
2nd Reading

April 17, 2017 13:1 WSPC/S1793-0421 203-IJNT 1750127

International Journal of Number Theory
(2017)
c© World Scientific Publishing Company
DOI: 10.1142/S1793042117501275

The analog of the Erdös distance problem in finite fields

S. D. Adhikari

Harish-Chandra Research Institute, HBNI
Chhatnag Road, Jhusi, Allahabad 211 019, India

adhikari@hri.res.in

Anirban Mukhopadhyay

Institute of Mathematical Sciences, HBNI
CIT Campus, Taramani, Chennai 600113, India

anirban@imsc.res.in

M. Ram Murty

Department of Mathematics and Statistics
Jeffery Hall, Queen’s University

Kingston, Ontario, Canada K7L 3N6
murty@mast.queensu.ca

Received 24 November 2015
Accepted 20 October 2016

Published

In this paper, we give a proof of the result of Iosevich and Rudnev [Erdös distance
problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007) 6127–
6142] on the analog of the Erdös–Falconer distance problem in the case of a finite field
of characteristic p, where p is an odd prime, without using estimates for Kloosterman
sums. We also address the case of characteristic 2.

Keywords: Finite-fields; Erdös–Falconer distance problem; Fourier analysis.

Mathematics Subject Classification 2010: 11T24, 52C10

1. Introduction

The finite field analog of the Erdös–Falconer distance problem was investigated
by Iosevich and Rudnev [5] by developing the Fourier analytic machinery. More
precisely, if q = pr, where p is an odd prime, and E ⊂ Fd

q , then the minimum
cardinality of the set ∆(E) of distinct distances between points of E was esti-
mated in terms of the cardinality of the set E. The proof of the result of Iosevich
and Rudnev uses bounds on Kloosterman sums. In this paper, we give a proof
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of their result without using estimates for Kloosterman sums. In the next section,
we introduce the relevant terminology and state our result.

In Sec. 5, we take up the Erdös–Falconer distance problem in characteristic 2.
While Iosevich and Rudnev [5] considered the spherical distance problem asso-

ciated with the polynomial P (x) =
∑d

j=1 x
2
j , later, Iosevich and Koh [4] studied the

cubic distance problem associated with the polynomial P (x) =
∑d

j=1 x
3
j and the

problem of Erdös–Falconer distance sets related to general diagonal polynomials
were considered by Koh and Shen [6].

We would like to mention that in a forthcoming paper [1], Bennett, Hart, Iose-
vich, Pakianathan and Rudnev have employed some elementary arguments while
establishing the lower bound |T d

d (E)| � q(
d+1
2 ), where E is a subset of Fd

q with
d ≥ 2 such that |E| � qs for some s = s(d) < d and T d

k (E) denotes the set of con-
gruence classes of k-dimensional simplices determined by (k + 1)-tuples of points
from E. Better results are obtained in the special case d = 2. They employ the
simple observation that if the distance from x to y is equal to the distance from x′

to y′, then there exists a rotation, unique up to the obvious stabilizer, such that
x − y = θ(x′ − y′). One observes that with a relatively simpler idea, they improve
over some known results and extend some others.

We also mention a result of Le Anh Vinh [7] where graph theoretic tools are
used to derive a general version with a non-degenerate quadratic form giving the
distance. It is also generalized to “finite non-Euclidean” setting.

2. Preliminaries and the Statement of Our Result

For an odd prime p and q = pr we consider the finite field Fq with q elements. Let
E be a subset of the vector space Fd

q . We define a distance function

| · |2 : F
d
q → Fq

by

|x|2 = x2
1 + x2

2 + · · · + x2
d,

where x = (x1, x2, . . . , xd). We also set

∆(E) = |{|x− y|2 : (x, y) ∈ E × E}|
as the number of distinct distances determined by the set E. Let

ν(j) = |{(x, y) ∈ E × E : |x− y|2 = j}|.
By Cauchy–Schwarz inequality we get

∆(E) ≥ |E|4∑
j ν

2(j)
.

In this paper, we prove the following theorem due to Iosevich and Rudnev [5]
without using estimates for Kloosterman sums.
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Theorem 1. Let E be a subset of Fd
q with d ≥ 3.

If |E| � q(d+1)/2, then ∆(E) � q.

Fourier transform on vector space over finite fields. Let φ : Fq → C be
defined by

φ(x) = e

(
tr(x)
p

)
,

where e(z) = e2πiz and tr(x) denotes the trace of x over Fp.
Then φ defines a character on Fq. Moreover, all the characters of Fq are given

by ψa where a ∈ Fq and

ψa(x) = φ(ax).

