We can write this sum as

N> Y 60)=N Y ¢(8)d(r/s)d(s/5)

d|r.e|s é|(d,e) 6|(r,s)
and this is less than Nd(r)d(s)(r, s), as stated. O

We also need the finer:

Lemma 2.
Z er(n)es(n+ h) = 6, sNep(h) + O(rslogrs).
n<N
Proof. Let
a b
S=>"cn)esn+h) = > Z ( )Z <<;+;>n>. ©)
n<N (a,r)=1 (b,s) n<N

¢ 45 ¢eZifand onlyif r = sand a = r — b. In this case,
S = Ne,(h). 4)

If ¢ +2 ¢ 7, then e (222) is a root of unity which is not equal to 1. Let us write
N = (rs)Q + R, where 0 < R < rs. Then the inner sum is

() - 2 (G TG

n<(rs)Q (rs)Q<n<N

-y e((§+§>n) 5)

(rs)Q<n<N
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which is in absolute value
1
< || as+br H (6)

where ||z|| indicates the distance between z and the nearest integer and we have used
rSs

the identity Z <k—i> = 0if I # 0. When (r,s) = 1, as + br run through all the

coprime res1due classes modulo rs and hence the sum

IS < Z Z |a$+bT“ Z %<<7“slogrs. (7)

(a,r)=1 (b,s)= (k,rs)=1
If d = (r,s) > 1, then we write r = dr; and s = ds; so that (r1,s1) = 1. Then,

b asy+br

rrs
and

|I(as +br)/rs|| = [[(as1 + bry) /[, s]]l.

As a ranges over coprime residues (mod ) and b ranges over coprime residues (mod
s), the expression as; + bry ranges over residue classes mod [r, s| and these residue
classes are distinct (mod r1s1). Thus, a single class (mod [r, s]) is repeated at most d

times so that

|S| < Z Z HasH—brlH

(a,r)=1(b,s)=1 "1 dris
< d[r,s]logd]r, s]
= Of(rslogrs). (8)
This completes the proof. O

Lemma 3.
[ Y er(n)es(n +h)| < NN + [B]) /2 (rs) /2d(r)d(s).

n<N

Remark. This result is essentially best possible since in the case of h = 0 and r = s = N, we

D ler(m)? = ro(r) 9)

n<r

have

695
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Proof. We apply the Cauchy-Schwarz inequality and estimate

Z ler(n Z Z Z (d/r)u(e/r)de = Z u(r/d)u(r/e)de[dNe

|\
n<N n<N d|(n,r) e|(n,r) d|r.elr [ ’ ]

from which we deduce that the sum in question is

SN DY (de)=N D > 6(8)=N>_ ¢(8)d(r/6)” < Nrd(r)>.

djr.e|r d|r.e|r 5(d.e) 8l

The corresponding estimate for ¢,(n + h) is similar and this completes the proof.

3 A Parseval type formula

These results now allow us to proceed as before and prove the following theorem

which is analogous to Parseval’s formula.

Theorem 4. Suppose that f and g are two arithmetical functions with absolutely convergent
Ramanujan - Fourier series:

Zf Nen),  gn) = Gs)e(n)
r=1 s=1

respectively. Suppose that

ST, s)d(r)d(s) < oo.

T8

Then, as N tends to infinity,

S Fm)g(n) ~ NS Fr)a(r)é(r).
r=1

n S N

Proof. We have

3" f(n)g Zf (5) 3 crlm)es(n),

n<N n<N
the interchange of summations being admissible since the series are absolutely con-
vergent. We split the outer sum over r, s into two parts. The first part is over rs < U
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with U to be chosen later tending to infinity. The second part is over rs > U. In the
first part, we use Lemma 2 with h = 0 and get

N Z f(r)g Z |f s)|O(rslogrs).

r2<U rs<U

The error is easily seen to be O(U log U) since rs < U and the series over r, s is abso-
lutely convergent. For the second part, we use the estimate of Lemma 1 to get that it
is

<N Y 1F(0)l[G(s)|(r, )d(r)d(s) = o(N)

rs>U

by our hypothesis. Indeed, our hypothesis implies

Z P|rd(r)? < oo

so that

> F()g(r)e(r) = o(1),
r2>U

which completes the proof. O

4 A shifted Parseval type formula

We use Lemma 3 to prove:

Theorem 5. Suppose f and g are two arithmetical functions with absolutely convergent Ra-
manujan - Fourier series

Suppose further that

Then, as N tends to infinity,

> fn)gn+h) ~ NS F(r)gr)ep ().
r=1

n<N

697
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Proof. As before, we study

Zf (5) ) er(n)es(n+ h).

n<N
As before, we split the sum according as rs < U and rs > U. On the first part, we
apply Lemma 2, and see that the innermost sum is

Or,sNep(h) + O(rslogrs).

