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Abstract
Let K be an algebraic number field. We discuss the problem of counting the number of integral ide-

als below a given norm and obtain effective error estimates. The approach is elementary and follows
a classical line of argument of Dedekind and Weber. The novelty here is that explicit error estimates
can be obtained by fine tuning this classical argument without too much difficulty. The error estimate
is sufficiently strong to give the analytic continuation of the Dedekind zeta function to the left of the
line R(s) = 1 as well as explicit bounds for the residue of the zeta function at s = 1.
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1. Introduction

In any introductory course in algebraic number theory, one finds that beyond the rudi-
mentary theory of Dedekind domains and Dirichlet’s unit theorem, there is not sufficient
time to cover the deeper aspects of the analytic theory of algebraic numbers. More precisely,
in a single semester course, it seems almost impossible to acquaint students with the theory
of the Dedekind zeta function, the distribution of ideals in ideal classes, and the prime
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ideal theorem. The purpose of this article is to show that once the basic theory of algebraic
number fields is in place, the analytic theory can be treated in one or two lectures along the
lines indicated below. This approach is not new. It has its origins in the work of Dedekind
and his student Weber [9]. It is also the approach taken in [5] through its problem solving
format. In this note, we amplify the technique and at the same time derive effective results
with explicit constants. This will have applications to computational questions as well as
certain questions arising in mathematical logic.

We begin by fixing notation. Let K be an algebraic number field, and let n=[K : Q]. Let
OK denote the ring of integers of K. As is well-known, the ideals of OK can be partitioned
into equivalence classes as follows. We say a ≡ b if there are �, � ∈ OK so that (�)a= (�)b.
By a celebrated theorem of Minkowski, this equivalence relation partitions the ideals of OK

into a finite number of classes. This finite number is called the class number of K, and is
denoted hK . In fact, the equivalence classes can be given the structure of a group as follows.
For two classes C1, C2 choose a ∈ C1 and b ∈ C2. Define the product of C1 and C2 as the
class to which ab belongs. One can show this is well-defined, with the class of principal
ideals acting as the identity element. Moreover, one can prove that given any ideal a of OK ,
there is an ideal a′ of OK so that aa′ is principal. This gives the structure of a finite abelian
group (called the ideal class group) to the equivalence classes of ideals in OK .

Now let C be an ideal class of OK , and choose an ideal b in C−1. If a is an ideal of norm
�x in C, then ab = (�) is principal with � ∈ b and |N(�)|�xN(b). Conversely, if � ∈ b
and |N(�)|�xN(b), then a= (�)�−1 is an integral ideal in C of norm �x. Thus, if we let
N(x, C) be the number of ideals of norm �x in C, then the above remark shows that this
is the same as counting the number of principal ideals (�), with � ∈ b and |N(�)|�xN(b).

To count the number of such principal ideals (�), we fix an integral basis �1, . . . , �n of
b. Then as � ∈ b, we may write

� = x1�1 + · · · + xn�n (1.1)

for some integers x1, . . . , xn. Thus, any � of the form (1.1) satisfying |N(�)|�xN(b) gives
rise to a principal ideal, and consequently corresponds to a lattice point (x1, . . . , xn) ∈ Rn.
However, this correspondence between the principal ideal (�) and the lattice point is not
one-to-one, since for any associate �′ of �, we have (�′)= (�). Thus, in order to translate the
problem of determining N(x, C) into a lattice point problem, we make a choice of generator
for the principal ideal. To this end, we need to recall Dirichlet’s unit theorem.

Proposition 1 (Dirichlet, 1846 ). Let K be an algebraic number field of degree n over Q.
As usual, write n= r1 + 2r2 where r1 is the number of real embeddings of K into R and 2r2
is the number of non-real embeddings of K into C. Let r = r1 + r2 − 1. Then, there exist
fundamental units �1, . . . , �r such that every unit of OK can be written uniquely as

��n1
1 · · · �nr

r ,

where � is a root of unity in OK and n1, . . . , nr ∈ Z. There are only finitely many roots of
unity in K, and we denote this number by w.