Now we choose an arbitrary character ψ and fix it for the rest of the section.
For a complex valued function g on Fd

q , we define its Fourier transform, also a
function on Fd

q , as

ĝ(m) =
1
qd

∑
x∈Fd

q

g(x)ψ(−x ·m),

where x ·m is the standard inner product. It is easy to see that the Fourier inversion
formula and Parseval’s equality take the form:

g(x) =
∑

m∈Fd
q

ĝ(m)ψ(x ·m),

and
1
qd

∑
x∈Fd

q

|g(x)|2 =
∑

m∈Fd
q

|ĝ(m)|2.

We define

Sj = {x ∈ F
d
q : |x|2 = j}.

Using Fourier inversion we get

ν(j) =
∑

x,y∈Fd
q

E(x)E(y)Sj(x− y) = q2d
∑

m∈Fd
q

|Ê(m)|2Ŝj(m).

Here and throughout the paper we would denote a set and its characteristic function
by same notation.

Our goal is to find an upper bound for∑
j∈Fq

ν2(j) = q4d
∑

m1,m2∈Fd
q

|Ê(m1)|2|Ê(m2)|2
∑
j∈Fq

Ŝj(m1)Ŝj(m2). (2.1)
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3. Lemmas

Notations in this section will remain the same as in the previous one.

Lemma 1. We have

Ŝj(m) =
1
q
δ(m) +

εd
qd/2+1

∑
t∈F∗

q

ψ

(
−tj − |m|2

4t

)
,

where εd = (±i)d and δ(m) is the delta function at 0.

We note that the sum on the right-hand side is a Kloosterman sum. Our next
lemma which evaluates the inner sum of (2.1) shows that if we average over j ∈ Fq

then we do not need to use estimates for Kloosterman sums.

Lemma 2. We have

∑
j∈Fq

Ŝj(m1)Ŝj(m2) =




1
q

+O

(
1
qd/2

)
if m1 = m2 = 0,

O

(
1

qd−1

)
if m1 = 0 and m2 �= 0,

−ε2d
qd+1

if m1 �= 0,m2 �= 0 and |m1|2 �= |m2|2,

ε2d(q − 1)
qd+1

if m1 �= 0,m2 �= 0 and |m1|2 = |m2|2.

Proof.

Case I: m1 = m2 = 0.

Clearly

Ŝj(0) =
1
q

+O

(
1
qd/2

)

and so ∑
j∈Fq

Ŝj
2
(0) =

1
q

+O

(
1
qd/2

)
.

Case II: Either m1 = 0 or m2 = 0, but not both.
∑
j∈Fq

Ŝj(0)Ŝj(m) =
∑
j∈Fq

(
1
q

+O

(
1
qd/2

))
εd

qd/2+1

∑
t∈F∗

q

ψ

(
−tj − |m|2

4t

)

=
εd

qd/2+1

∑
t∈F∗

q

ψ

(
−|m|2

4t

)∑
j∈Fq

ψ(−tj) +O

(
q2

qd+1

)
= O

(
1

qd−1

)

since the main term vanishes.
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Case III: m1 �= 0, m2 �= 0.

∑
j∈Fq

Ŝj(m1)Ŝj(m2) =
∑
j∈Fq

(
εd

qd/2+1

)2 ∑
t1,t2∈F∗

q

ψ

(
−t1j − t2j − |m1|2

4t1
− |m2|2

4t2

)

=
ε2d
qd+2

∑
t1,t2∈F∗

q

ψ

(
−|m1|2

4t1
− |m2|2

4t2

)∑
j∈Fq

ψ(−j(t1 + t2))

=
ε2d
qd+1

∑
t∈F∗

q

ψ

(
− (|m1|2 − |m2|2)

4t

)

=




−ε2d
qd+1

if |m1|2 �= |m2|2,

ε2d(q − 1)
qd+1

if |m1|2 = |m2|2.

This finishes the proof of the lemma.
We note the following observation from Fourier analysis as defined in the last

section.

Lemma 3. For a set E ⊂ Fd
q we have

∑
m∈Fd

q

|Ê(m)|2 =
1
qd

∑
x∈Fd

q

|E(x)|2 =
|E|
qd

and Ê(0) =
|E|
qd
.

Lemma 4. For a set E ⊂ F
d
q we have

∑
m1,m2∈F

d
q\{0}

|m1|2=|m2|2

|Ê(m1)|2|Ê(m2)|2 = O

( |E|2
q2d

)
.

