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Abstract. Let aEQ and denote by E a the curve 3 ,2 = (x 2 + 1)(x + a). We prove that Ea(Fp) is 
cyclic for infinitely many primes p. This fact was known previously only under the assumption 
of the generalized Riemann hypothesis. 

Keywords. Supersingular reduction, elliptic curves. 

Let E be an elliptic curve defined over Q. For all but finitely many primes p, E has 
good reduction (mod p) and it makes sense to consider E (mod p). It is classical (see [1]) 
that the ring Endr~ (E) of algebraic endomorphisms defined over ffp has Z-rank 2 or 4. 

In the latter case, E is said to have supersingular reduction (mod p). Our first result is: 

Theorem 1. Let E be an elliptic curve defined over Q and suppose that E has 
supersingular reduction (mod p). Then the 2-complement of E(Fp) is cyclic. 

The interest of Theorem 1 lies in the following. In 1976, Lang and Trotter [4] 
formulated the following conjecture. Let E be an elliptic curve and suppose that the 
group of rational points E(Q) has positive rank. Let a be a point of infinite order. Then 
they conjectured that the reduction of a mod (p) generates E(Fp) for infinitely many 
primes p. This conjecture was proved in I-3] for the case that E has complex 
multiplication, assuming the generalized Riemann hypothesis (GRH). The case when E 
has no complex multiplication is still open, even assuming the generalized Riemann 
hypothesis. As Serre observed in [6], if the conjecture of Lang and Trotter is true, then 
E(Fp) is cyclic infinitely often. Indeed, assuming GRH, Serre showed that this was the 
case. In [5], the assumption of the GRH was removed in the case that E has complex 
multiplication (CM) by an order in an imaginary quadratic field. Thus, if E has CM, 
then E(Fp) is cyclic infinitely often. The elimination of GRH from Serre's proof involved 
the use of sieve methods and an analogue of the Bombieri-Vinogradov theorem in 
algebraic number fields. Such an analogue is non-existent in the non-CM case and it is 
highly desirable to have one, for more than one reason. Moreover, sieve methods break 
down completely in the non-CM case. 

In this paper, we will consider the following elliptic curves: 

Ea : y 2 = ( x  2 + l ) ( x + a ) ,  aeQ. 
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The j-invariant of E, denoted Ja is easily seen to be 

j .  = 54a 4 - 738a 2 + 27a + 27. 

There are precisely thirteen values of the j-invariant, namely 

j = 2 6 3 3, 2 6 5 3, 0, - -  3 3 5 3, - -  215, _ 215 3 3, 

_2183353 ' _2153353113 ' _2183353233293 ' 

2333113 ' 243353 ' 3353173 ' _3121553 ' 

for which a given elliptic curve E over Q has complex multiplication. Thus, there are 
only finitely many values of a for which Ea has complex multiplication. Thus, for all but 
finitely many values of a, E~ has no complex multiplication. 

Recently, Elkies [2] proved that any elliptic curve E defined over Q has infinitely 
many primes p for which E has supersingular reduction (mod p). We will utilise this fact 
together with Theorem 1 to deduce. 

Theorem 2. Let E be the elliptic curve E a defined above. There are infinitely many 
primes p such that E(Fp) is cyclic. 

In order to prove these theorems, we will need the following lemma which is of 
interest in its own right. 

Lemma I. Let g : E I ~ E  2 and f :E1--*E 3 be morphisms of elliptic curves such that 
kerg ~_ ker f.  Then there is a morphism h:E 2 ---~ E 3 such that f = goh. 

Proof Let s be a section ofg and define h(x) = f(s(x)). This is independent of the choice 
of section. Indeed, if t is another section of g, then f ( s ( x ) -  t(x)) = 0 if and only if 
s(x) - t(x) is in the kernel of f .  But by definition, s(x) - t(x) is in the kernel of g, which is 
contained in the kernel o f f ,  by hypothesis. This shows that h is well-defined, h is clearly 
a morphism of elliptic curves. 

Lemma 2. Let p and q be distinct prime numbers. Suppose that p > 2 and that E has 
good reduction (mod p). Then p splits completely in Q(E~) if and only if E(Fp) contains 
a subgroup of type (q, q). 

Proof Let /~ denote the reduction of E over Fp and let r~p denote the Frobenius 
endomorphism of E over fin, given by tOp(X) = x p. Then, the set of fixed points of 

nr: E ~ E 

constitute E(Fp). Thus, E(Fp) contains a subgroup of type (q, q) if and only if np acts 
trivially on the q-division points of/~, because the q-division points of /~  ovSr ffp 
constitute a subgroup isomorphic to Z/qZ • Z/qZ. We conclude that the decompo- 
sition group of any prime lying above p is trivial if and only if E(Fp) contains a (q, q) 
group. This is the desired result. 
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COROLLARY. 

Let p > 2. E(Fp) is cyclic if  and only if p does not split completely in all of  the fields 
Q(Eq) as q ranges over the primes. 

Proof E(Fp) is cyclic if and only if it does not contain a (q, q) group for every prime p. 
For  q :~ p, the result is immediate from the lemma. Suppose therefore that q = p and 

that E(Fp) contains a subgroup of type (p, p). Then p2 ~< p q_ 1 + 2V/~ by familiar 
estimates for the size of E(Fp). But this last inequality forces p = 2. 

We are now ready to prove Theorem 1. 

Proof of Theorem 1. If E(F~) contains a subgroup of type (q, q) for some q, then this 
subgroup is contained in the set of fixed points of the Frobenius endomorphism ~ .  I f fq  
denotes the endomorphism of multiplication by q, then 

kerfq __ ker(np - 1). 

By Lemma 1, we deduce that 

(r~p -- 1)/q 

is an algebraic integer. If E has supersingular reduction (mod p), then r~p = _+ x ~ -  P" If 
q > 2, then 

( • ~ -- 1)/q 

is never an algebraic integer. Therefore, E(Fp) does not contain a subgroup of type (q, q) 
when q > 2. Thus, the 2-complement of E(Fp) is cyclic. 

If E is given in Weierstrass form: 

y2 = X 3 -t- ax + b, 

and the roots of x 3 + ax + b = 0 are x~,x2,x3, then the 2-division points are just the 
points (xi, 0), i = l, 2, 3 together with the point at infinity. Ifp is a prime for which E has 
supersingular reduction, then E(Fp) has size p + 1. By Theorem l, we know that the 2- 
complement is cyclic. If E(Fp) contains the 2-division points, then by lemma 2, p splits 
completely in Q(E2), that is, the field obtained by adjoining xl, x2, Xa. For  the curves E,, 

we have that Q(E2)~ Q(~- -1) .  Therefore if p splits completely in Q(E2), it splits 
completely in Q(i) so that p - l(mod 4) is forced. Thus, 4 cannot divide p + 1 and so 
E(Fp) is cyclic. This proves Theorem 2. 

It is clear from the above discussion that the same argument shows that the curve 

E: y2 = X 3 q_ ax + b, a, bEQ 

has the property that E(F~) is cyclic whenever E has supersingular reduction (mod p) 
and the roots of x 3 + ax + b = 0 generate Q(i). 

It is also interesting to note that for each of the curves E, there is no prime p - 3 
(mod 4) for which E, has supersingular reduction. 
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