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Abstract. Let f1, f2 be two distinct normalized Hecke eigenforms of weights
k1 and k2 with at least one of them not of CM type and with p-th Hecke
eigenvalues given by ap(f1)p(k1−1)/2 and ap(f2)p(k2−1)/2 respectively and p
being prime. If ap(f1) = ap(f2) for a set of primes with positive upper density,
then we show that f1 = f2 ⊗ χ for some Dirichlet character χ.

1. Introduction

Given two normalized Hecke eigenforms f1 and f2 of weights k1, k2 and levels
N1, N2 respectively, let

fi(z) =

∞∑
n=1

an(fi)n
(ki−1)/2qn, q = e2πiz, i = 1, 2,

be the Fourier expansions at infinity. Our goal is to prove the following:

Theorem 1.1. Suppose that at least one of f1, f2 is not of CM type. If

lim sup
x→∞

#{p ≤ x : ap(f1) = ap(f2)}
x/ log x

> 0,

then f1 = f2 ⊗ χ for some Dirichlet character χ.

If both f1, f2 are of CM type, then the theorem is not necessarily true since one
can easily construct counterexamples. A variant of our theorem had been proved
earlier by Rajan [14] using Galois theoretic methods. More precisely, he showed
that if ap(f1)p

(k1−1)/2 = ap(f2)p
(k2−1)/2 on a set of primes p of positive upper

density, then f1 = f2 ⊗χ for some Dirichlet character χ. Thus, our theorems agree
in the case of equal weights. Our interest in this work was partially motivated by a
recent work of Kulkarni, Patankar and Rajan [9] who showed using Galois theoretic
methods that if E1 and E2 are two elliptic curves defined over a number field K,
with at least one of them not of CM type, such that

#E1(Fp) = #E2(Fp),

for a set of primes of positive lower density, then E1 and E2 become isogenous after
base change. For elliptic curves over Q, our theorem also implies this result thanks
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to the celebrated work on the modularity of elliptic curves over Q due to Wiles [18],
Breuil, Conrad, Diamond and Taylor [3].

The methods of this paper are analytic. If we write

ap(fi) = 2 cos θ(i)p , i = 1, 2, θ(i)p ∈ [0, π],

then the angles θ
(i)
p satisfy the Sato-Tate distribution law if the fi are not of CM

type. This has recently been proved by Barnet-Lamb, Geraghty, Harris and Taylor
(see Theorem B of [2]).

If fi is of CM type, the corresponding equidistribution theorem goes back to
Hecke. In the course of their proof in the non-CM case, the authors of [2] show
that if πi is the automorphic representation associated to fi, then for all positive
integer values of m, Symm(πi) is potentially automorphic. More precisely, they
prove that there is a finite totally real Galois extension F (depending on m) such
that Symm(πi) becomes automorphic over F . To prove our theorem, we refine a
strategy outlined in a paper by Murty and Rajan [13].

2. Preliminaries

In this section, we collect the relevant facts that will be needed in various stages
of our proof.

Proposition 2.1. If f1, f2 are normalized Hecke eigenforms, with at least one not
of CM type, such that f1 �= f2 ⊗ χ for any Dirichlet character χ, then for any
positive integers m,n,

∑
p≤x

sin(m+ 1)θ
(1)
p

sin θ
(1)
p

sin(n+ 1)θ
(2)
p

sin θ
(2)
p

= o(x/ log x),

as x tends to infinity. Here, the summation is over primes.

Proof. This is essentially Theorem 2.4 of [7] combined with the standard Tauberian
theorem. However, for the sake of completeness, we give an outline of the proof in
section 4. The exposition in [7] is a bit confusing in that Theorem 2.4 is stated in
the text as being conditional, but in the abstract on the first page of the paper,
the author has stated that due to recent developments, the theorem is no longer
conditional. �

Proposition 2.2. Let 0 < δ < π. Let fδ(x) be the “tent” function defined on
[−π, π] given by

fδ(x) =

{
1− |x|/δ if |x| ≤ δ,
0 if |x| > δ.

Then, for any M ≥ 1, we have

fδ(x) =
δ

2π
+ 2

M∑
n=1

1− cosnδ

πn2δ
cosnx+O

(
1

Mδ

)
,

where the implied constant is absolute.

Proof. It is easily seen that fδ(x) has a Fourier series expansion given by

δ

2π
+ 2

∞∑
n=1

1− cosnδ

πn2δ
cosnx,
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by an easy computation. If we truncate the series for 1 ≤ n ≤ M , we see that the
tail estimate is O(1/Mδ). �

3. Proof of the main theorem

Let π > δ > 0 and take fδ(x) as in Proposition 2.2. Clearly,

#{p ≤ x : θ(1)p = θ(2)p } ≤
∑
p≤x

(
fδ(θ

(1)
p − θ(2)p ) + fδ(θ

(1)
p + θ(2)p )

)
.

By Proposition 2.2, the right hand side is equal to

δπ(x)

π
+ 4

M∑
n=1

1− cosnδ

πn2δ

∑
p≤x

cosnθ(1)p cosnθ(2)p +O

(
π(x)

Mδ

)

upon using the trigonometric identity

cos(A+B) + cos(A−B) = 2 cosA cosB.

