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On the Uniform Distribution of Certain Sequences
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Abstract. We investigate the uniform distribution of the sequence nα as n ranges over the natural numbers and α

is a fixed positive real number which is not an integer. We then apply this in conjunction with the Linnik-Vaughan
method to study the uniform distribution of the sequence pα as p ranges over the prime numbers.
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1. Introduction

In this paper, we will investigate the uniform distribution of the sequence {nα}, where n
ranges over natural numbers and {pα}, where p ranges over prime numbers. We will focus
our attention on 0 < α < 1, though we will make remarks for α > 1 as well. The sequence
{nα} has been investigated in the literature [4], though no explicit error terms have been
written down. We will do so below in Theorem 1. Then we will apply Linnik-Vaughan
method to obtain estimates for ∑

p≤x

e2π i pαθ .

Such sums for θ = a/q rational and α = 1/2 have arisen recently in the work [3], where an
interesting connection is made between sharp estimates for such sums and the absence of
zeros of L(s, f ) where f is a Hecke eigenform, on a certain segment of the real line close
to the edge of the critical strip.

We now elucidate the precise nature of the results we prove.
For a real number x , let [x] denote the integral part of x ; let {x} = x −[x] be the fractional

part of x or the residue of x modulo 1.
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Let ω = (xn), n = 1, 2, . . . be a given sequence of real numbers.
For a positive integer N and a subset E of I (= [0, 1)), let the counting function A(E ; N ; ω)

be defined as the number of terms xn, 1 ≤ n ≤ N , for which {xn} ∈ E .
The sequence (xn), n = 1, 2 . . . is said to be uniformly distributed modulo 1 (in short u.d.

mod 1) if for every sub-interval E of I , we have

lim
N→∞

A(E ; N ; ω)

N
= |E |.

In other words, (xn) is u.d. mod 1 if every half open sub-interval of I eventually gets its
“proper share” of fractional parts.

There is a deep connection between the theory of u.d. mod 1 and the estimation of expo-
nential sums as envisaged by Weyl, which we mention below.

Weyl’s Criterion (see page 7 of [4]) says that the sequence (xn), n = 1, 2, . . . is u.d. mod
1 if and only if

N∑
n=1

e2π ihxn = o(N ) for all integers h �= 0.

Remark. Using Weyl’s criterion it is easy to show that the sequence (nθ ), n = 1, 2, . . . is
u.d. mod 1 whenever θ is irrational and is not u.d. mod 1 if θ is rational number.

In this paper we shall investigate the distribution of the fractional parts of the sequence (nα)
for α > 0 not an integer.

More precisely we prove the following

Theorem 1. Let S(N ) = ∑N
n=1 e2π inαh. Then for all integers h �= 0, we have

(a)

S(N ) = O
(|h| 1

4 N
α+2

4 (log(N + 10|h|)2
)
,

(whenever 0 < α < 2, α �= 1)
(b)

S(N ) = O
(|h| 1

12 N
α+9
12 (log(N + 10)|h|)2

)
(whenever 2 < α < 3)

S(N ) = O
(

max(|h| 1
2k−2 N 1− k−α

2k −2 , N 1−
(

1
2k−2 − k−α

2k −2

))
(log(N + 10)|h|)2)

(whenever k − 1 < α < k, k ≥ 4 is an integer)

As a corollary we obtain the following well-known

Theorem 2. The sequence (nα), n = 1, 2, . . . is uniformly distributed modulo 1 for α(> 0)
not an integer.
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Remark. Theorem 2 can be obtained by using Fejér’s theorem (see page 29 of [4]) or by
using Van der Corput’s lemma (see page 17 of [4]) which gives the exponent of N in the
O-term for theorem 1 (a) as 3/4. However, our treatment yields the exponent 5/8.

Remark. It would be nice to ask if Theorem 1 throws any light on the bounds for the
exponential sum

∑
p≤X

e2π i pαh .

Following Eratosthenes sieve, one can proceed in the following way:
Let

z =
√

X , P(z) =
∏
p≤z

p

then the above exponential sum is

O(
√

X ) +
∑
n≤X

e2π inαh

( ∑
d|(P(z),n)

µ(d)

)
.