Remark 1.1. For a proof, see [5, p. 99].
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An important consequence of Dirichlet’s unit theorem is that if �n1
1 · · · �nr

r = 1, then n1 =
· · ·=nr =0, since the units are independent (by virtue of the uniqueness of representation).
Thus, following the usual convention concerning the ordering of the embeddings, with
K → K(i) real for 1� i�r1, K → K(i) non-real for r1 + 1� i�r1 + r2 arranged so that

K(i+r2) = K(i),

we see that the r × r matrix

(log |�(i)j |)
is non-singular. Consequently, for any given �, there exist unique real numbers c1, . . . , cr

so that
r∑

j=1

cj log |�(i)j | = log
(
|�(i)||N(�)|−1/n

)
(1.2)

for 1� i�r . If � and �′ generate the same principal ideal, then � = ��′ for some unit �. By
the unit theorem, we may write

� = ��n1
1 · · · �nr

r .

Thus, the corresponding cj ’s for �′ are simply cj −nj , 1�j �r . Therefore, we may isolate
a generator for the principal ideal (�) by insisting (1.2) is satisfied with 0�cj < 1 for
1�j �r . As there are w roots of unity, we derive that wN(x, C) is equal to the number of
lattice points (x1, . . . , xn) in Rn satisfying the “norm condition”

|N(�)| = |�(1) · · · �(n)|�xN(b) (1.3)

with �(i) = x1�
(i)
i + · · · + xn�

(i)
n , and the “regulator condition”: there exist real numbers

c1, . . . , cr such that 0�ci < 1 and
r∑

j=1

cj log |�(i)j | = log
(
|�(i)||N(�)|−1/n

)
(1.4)

for 1� i�r .
We claim that the regulator condition also holds for all i with 1� i�n. To see this, let

us observe that if we replace i by i + r2, the identity still holds for 1� i�r . Thus, we only
need to show the condition holds for i = r + 1. To this end, let ei = 1 if K(i) is real, and let
ei = 2 if K(i) is not real. Then,

r+1∑
i=1

ei log |�(i)j | = 0

since the norm of the unit has absolute value 1. We multiply this relation by cj and sum
over j from 1 to r to obtain

0 =
r+1∑
i=1

ei

⎛
⎝ r∑

j=1

cj log |�(i)j |
⎞
⎠ .
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This is seen to be

0 = er+1

r∑
j=1

cj log |�(r+1)
j | +

r∑
i=1

ei log
(
|�(i)||N(�)|−1/n

)
.

This last sum is

−er+1 log
(
|�(r+1)||N(�)|−1/n

)
,

and so we deduce that (1.2) holds for i = r +1 also. Thus, (1.2) holds for all i with 1� i�n.
This motivates the following lattice point problem. The number wN(x, C) is the number

of lattice points (x1, . . . , xn) in the region Bx of Rn defined by the “norm condition” (1.3)
and the “regulator” condition (1.4), with

�(i) = x1�
(i)
i + · · · + xn�

(i)
n �= 0

for any i satisfying 1� i�n. For future reference, we note that the set of points (x1, . . . , xn)

with �(i) = 0 lie in a subvariety of smaller dimension. We will also need to estimate the
number of lattice points in this subvariety.

2. Upper bounds

We begin by showing that Bx is a bounded region in Rn. This is seen as follows. Because
the integral basis �1, . . . , �n of b is linearly independent over Q, we have

det(�(j)
i ) �= 0.

Thus, the linear map

�(x1, . . . , xn) = (�(1), . . . , �(n))

is invertible. Let M be the largest of the values of | log |�(i)j || for 1� i, j �r . Then, from
(1.2), we deduce that

|�(i)|�erM |N(�)|1/n.

Since (1.1) implies that |N(�)|�xN(b), we deduce that

|�(i)|�erM(xN(b))1/n.