Proof. We bound the left-hand sides trivially as

∑
m1,m2∈F

d
q\{0}

|m1|2=|m2|2

|Ê(m1)|2|Ê(m2)|2 ≤

 ∑

m∈Fd
q\{0}

|Ê(m)|2



2

.

Hence the lemma follows by Plancherel’s theorem.

4. Proof of Theorem 1

Using Lemma 2 we get∑
j∈Fq

ν2(j) = q4d
∑

m1,m2∈Fd
q\{0}

|Ê(m1)|2|Ê(m2)|2
∑
j∈Fq

Ŝj(m1)Ŝj(m2)
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= q4d|Ê(0)|2|Ê(0)|2
(

1
q

+O

(
1
qd/2

))

+ q4d|Ê(0)|2
∑

m∈Fd
q\{0}

|Ê(m)|2O
(

1
qd−1

)

+ q4d
∑

m1,m2∈F
d
q\{0}

|m1|2 �=|m2|2

|Ê(m1)|2|Ê(m2)|2 (−ε2d)
qd+1

+ q4d
∑

m1,m2∈F
d
q\{0}

|m1|2=|m2|2

|Ê(m1)|2|Ê(m2)|2 ε
2
d(q − 1)
qd+1

= ε2dq
3d

∑
m1,m2∈F

d
q\{0}

|m1|2=|m2|2

|Ê(m1)|2|Ê(m2)|2

+O

( |E|4
q

)
+O(q|E|3) +O(qd−1|E|2).

Now we use Lemma 4 to conclude∑
j∈Fq

ν2(j) � |E|4
q

+ q|E|3 + qd|E|2.

Since we are considering set E such that |E| ≥ q2, the second term is dominated
by the first, so

∑
j∈Fq

ν2(j) � |E|4
q

+ qd|E|2.

Finally

∆(E) ≥ |E|4∑
j

ν2(j)
� |E|4

|E|4/q + qd|E|2 .

Thus

|E| � q(d+1)/2 implies ∆(E) � q,

completing the proof of the theorem.

5. The Erdös Distance Problem in Characteristic 2

In this section, we consider an analog of Erdös distance problem in a vector space
over a finite field of characteristic 2. Let E ⊂ Fd

N where N = 2n. The distance
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function now is

|x− y|2 =
d∑

i=1

x2
i +

d∑
i=1

y2
i ,

where x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are elements of Fd
N .

We define

Ad(E,E) = |{(x, y, z, w) ∈ E4 : x+ y = z + w}|.

This number is usually called the Additive Energy of the set E.
We start by considering an example. Let E be a subset of Fd

N defined as follows:

E = {(x1, . . . , xd−1, xd) |x1, . . . , xd−1 ∈ FN , x
2
d = x2

1 + · · · + x2
d−1}.

Since every element in a field of characteristic 2 is a square, we have |E| = Nd−1.
However, we note that ∆(E) = 1. So, the situation in characteristic 2 is quite
different from that in odd characteristics. By imposing a condition on additive
energy of the set E we could prove the following theorem.

Theorem 2. For a subset E of Fd
N :

If Ad(E,E) ≤ |E|3
N

and |E| ≥ Nd−1, then ∆(E) � N.

Definitions of the sets ν(j) and Sj remain the same as in the previous section.
Proof of the theorem also starts in a similar way but deviates considerably as
many of the arguments leading to the proof of Theorem 1 do not remain valid in
characteristic 2.

The following lemma is a special case of the Artin–Schreier theorem in charac-
teristic 2 (see [2, Theorem 6.69, p. 166]).

Lemma 5. Let f(T ) = aT 2 + bT + c be a polynomial in FN [T ]. Then

• f has exactly one root in FN if and only if b = 0.
• f has exactly two roots in FN if and only if b �= 0 and tr(ac/l2) = 0.
• f has no root in FN if and only if b �= 0 and tr(ac/l2) = 1.

The next lemma computes the Fourier transform of Sj.

Lemma 6.

Ŝj(m) =




1
N

if m = (0, . . . , 0),

1
N
ψ(m2

0j) if m = (m0, . . . ,m0),

0 otherwise.
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Proof. We have

Ŝj(m) =
1
Nd

∑
x∈F

d
N

Sj(x)ψ(−x ·m)

=
1
Nd

∑
x∈F

d
N

ψ(−x ·m)
1
N

∑
l∈FN

ψ(l(|x|2 + j))

=
1

Nd+1

∑
l∈FN

ψ(lj)
∑

x∈F
d
N

ψ(−x ·m+ l|x|2)

=
1
N
δ(m) +

1
Nd+1

∑
l∈F

∗
N

ψ(lj)
d∏

i=1

∑
t∈FN

ψ(mit+ lt2)

since the summand corresponding to l = 0 vanishes unless m = 0.
We write ∑

t∈FN

ψ(mit+ lt2) =
∑

a∈FN

Naψ(a),

where

Na = |{t ∈ FN : lt2 +mit+ a = 0}|.
From Lemma 5 we get

Na =




1 if mi = 0,

2 if mi �= 0, tr(la/m2
i ) = 0,

0 if mi �= 0, tr(la/m2
i ) = 1.