We use a sophisticated version of the above idea as exemplified by Vaughan (see page 138 of
[1]) and elaborated by the first author and Sankaranarayana in [5] and obtain the following

Theorem 3. We have∑
1≤n≤N

�(n)e2π inαh = O
(|h|1/8 N

14+2α
16 (log(N + 10)|h|)3

)

uniformly in α for 0 < α < 1.

Remark. As stated above this, exponential sum seems to come up in the recent work of
Iwaniec, Luo and Sarnak [3] concerning the Siegel zeros of Hecke L-functions attached to
certain eigenforms. For details see [3].

2. Some lemmas

We will estimate the sums in question using the Poisson summation formula, but with an
effective version of it. We use this occasion to point out that the Poisson summation formula
can be derived from the simplest case of Euler-Maclaurin sum formula

N∑
j=1

f ( j) =
∫ N

1
f (t) dt +

∫ N

1
f ′(t)

(
{t} − 1

2

)
dt (1)

by writing down the Fourier series for {t} − 1
2 and inserting this in the integral.
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In fact, it is not hard to show that

{x} − 1

2
=

∑
0<|m|≤M

e(mx)

2π im
+ O

(
min

(
1,

1

M ||x ||
))

so that one can write the right hand side of (1) as

∫ N

1
f ′(t)

( ∑
0<|m|≤M

e(mt)

2π im
+ O

(
min

(
1,

1

M ||t ||
)))

dt

=
∑

0<|m|≤M

∫ N

1
f (t)e(mt) dt + O

(
N K log M

M

)

where | f ′(t)| ≤ K for all t ∈ [1, N ].
This proves

Lemma 1. (Effective Poisson Summation Formula).
Let f (t) be differentiable on [1, N ] satisfying | f ′(t)| ≤ K . Then

N∑
j=1

f ( j) =
∑

0≤|m|≤M

∫ N

1
f (t)e(mt) dt + O

(
N K log M

M

)

where e(x) = e2π i x .

We will also need the following well-known result

Lemma 2. Let F(x) be real, twice differentiable function in [a, b] such that F ′′(x) ≥
m > 0 or F ′′(x) ≤ −m < 0. Then∣∣∣∣∣

∫ b

a
ei F(x)dx

∣∣∣∣∣ ≤ 8√
m

.

Proof: See for example page 56 of [2].

3. Proof of the theorems

Proof of Theorem 1: First we split the interval [1, N ] into dyadic intervals of the type
[W, 2W ]. Clearly there are O(log N ) such intervals. Therefore, it is enough to estimate the
sum

S(W, 2W ) =
∑

W≤n≤2W

e2π inαh .
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By taking f (t) = e2π inαh in lemma 1 we obtain

S(W, 2W ) =
∑

0≤|m|≤M

∫ 2W

W
e2π i(tαh+mt)dt + O

( |h|W α log M

M

)
, (2)

where M is a large positive constant to be chosen later.
Now we take F(t) = tαh+mt

2π
in lemma 2.

Observe that

F ′′(t) = α(α − 1)tα−2h

2π
.

Therefore

F ′′(t) ≥ C1hW α−2 > 0 or F ′′(t) ≤ −C2hW α−2 < 0

depending on whether h < 0 or h > 0 respectively, provided 0 < α < 1. Here C1, C2 are
positive constants which may depend on α.

Hence from lemma 2, we obtain∣∣∣∣
∫ 2W

W
e2π i(tαh+mt)dt

∣∣∣∣ = Oα(W 1−α/2|h|−1/2) (3)

By (2) and (3), we obtain

S(W, 2W ) = O
(
MW 1−α/2|h|−1/2

) + O

( |h|W α log M

M

)
.

Choosing M = C3[|h|3/4W
3α−2

4 ], where C3 is a large positive constant, we obtain

S(W, 2W ) = O
(
|h|1/4W

α+2
4 log W |h|

)
.

This proves

∑
1≤n≤N

e2π inαh = Oα

(|h|1/4 N
α+2

4 (log N )(log N |h|)

provided 0 < α < 1.

Remark. The estimates for S(N ) for α > 1, α not an integer are obtained by Van der
Corput’s lemma (see Theorem 5.13 of [6]) and then using the exponent pair method (see
page 72 of [2]).

Proof of Theorem 3: To prove the theorem we invoke Vaughan’s method as illustrated
in [1] and recently elaborated in [5].
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Let �(n) denotes the usual von Mangoldt function defined as �(n) = log p if n = pm for
some prime p and some integer m ≥ 0, 0 otherwise.