We can say more. If we write (�ij ) = (�(i)
j )−1, and let � denote the largest absolute value of

the �ij ’s, then we find

|xi |��nerM(xN(b))1/n. (2.1)
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This clearly defines a bounded region of Rn. From this bound, we can derive an upper
boud of N(x, C) by applying a classical result of Minkowski which we recall below.

Proposition 2 (Minkowski). Let K be an algebraic number field of degree n over Q. Then,
each ideal class contains an ideal b satisfying

N(b)� n!
nn

(
4

�

)r2

|dK | 1
2 = MK (say),

where |dK | denotes the discriminant of the number field.

Applying Proposition 2, we deduce:

Theorem 1. Let �, M, r be as above. Then

wN(x, C)�
(

2n�erMM
1/n
K x1/n + 1

)n

.

For the trivial class, we have the better bound

wN(x, 1)�(2n�erMx1/n + 1)n.

3. An asymptotic formula for N(x, C)

The analysis of the previous section can be refined to derive an asymptotic formula
for N(x, C) with an effective error term. As explained earlier, wN(x, C) is equal to the
number of non-zero lattice points in the region Bx . Following Dedekind and Weber [9], we
approximate this number by the volume of Bx .

To be precise, let In denote the unit cube in Rn. To each lattice point P contained in Bx ,
we associate P +In, and we think of our region Bx as being “approximated” by these cubes.
Each cube has volume 1 and the number of lattice points is thus expected to be approximated
by the volume Bx . We make the argument effective via the following technical argument.

Lemma 3.1. With notation as above, let

N(x1, . . . , xn) =
n∑

k=1

(
n∑

i=1

xi�
(k)
i

)

=
∑

i1,...,in
i1+...+in=n

ai1,...,inx
i1
1 · · · xin

n (say).

Then, for |ti |�1, we have

|N(u1 + t1, . . . , un + tn) − N(u1, . . . , un)|�nn+1�̃n(U + 1)n−1,

where �̃ is the largest absolute value of the �(j)
i , and U = max1� i �n|ui |.
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Proof. We see that

|N(u1 + t1, . . . , un + tn) − N(u1, . . . , un)|

=

∣∣∣∣∣∣∣∣
∑

11,...,in
i1+···+1n=n

ai1,...,in [(u1 + t1)
i1 · · · (un + tn)

in − u
i1
1 · · · uin

n ]

∣∣∣∣∣∣∣∣
.

Letting

f (	) := (u1 + 	t1)
i1 · · · (un + 	tn)

in ,

we have by the mean-value theorem that the expression in square brackets is

f (1) − f (0) = f ′(
)

for some 
 ∈ [0, 1]. A simple calculation shows that

|f ′(
)|�n(U + 1)n−1,

where

U = max
1� i �n

|ui |.

Clearly,

|ai1,...,in |�
(

n

i1 · · · in
)

�̃n,

so putting these inequalities together gives us the stated inequality.

Lemma 3.2. There is a � > 0 such that for any non-zero lattice point P contained in
B(t−�)n , the translate P + In is also contained in Btn .

Proof. Let P = (u1, . . . , un). By the previous lemma,

|N(u1 + t1, . . . , un + tn) − N(u1, . . . , un)|�nn+1�̃n(U + 1)n−1

�2n−1nn+1�̃nUn−1,

since P is a non-zero lattice point and U + 1�2U . By (2.1), we know

U �n�erMN(b)
1
n (t − �).

Let

�(b) = 2n−1n2n�n−1erMN(b)(n−1)/n.

Then, by the triangle inequality, we obtain

|N(u1 + t1, . . . , un + tn)|�(t − �)nN(b) + �(b)(t − �)n−1

�(t − �)n−1N(b)[t − � + �0]
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where

�0 = 2n−1n2n�n−1erM(n−1). (3.1)

If we choose � = �0, we see that the lemma holds with this choice of �.

Remark 3.1. In the proof of the lemma, we used only the fact that |ti |�1. Thus, the
argument also shows that for any non-zero lattice point P contained in Btn , P − In is also
contained in B(t−�)n .

We can now deduce our main theorem.