Inserting this into the first part, we deduce the main term for a suitable choice of U
tending to infinity. For the second part, we apply Lemma 3 and deduce that it is o( V).
This completes the proof. O

5 Ramanujan - Fourier series of shifted functions

Given an arithmetical function f, we let f;,(n) := f(n+ h). We would like to apply the

previous theorem with g = g;, so that we can obtain an asymptotic formula for

Zf g(n+h).

n<N

However, this leads to the natural question: if f has a Ramanujan - Fourier series,
then does f}, also have one? If so, are the Ramanujan - Fourier coefficients given by
f(r)cr(h) /#(r)? This is not clear and it forces us to consider the following variations

of our earlier lemmas.

Lemma 6.

Proof. The sum in question is
D D ulr/d)d D e(b(n+h)/s),
n<N d|r,d|n (b,s)=1

which is

= Z (bh/s) Z,u r/d)d Z e(bn/s).

(b,s)= d|r n<N;d|n

The innermost sum is < NV/d and inserting this estimate gives the result. O



RAMANUJAN - FOURIER SERIES AND A THEOREM OF INGHAM 699

Reversing the roles of r and s gives

Lemma 7. For h < N,
> er(n)es(n+ h) < 2N(r)d(s).
n<N

This allows us to prove the following.

Theorem 8. Suppose that f has an absolutely convergent Ramanujan - Fourier series with

coefficients flq ) satisfying
> 1f(@)ld(g) < oo
q=1

Then, fj, has an absolutely convergent Ramanujan - Fourier series with coefficients f(r)cr(h) Jo(r).
Remark. It is not clear if the Ramanujan - Fourier series of fy, also converges to fj,.

Proof. We evaluate the means M ( fi,¢,) and show that it is equal to fA(r)cT(h). Indeed,

an+hc,« Z Zcqn+h)cr()

n<N n<N
the interchange of summation being allowed since the Ramanujan - Fourier series is
absolutely convergent. We split the outer sum into two parts ¢ < U and ¢ > U, with U
to be chosen later. Let us look at the first sum: by the previous results, the inner sum
is
dqrNer(h) + O(rqlogryg),
so that the first sum is
Nf(r)eq(h) + O(rUlog rU),

since by assumption
> 1 (@) < oc.
q=1

For ¢ > U, we use the penultimate estimate to get
> Fl@)Ng(r)d(q) = o(N),
q>U
since our assumption is that
> 1f(@)ld(g) < oo
q=1
Choosing U log U as o(N) completes the proof. O
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6 The conjugate problem

It is clear that our method can be applied to study the conjugate problem related to

> fn)g(N -

n<M

the asymptotics of the sums

Often such questions are studied with A/ = N, but our method is versatile to deal
with this more general case. Based on the analysis of the previous sections, it is clear
how one should proceed. Hence, we will give in this section only the main steps and
leave the details to the reader.

Lemma 9. We have:

(@) >, arer(n)es(N —n) =6, sMc,(N) 4 O(rslogrs)

(0) | Y pcps cr(n)es(N —n)| < MY2(M + N)Y2(rs)!/2d(r)d(s).
With this lemma in place, it is easy to show:

Theorem 10. Suppose f and g are two arithmetical functions with absolutely convergent

Ramanujan - Fourier series

Suppose further that

Then, for M < N,

S Fmg(N —n) = M3 F(r)g(r)e, (N) + o(M)

n<M r=1

as M tends to infinity.

7 A theorem of Ingham

In 1927, Ingham [5] proved by an elementary method that for a non-zero integer b,

> d(n)d(n+h) ~ %a 1(R)N(log N)?
T

n<N



RAMANUJAN - FOURIER SERIES AND A THEOREM OF INGHAM

and 6
> d(n)d(N —n) ~ —01(N)(log N)*
n<N

as N tends to infinity. At the end of this paper, he stated that his method can also be

applied to show that
1 1 1
> aamastn-+ h) ~ o ST e, o)
n<N
and

D(a+ DT(B+1) C(a+1)C(B+1)
IFa+p+2) C(a+p+2)

> oa(n)os(N —n) ~ Oa+pr1(N).  (11)

n<N
In the special case that o, 3 are positive odd integers, the second formula appears in
the work of Ramanujan [9] where more precise results are obtained using the theory of
modular forms. Some of these results of Ingham can be deduced from our framework.

We record these in the following.

Corollary 11. For o, 3 > 1/2, we have for any integer h,

oa(n) og(n+h) 2 ¢ (h)
EN o ~ NGa DB ) Y

r=1

as N tends to infinity. In particular,

> ga(n)og(n)  Cla+ DB+ D(atF+1)

= netl C(a+p+2)

For h # 0, the sum is asymptotic to

(la+1)((B+1)
N Cla+ B+ 2)

U—a—ﬂ—l(h)a
as N tends to infinity.