The inner sum corresponding to n = 1 is∑
p≤x

cos θ(1)p cos θ(2)p

which by the Rankin-Selberg theory is o(π(x)) (see for example Lemma 5 of [10]
where a stronger result is stated for f1, f2 of the same weight, though the result
extends for eigenforms of different weight also). To treat n ≥ 2, we use the identity

2 cosnθ =
sin(n+ 1)θ

sin θ
− sin(n− 1)θ

sin θ
,

so that we can rewrite our sum as
M∑

n=2

1− cosnδ

πn2δ

∑
p≤x

(
sin(n+ 1)θ

(1)
p

sin θp
− sin(n− 1)θ

(1)
p

sin θ
(1)
p

) (
sin(n+ 1)θ

(2)
p

sin θ
(2)
p

− sin(n− 1)θ
(2)
p

sin θ
(2)
p

)
.

Dividing by π(x) and taking lim sup as x tends to infinity, we obtain upon applying
Proposition 2.1, that the inner sums go to zero. Thus, we obtain

lim sup
x→∞

#{p ≤ x : θ
(1)
p = θ

(2)
p }

π(x)
≤ δ

π
+O

(
1

δM

)
.

Letting M tend to infinity, we see that this density can be made arbitrarily small
since δ is arbitrary. This contradicts our hypothesis. This completes the proof.

4. Joint Sato-Tate distribution for two Hecke eigenforms

In this section, we outline for the convenience of the reader, the joint equidistri-
bution theorem alluded to in Proposition 2.1. There are already several readable
expositions of the proof of the Sato-Tate conjecture deduced from the potential
automorphy of symmetric power L-functions (see, for example, [7] and section 6 of
Chapter 12 of [12]). What has not been explicitly presented in the literature is that
the joint Sato-Tate distribution holds for two Hecke eigenforms, provided that one
is not the Dirichlet twist of the other. Here is an outline of the argument.

Let ρ1 and ρ2 be the associated (�-adic) Galois representations of f1, f2 respec-
tively. By the work of [2], both Symn(ρ1) and Symm(ρ2) are potentially automor-
phic over a totally real Galois extension F over Q. By the Arthur-Clozel theory
of base change [1], we see that for any subfield F1 of F with F/F1 solvable, both
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Symm(ρ1)|F1
and Symn(ρ2)|F1

are also automorphic over F1. Indeed, both of the
representations are Galois invariant over Q and hence over F1. As F/F1 is solvable,
there is a chain of fields F ⊃ Fm ⊃ Fm−1 · · · ⊃ F1 such that F/Fm and Fj/Fj−1 for
2 ≤ j ≤ m are all cyclic of prime degree. By [1], the automorphic induction map
exists from F to Fm and successively from Fj to Fj−1 for 2 ≤ j ≤ m which at the
final stage is F1. The essential point here is that both the Galois and automorphic
representations obtained by descent are Galois invariant at every step (see, for ex-
ample, the comment at the bottom of page 11 in [4]). Now let G = Gal(F/Q). By
Brauer induction, we can write

1 =
∑
i

aiInd
G
Hi

ψi,

where the ai’s are integers and ψi’s are one-dimensional characters of nilpotent
subgroups Hi of G. Thus,

L(s, (Symm(ρ1)⊗ Symn(ρ2))⊗ 1) =
∏
i

L(s, (Symmρ1 ⊗ Symnρ2)⊗ IndGHi
ψi)

ai .

By Frobenius reciprocity,

(Symmρ1 ⊗ Symnρ2)⊗ IndGHi
ψi = IndGHi

(((Symmρ1)⊗ (Symnρ2))|FHi ⊗ ψi).

Since (Symmρ1)|FHi and (Symnρ2)|FHi are both automorphic over FHi , and ψi

is a Hecke character of FHi by Artin reciprocity, we can form the Rankin-Selberg
convolution:

(1) L(s, (Symm(ρ1))|FHi ⊗ (Symn(ρ2))|FHi ⊗ ψi)

which by our hypothesis on f1 and f2 is analytic and non-vanishing for �(s) ≥ 1.
To elaborate, there are theorems of Cogdell and Michel (in the trivial Nebentypus
case) and Rajan (in the non-trivial Nebentypus case) that give a “multiplicity one
theorem” for symmetric powers (see Proposition 5.1 of [6] and Corollary 5.1 of [15]).
These theorems say that if the L-series attached to the m-th symmetric powers of
the Galois representations associated with f1 and f2 are equal, then f1 is a Dirichlet
twist of f2. Thus, as f1 �= f2 ⊗ χ for any Dirichlet character χ, we have that

π1 := (Symm(ρ1))|FHi and π2 := (Symn(ρ2))|FHi ⊗ ψi

are such that π2 �	 π1 ⊗ |det|it for any real number t. By standard Rankin-Selberg
theory (see for example p. 69 or 225 of [5]), the L-function (1) is analytic and
non-vanishing in the region �(s) ≥ 1. (The non-vanishing is derived from the work
of Shahidi [16].) Thus,

L(s, (Symmρ1)⊗ (Symnρ2))

extends to an analytic function to �(s) ≥ 1 and is non-vanishing there. By the clas-
sical Tauberian theorem (see, for example, [11] or [17]) applied to the logarithmic
derivative of this L-function, we deduce Proposition 2.1.

5. Concluding remarks

Our argument extends easily to imply a corresponding result for any two modular
forms f1 and f2 over a totally real field since the results of [2] apply in this context
also. As noted in [13], one expects that the set of primes p ≤ x for which ap(f1) =
ap(f2) is O(xθ) for some 0 ≤ θ < 1, if we assume the analog of the Riemann
hypothesis for the L-functions under consideration. It would be interesting to



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DISTINGUISHING HECKE EIGENFORMS 1903

obtain error terms, but since the fields obtained in [2] are not effective, it seems
difficult (at present) to move forward in this direction.
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