Theorem 2. With � given by (3.1) and t = x
1
n , we have

Vol(B(t−�)n)�wN(x, C)�Vol(B(t+�)n).

Proof. By Lemma 3.2, we deduce

wN((t − �)n, C)�Vol(Bx).

Replacing t by t + �, this gives

wN(x, C)�Vol(B(t+�)n).

By the remark made after the lemma, we deduce

Vol(B(t−�)n)�wN(x, C).

Putting these inequalities together gives us the theorem.

It is easy to see that the region Bx is a homogeneously expanding domain as x tends to
infinity. Indeed, we have

Btn = tB1.

Thus, Vol(B(t−�)n) = (t − �)nVol(B1) and Vol(B(t+�)n) = (t + �)nVol(B1). We therefore
deduce:

Corollary 1.

(x1/n − �)nVol(B1)�wN(x, C)�(x
1
n + �)nVol(B1)

From Corollary 1, we are able to deduce that

wN(x, C) = Vol(B1)x + O(x(n−1)/n).

In particular, this implies that the ideal class zeta function

�(s, C) =
∑
a∈C

1

Nas
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can be extended analytically toR(s) > 1 − (1/n) and with only a simple pole at s = 1 and
residue equal to

Vol(B1)

w
.

However, we have been careful to prove more than this. Since � is explicitly given by
(3.1), we have the important

Theorem 3.

|wN(x, C) − Vol(B1)x|�2nx
n−1
n max(1, �n

0)Vol(B1),

where �0 = 2n−1n2n�nerM(n−1).

Let N(x; K) be the number of ideals in OK with norm �x. Then

N(x; K) =
∑
C

N(x, C),

the summation being over the finite ideal classes. From Theorem 3, we are able to deduce

Theorem 4. Let hK be the class number of OK . Then,

|wN(x; K) − Vol(B1)hKx|�hK2nx
n−1
n max(1, �n

0)Vol(B1).

We will indicate at the end of this paper how one may bound hK in an elementary way.
Thus, we may regard Theorem 4 as representing a completely effective estimate for the
error term in Weber’s theorem alluded to at the beginning of this paper.

4. The volume of B1

The calculation of the volume of B1 is easily done using the calculus of several variables.
In this connection, we follow [5, pp. 142–144], and give a brief description of the derivation.

We let B∗
1 be the domain described by

�(i) =
n∑

j=1

xj�
(i)
j , 1� i�n

and

0 < |�(1) · · · �(n)|�N(b)

so that there exist cj ’s for 1�j �r satisfying 0�cj < 1 and

log

(
|�(i)||N(�)|−1

n

)
=

r∑
j=1

cj log |�(i)j |
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for 1� i�n, or

|�(i)|�erM(N(b))
1
n , 1� i�n

and at least one �(i) =0. The difference between B1 and B∗
1 is in the last condition, allowing

for �(i) = 0 for some i. Thus, B∗
1 is a closed bounded region and

Vol(B∗
1 ) =

∫
· · ·
∫

B∗
1

dx1 · · · dxn.

Moreover, Vol(B∗
1 )= Vol(B1) since the extra condition defines a manifold of lower dimen-

sion. To evaluate the integral, we change variables:

ui := �(i) =
n∑

j=1

xj�
(i)
j , 1� i�r1

ui + ui+r2

√−1 :=
n∑

j=1

xj�
(i)
j , r1 + 1� i�r1 + r2.

Thus, for r1 + 1� i�r1 + r2, we have

ui =
n∑

j=1

(
�(i)

j + �(i+r2)
j

2

)
,

ui+r2 =
n∑

j=1

(
�(i)

j + �(i+r2)
j

2
√−1

)
.

The absolute value of the Jacobian for this change of variables is easily computed to be

2−r2N(b)
√|dK |.

