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On the supersingular reduction of elliptic curves
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Abstract. Let aeQ and denote by E, the curve y2 =(x? + 1)(x + a). We prove that E,(F,) is
cyctic for infinitely many primes p. This fact was known previously only under the assumption
of the generalized Riemann hypothesis.
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Let E be an elliptic curve defined over Q. For all but finitely many primes p, E has
good reduction (mod p) and it makes sense to consider E (mod p). It is classical (see [1])
that the ring End;p(E) of algebraic endomorphisms defined over F, has Z-rank 2 or 4.

In the latter case, E is said to have supersingular reduction (mod p). Our first result is:

Theorem 1. Let E be an elliptic curve defined over Q and suppose that E has
supersingular reduction (mod p). Then the 2-complement of E(F ) is cyclic.

The interest of Theorem 1 lies in the following. In 1976, Lang and Trotter [4]
formulated the following conjecture. Let E be an elliptic curve and suppose that the
group of rational points E(Q) has positive rank. Let a be a point of infinite order. Then
they conjectured that the reduction of a mod (p) generates E(F,) for infinitely many
primes p. This conjecture was proved in [3] for the case that E has complex
multiplication, assuming the generalized Riemann hypothesis (GRH). The case when E
has no complex multiplication is still open, even assuming the generalized Riemann
hypothesis. As Serre observed in [6], if the conjecture of Lang and Trotter is true, then
E(F ) is cyclic infinitely often. Indeed, assuming GRH, Serre showed that this was the
case. In [5], the assumption of the GRH was removed in the case that E has complex
multiplication (CM) by an order in an imaginary quadratic field. Thus, if E has CM,
then E(F ) is cyclic infinitely often. The elimination of GRH from Serre’s proof involved
the use of sieve methods and an analogue of the Bombieri-Vinogradov theorem in
algebraic number fields. Such an analogue is non-existent in the non-CM case and it is
highly desirable to have one, for more than one reason. Moreover, sieve methods break
down completely in the non-CM case.

In this paper, we will consider the following elliptic curves:

E;y?=(x*+1(x+a), aeQ.
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The j-invariant of E, denoted j, is easily seen to be
ja=54a* —738a% + 27a + 27.
There are precisely thirteen values of the j-invariant, namely
j=126332653%0, 3353 215 21533
—2183353 2153353113, — 2183353233293
2333113, 243353, 3353173, 3121553,

for which a given elliptic curve E over Q has complex multiplication. Thus, there are
only finitely many values of a for which E, has complex multiplication. Thus, for all but
finitely many values of a, E, has no complex multiplication.

Recently, Elkies {2] proved that any elliptic curve E defined over Q has infinitely
many primes p for which E has supersingular reduction (mod p). We will utilise this fact
together with Theorem 1 to deduce.

Theorem 2. Let E be the elliptic curve E, defined above. There are infinitely many
primes p such that E(F,) is cyclic.

In order to prove these theorems, we will need the following lemma which is of
interest in its own right.

Lemma 1. Let g:E,—E, and f:E, —» E; be morphisms of elliptic curves such that
ker g < ker f. Then there is a morphism h:E, — E; such that f = goh.

Proof. Let sbe a section of g and define h(x) = f(s(x)). This is independent of the choice
of section. Indeed, if ¢ is another section of g, then f(s(x}— #(x)}) =0 if and only if
s(x) — t(x) is in the kernel of f. But by definition, s(x) — t(x) is in the kernel of g, which is
contained in the kernel of f, by hypothesis. This shows that h is well-defined. h is clearly
a morphism of elliptic curves.

Lemma 2. Let p and q be distinct prime numbers. Suppose that p > 2 and that E has
good reduction (mod p). Then p splits completely in Q(E,) if and only if E(F,) contains
a subgroup of type (g, q).

Proof. Let E denote the reduction of E over F, and let =, denote the Frobenius

endomorphism of E over F » given by m(x) = x" Then, the set of fixed points of
np:E —E

constitute E(F,). Thus, E(F,) contains a subgroup of type (g, q) if and only if r, acts
trivially on the g-division points of E, because the g-division points of E ovér F
constitute a subgroup isomorphic to Z/qZ x Z/qZ. We conclude that the decompo-
sition group of any prime lying above p is trivial if and only if E(F,) contains a (g, g)
group. This is the desired result.
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COROLLARY.

Let p> 2. E(F,) is cyclic if and only if p does not split completely in all of the fields
Q(E,) as q ranges over the primes.

Proof. E(F,) is cyclic if and only if it does not contain a (g, q) group for every prime p.
For g # p, the result is immediate from the lemma. Suppose therefore that ¢ = p and
that E(F,) contains a subgroup of type (p, p). Then p*<p+1+ 2\/1; by familiar
estimates for the size of E(F,). But this last inequality forces p=2.

We are now ready to prove Theorem 1.

Proof of Theorem 1. 1f E(F ) contains a subgroup of type (q, q) for some g, then this
subgroup is contained in the set of fixed points of the Frobenius endomorphism n,. If f,
denotes the endomorphism of multiplication by g, then

ker f, < ker(n, —1).
By Lemma !, we deduce that
(n, — /g

is an algebraic integer. If E has supersingular reduction (mod p), thenn,= + / —p. If
q > 2, then

(x/—p—D/q

is never an algebraic integer. Therefore, E(F,) does not contain a subgroup of type (¢, 9)
when g > 2. Thus, the 2-complement of E(F ) is cyclic.
If E is given in Weierstrass form:

yr=x>+ax+b,

and the roots of x3 + ax + b =0 are x,, x,, X5, then the 2-division points are just the
points (x;,0),i = 1,2, 3 together with the point at infinity. If p is a prime for which E has
supersingular reduction, then E(F ) has size p + 1. By Theorem 1, we know that the 2-
complement is cyclic. If E(F ) contains the 2-division points, then by lemma 2, p splits
completely in Q(E,), that is, the field obtained by adjoining x,, x,, x5. For the curves E,,
we have that Q(E,) o Q(./ —1). Therefore if p splits completely in Q(E,), it splits
completely in Q(i) so that p = 1(mod 4) is forced. Thus, 4 cannot divide p + 1 and so
E(F,) is cyclic. This proves Theorem 2.

It is clear from the above discussion that the same argument shows that the curve

E:y?=x>+ax+b, abeQ

has the property that E(F ) is cyclic whenever E has supersingular reduction (mod p)
and the roots of x* + ax + b = 0 generate Q).

It is also interesting to note that for each of the curves E, there is no prime p=3
(mod 4) for which E, has supersingular reduction.
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