Proof. In [9], Ramanujan showed that

ra(m) = (s + 1) Y ) (12

r=1

701



702 H. GOPALAKRISHNA GADIYAR et al.

for s > 0. Let us take f(n) = 04(n)/n® and g(n) = o3(n)/n” in Theorem 5 and verify
that the conditions of the theorem are satisfied. We need to check that

Zr_”‘_ls_’g_l(rs)1/2d(r)d(s) < 0.
Since the divisor function satisfies d(r) = O(r¢) for any € > 0, we see that the series
converges absolutely for a, 3 > 1/2. Thus we get, for a § > % and h # 0,

a +h — cr(h
> (o) U@(Z h)ﬁ) ~ Nefa e+ ol
V@ DCB 4 D) 0o ()
((a+p+2)  hotptl
1 1
Ng(?(; ﬁgi ;r) )U—(a+ﬁ+1)(h)-

(13)

Using partial summation one gets Ingham'’s result (10) for cvand 3 > 3. The case h = 0
is easily deduced using the identity

O

In the same paper [5], Ingham stated the following result without proof. He said
that the proof will appear elsewhere but as far as we are aware, he never published it.

We obtain it as a corollary of our theorem.

Corollary 12.
N3
> é(n) p(n+h) ~ ~ An (14)
n<N
where ) 5o
p° —2p+
Ap = 1-= —_— . 15
" 1}( p2>££ p(p? —2) )

Proof. Ramanujan [9] showed that

6 o0
_71-_2;

(16)

where ¢2(r) = 7> [, ( - i?>
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¢(n)

Let us take f(n) = g(n) = — in Theorem 5. Since

(VR

plr

it is easily seen that the conditions of the theorem are satisfied. Thus we have
¢(n) (n +h) 6\ g~ £2(r)
Z]ZV noonth Y\ ;ﬁz(rﬁ“(h)
6\ 1 (p) )
= N|— 1+ h
<W2> 11 ( 5202 7

=TI T ) T 3

pfh plh

It is straightforward to show that the constant factor is A and using partial summa-

tion, we get (14). O
Using Theorem 10, we can derive the analogous theorem for Ingham’s second re-

sult (11). Indeed, by Theorem 10, we have:

Theorem 13. For «, 3 > 1/2, we have for any positive integers M < N,

(a) As M tends to infinity,

§= ) N =) MG+ 145+ 1) g V),
n® (N —n)? Cla+ (B +2) Notp+l 2

n<M

(b) As N tends to infinity,

D(a+DI(B+1) C(a+1)C(B+1)

;VUCM(”)UQ(N—") ~ Tlatp+2) RCENER) Oatar1(IV).

Proof. The first result is an immediate consequence of Theorem 10 applied to f(n) =
oa(n)/n® and g(n) = a5(n)/n’ as in the proof of Corollary 11. Indeed, to apply the
theorem, we need to check the same convergence as we did in the proof of Corollary
11. To deduce the second result, we apply partial summation. Since the derivation is
not totally routine, we give some details. Indeed, using the first result and applying
partial summation, we have as NV tends to infinity,

o ot N
> ga(n)og(N —n) ~ C(C(z i)é(f —5)1) ]Jjjég) /1 t*(N —t)%at.

n<N

703
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The last integral is easily transformed into the beta function and we find

N 1
/ tY(N — t)Pdt = No+O+! / 2%(1 — z)Pdz ~ Na+ﬂ+1r(a + DB +1)
J1 J1/N MNa+/+2)

from which Ingham’s result is easily deduced.

In the same way one can also obtain the formula

Zqﬁ N -—n NEANN3

n=1

stated (without proof) by Ingham [5].

We remark that the method has considerable flexiblity and we can also handle

various sums of “mixed” functions.

8 Concluding remarks

We are unable to deduce the full theorem of Ingham by our method simply because we

cannot ascertain that the shifted function o5(n + h)/(n + h)? satisfies the hypotheses

of Theorem 4. In other words, we need to know that this shifted function has an

absolutely convergent Ramanujan - Fourier series with coeffcients given by

C(B+Der(h)/o(r)r T+,

If we knew this, then Theorem 4 implies Ingham’s result for all o, 3 > 0. To see this,

we need to verify the condition of Theorem 4, namely that

But this is easily seen by noting that the sum is

SIS o < S (z >) (g jéﬂ).

t|(r,s) t=1 t|r

Using the fact that d(ab) < d(a)d(b), we find the sum is

L d(t)2e(t
<<217t<a>+5+<2> <o
t=
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for o, 8 > 0.
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