Hence,

Vol(B1) = 2r2

N(b)
√|dK |

∫
· · ·
∫

B̃∗
1

du1 · · · dun,

where B̃∗
1 is the image of B∗

1 under the change of variables. The variables u1, . . . , ur1 may
take one of two signs and so, if we insist ui �0 for i = 1, . . . , r1, we must multiply our
volume integral with this additional constraint by a factor of 2r1 . Thus, we may switch to
polar coordinates:


j = uj , 1�j �r1

and


j cos �j = uj , 
j sin �j = uj + r2
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for r1+1�j �r1+r2; consequently, 
j �0 and 0��j < 2�. The Jacobian of this transform
is easily computed to be


r1+1 · · · 
r1+r2
.

Thus,

Vol(B1) = 2r1+r2(2�)r2

N(b)
√|dK |

∫
· · ·
∫

C∗
1


r1+1 · · · 
r1+r2
d
1 · · · d
r1+r2

where C∗
1 is the domain described by

0�
r1+r2∏
j=1



ej

j �N(b),

log 
i − 1

n

r∑
j=1

ej log 
j =
r∑

j=1

cj log |�(i)j |

for 1� i�r1 + r2. (Here, e1 = 1 for 1� i�r1 and 2 for r1 + 1� i�r1 + r2.) We make one
more change of variables. Put

�j = 

ej

j , 1�j �r1 + r2.

The Jacobian of this transformation is easily seen to be

2−r2
−1
r1+1 · · · 
−1

r1+r2
,

so that the integral becomes

2r1(2�)r2

N(b)
√|dK |

∫
· · ·
∫

D∗
1

d�1 · · · �r1+r2 ,

where D∗
1 is the region described by

�1 · · · �r1+r2 �N(b), �i > 0

log �i − ei

n

r∑
j=1

log �j = ei

r∑
j=1

cj log |�(i)j |.

We make one final change of variables; we write the ci’s in terms of the �i’s and put

u = �1 · · · �r+1.

The Jacobian of this transformation is now seen to be the regulator, defined as

RK := det
(
ei log |�(i)j |

)
1� i,j � r

.
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This proves

Proposition 3.

Vol(B1) = 2r1(2�)r2RK√|dK | .

Now let


K = 2r1(2�)r2RKhK

w
√|dK | .

We have proved:

Theorem 5.∣∣∣∣N(x, C) − 
Kx

hK

∣∣∣∣ � 
k

whK

2nx
n−1
n max(1, �n

0)

and

|N(x; K) − 
Kx|� 
k

w
2nx

n−1
n max(1, �n

0),

where

�0 = 2n−1n2n�nerM(n−1).

In the next section, we will combine this result with Theorem 1 to derive bounds for the
regulator.

5. Bounds for the regulator

By Theorem 1 we have

wN(x, 1)�(2n�erMx1/n + 1)n,

where �, M, r are as in Theorem 1. By Theorem 5,

N(x, C) = 
Kx

hK

+ O(x(n−1)/n).

Putting these facts together, we deduce immediately that

Theorem 6.

w
K

hK

= 2r1(2�)r2RK√|dK | �(2n�erM)n.

In particular, this theorem allows us to bound the regulator of the field in terms of the class
number. In the next section, we will discuss elementary ways to bound the class number.
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Before we conclude this section, we indicate one further application of Theorem 5. This is
the problem of bounding the Euler constant of the number field.

Let us recall that this constant, denoted �K , is defined as

�K := lim
s→∞

(
�K(s) − 
K

s − 1

)
,

where �K(s) denotes the Dedekind zeta function of K. In the case K = Q, �Q coincides
with the classical Euler–Mascheroni constant defined as

� = lim
x→∞

⎛
⎝∑

n�x

1

n
− log x

⎞
⎠ .

By the well-known method of partial summation, we have

�K(s) = s

∫ ∞

1

N(x; K) dx

xs+1 .

Writing

N(x, K) = 
Kx + E(x),

we find easily that

�K = 
K

s − 1
+ 
K +

∫ ∞

1

E(x)

xs+1 + (|s − 1|).

Thus, we deduce that

�K = 
K +
∫ ∞

1

E(x)

x2 dx.

By Theorem 4,

|E(x)|�
K2n max(1, �n
0)x(n−1)/n.