With f (n) = e2π inαh , 0 < α < 1, we form the sum∑
n≤N

�(n) f (n) =
∑
n≤N

(a1(n) + a2(n) + a3(n) + a4(n)) f (n)

= S1(N ) + S2(N ) + S3(N ) + S4(N ) (say)

Here ai (n)’s are as given in page 139 of [1].
We now begin our estimations of the sums Si (N ) for i = 1, 2, 3, and 4.

Lemma 3. We have

S1(N ) ≤ U log U

Proof: This is clear.

Lemma 4. We have

S2(N ) = O
(|h| 1

4 U
1
2 V

1
2 N

α+2
4 (log(N )|h|)3

)
uniformly in α for 0 < α < 1.

Proof: We have

S2(N ) = −
∑
n≤N




∑
mdr=n
m≤U
d≤V

�(m)µ(d)


 f (n)

=
∑

mdr=n
m≤U
d≤V

�(m)µ(d)
∑

r≤ N
md

f (mdr )

= O


∑

m≤U
d≤V

�(m)

(
N

md

) α+2
4 (|h|(md)α

) 1
4 (log(N )|h|)2




= O





∑

m≤U
d≤V

1

(md)1/2


 |h| 1

4 N
α+2

4 (log(N )|h|)3




= O
(|h| 1

4 U
1
2 V

1
2 N

α+2
4 (log(N )|h|)3

)
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Lemma 5. We have

S3(N ) = O
(|h| 1

4 V
1
2 N

α+2
4 (log(N )|h|)3

)
Proof:

S3(N ) =
∑
n≤N


∑

ld=n
d≤V

µ(d) log l


 e2π ihnα

=
∑
d≤V

µ(d)
∑

l≤N/d

e2π ih(ld)α
∫ l

1

dt

t

=
∫ N

1

∑
d≤V

µ(d)

{ ∑
t≤l≤N/d

e2π ih(ld)α

}
dt

t

From Theorem 1, it follows that the right hand side is

O

(∑
d≤V

N
α+2

4
1

d1/2
|h|1/4(log(N )|h|)3

)

= O
(|h| 1

4 N
α+2

4 V
1
2 (log(N )|h|3)

Lemma 6. We have

S4(N ) = O
(
|h| 1

8 N 1+α/8U−1/4(log(N )|h|)4 + N V −1/2(log(N )|h|)3
)

Proof: Following [1], we have

S4(N ) = O
(
N 1/2 log(N )3 max

U≤M≤N/V



)
where


 = O


 max

V ≤ j≤N/M

∑
V <k≤N/M

∣∣∣∣∣∣∣∣∣∣∣
∑

M<m≤2M
m≤N/j
m≤N/k

f (mj) f (mk)

∣∣∣∣∣∣∣∣∣∣∣




1
2

Now the innermost sum on the right hand side of the above expression is evaluated as
follows∣∣∣∣∣

∑
m

e2π imα ( jα−kα )h

∣∣∣∣∣ = O
(|h| 1

4 ( jα − kα)
1
4 M

α+2
4 (log(M)|h|)2

) + O(min N/j, M)
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Therefore,

∑
V <k≤N/M

∣∣∣∣∣
∑

M<m≤2M

e2π imα ( jα−kα )h

∣∣∣∣∣ = O

(
|h| 1

4
N

M

(
N

M

)α/4

M
α+2

4 (log(M)|h|)2

)

+ min

(
N

j
, M

)

Hence

max
V < j≤N/M

∑
V <k≤N/M

∣∣∣∣∣
∑

M<m≤2M

e2π imα ( jα−kα )h

∣∣∣∣∣ = O

(
|h| 1

4
N

M

(
N

M

)α/4

M
α+2

4 (log(M)|h|)2

)

+ O

(
N

V

)

Thus,


 = O
(|h| 1

8 N 1/2+α/8 M−1/4(log(M)|h|)) + O
(
N 1/2V −1/2

)
This proves the lemma.

Proof of Theorem 3: We choose the parameter U and V as follows:

U = C4 N 1/2 and V = C5 N
1−α

4

for 0 < α < 1. Here C4, C5 denotes positive constants.

With these choices, the theorem follows from Lemma 3–6.
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