Thus, ∣∣∣∣
∫ ∞

1

E(x)

x2 dx

∣∣∣∣ �
K2n max(1, �n
0)n.

This proves:

Theorem 7.

|�K |�
K(1 + 2n max(1, (�n
0)n).

6. Bounds for the class number

In this section, we will indicate an elementary estimate for hK . This will enable us to
assert that all of our bounds are completely effective.
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By considering the Euler product of �K(s), we deduce that the number of ideals of norm
m is at most the number of factorizations of m as a product of n positive numbers. This latter
quantity is the generalized division function �n(m). Thus, we have the crude bound

N(x; K)�
∑
m�x

�n(m).

Since the class number is at most the number of ideals with norm at most MK , we deduce

hK �N(MK ; K).

We can bound the latter quantity crudely by Mn+1
K , since �n(m)�mn. This proves:

Proposition 4.

hK �Mn+1
K .

We remark that a final analysis will give better results. For example, one can show (see
[3, Theorem 6.5]) in an elementary way

hK � |dK | 1
2

(n − 1 + log |dK |)n−1

(n − 1)! ,

and we may replace |dK | above by MK . However, it is our purpose here to show that
effective bounds can be obtained by the simplest of reasoning.

7. Concluding remarks

The value of these effective estimates is two-fold. First, they enable us to deduce the
analytic continuation of the ideal class zeta functions

�(s, C) =
∑
a∈C

1

N(a)s

to the region R(s) > 1 − (1/n). This enables one to deduce that ideals are uniformly dis-
tributed in the ideal classes. It also enables one to deduce the analytic continuation of the
Hecke L-series attached to characters of the ideal class group. This, in turn, gives us (via the
Tauberian theory), the uniform distribution of prime ideals in ideal classes, which in many
ways should be viewed as the number field analogue of the classical theorem of Dirich-
let concerning the infinitude of primes in arithmetic progressions. We refer the reader to
Sections 11.2 and 11.3 of [5].

Secondly, we remark that in the elementary proof of the prime ideal theorem, extending
the work of Erdös and Selberg to the number field case, Shapiro [7] makes essential use of
the result

N(x; K) = 
Kx + O

(
x

n−1
n

)
.



66 M.R. Murty, J. Van Order / Expo. Math. 25 (2007) 53–66

It should be possible to extend his work further and combine it with some of the techniques
of this paper to derive an elementary proof of the Chebotarev density theorem.

Finally, we re-iterate the elementary nature of our work and that the bounds we obtained
for 
K and hK are in no ways the best possible. There are many papers where better estimates
are derived, for instance [4].

One may enquire as to the best error estimate one can derive for E(x). It is doubtful if
the methods of this paper can be fine tuned to yield better error terms. One can infer this
in several ways. There is an interesting result of Erhart (see [8, p. 52] for details) which
states the following. Let P be a convex d-dimensional polytope in Rn with vertices in Zn. If
i(P , t) is the number of lattice points in tP, then Erhart showed that i(P , t) is a polynomial
in t of degree d. In the case d =n, the coefficient of tn is the volume of P, and the coefficient
of tn−1 is one-half of the (relative) volume of the boundary of P. In the two-dimensional
case, this is really the celebrated Pick’s formula (see [6]). In the generic case, this second
term is non-zero. With our normalization of t = x1/n this leads to the result that the error is
asymptotically growing like x(n−1)/n. Thus, to improve upon the error term E(x) studied in
this paper, one needs to exploit the specific context, most notably the analytic continuation
of the zeta function and its functional equation.

Using such complex analytic methods, it is possible to show that for n�2,

E(x) = O

(
x

1− 2
n+1

)
,

as in [1]. It is a famous open problem that one may take any exponent greater than 1
2 − 1

2n
. This

problem can be viewed as a generalization of Gauss’s circle problem, for if K = Q(
√−1),

the estimation of E(x) is identical with it. In this context, we indicate that the Generalized
Riemann Hypothesis for �K(s) would imply that any exponent greater than 1

2 is permissible
(see for example [2, p. 271]).
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