(5.1)

Note that if mi = 0,∑
t∈FN

ψ(mit+ lt2) =
∑

t∈FN

ψ(lt2) = 0

since all the elements in a field of characteristic 2 are squares.
Therefore ∑

a∈FN

Naψ(a) = 2
∑

a∈FN

tr(la/m2
i )=0

ψ(a).

Let φ be the additive character of FN defined by

φ(x) = e

(
tr(x)

2

)
,

where the exponential function being e(z) = e2πiz. We note that

1
2
(1 + φ(x)) =

{
1 if tr(x) = 0,

0 otherwise.
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We have done the Fourier analysis with an arbitrary but fixed non-principal
character ψ. From here onwards we choose ψ = φ. Thus∑

a∈FN

Naψ(a) =
∑

a∈FN

φ(a)(1 + φ(la/m2
i ))

=
∑

a∈FN

φ(a)φ(la/m2
i )

=
∑

a∈FN

e

(
tr(a(1 + l/m2

i ))
2

)
.

We note that all the characters on FN are given by

ψa : x→ e

(
tr(ax)

2

)
and a→ ψa defines an isomorphisms between FN and its dual as an additive group.
Hence following this notation we can write∑

a∈FN

Naψ(a) =
∑

a∈FN

ψk(a),

where k = 1+l/m2
i . The last sum vanishes unless ψk is a principal character and that

happens only if tr(a(1+l/m2
i )) = 0 for all a ∈ FN . Since FN is a separable extension

of F2, the bilinear form given by (x, y) → tr(xy) is non-degenerate. Therefore 1 +
l/m2

i = 0 which implies l = m2
i . We get

∑
t∈FN

ψ(mit+ lt2) =

{
N if l = m2

i ,

0 otherwise.

Hence we conclude

Ŝj(m) =




1
N

if m = (0, . . . , 0),

1
N
ψ(m2

0j) if m = (m0, . . . ,m0),

0 otherwise.

The following lemma is a general fact about the l4 norm of a Fourier transform.

Lemma 7. Let f be a complex valued function on F
d
N . For y ∈ F

d
N , we define

fy(x) = f(x+ y) and also F (y) to be the inner product (f, fy). Then

(F, F ) = N3d
∑

m∈F
d
N

|f̂(m)|4.

Proof. We note that by Fourier inversion

fy(x) =
∑

m∈F
d
N

f̂(m)ψ(y ·m)ψ(x ·m).
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Thus f̂y(m) = f̂(m)ψ(y ·m). Hence by Parseval’s equality

F (y) = Nd
∑

m∈F
d
N

f̂y(m)f̂(m) = Nd
∑

m∈F
d
N

|f̂(m)|2ψ(y ·m).

Therefore

(F, F ) = N3d
∑

m∈F
d
N

|f̂(m)|4.

Our last lemma is about additive energy.

Lemma 8. For a subset E of Fd
N we have∑

m∈F
d
N

|Ê(m)|4 =
∑

y∈E−E

|(y + E) ∩ E|2 =
Ad(E,E)
N3d

.

Proof. We take f = E in the last lemma to prove this equality.

Proof of Theorem 2. As earlier by the Cauchy–Schwarz inequality we get

∆(E) ≥ |E|4∑
j ν(j)2

.

The Fourier inversion formula gives

ν(j) = N2d
∑

m∈F
d
N

|Ê(m)|2Ŝj(m).

Hence∑
j∈FN

ν(j)2 = N4d
∑

m,n∈F
d
N

|Ê(m)|2|Ê(n)|2
∑

j∈FN

Ŝj(m)Ŝj(n)

= N4d|Ê(0)|4 1
N

+N4d
∑

m0∈FN\{0}
n0∈FN\{0}

|Ê(m0,m0, . . . ,m0)|2|Ê(n0, n0, . . . , n0)|2

× 1
N2

∑
j∈FN

ψ(m2
0j)ψ(n2

0j).

By orthogonality of characters we get

∑
j∈FN

ψ(m2
0j)ψ(n2

0j) =

{
N if m0 = n0,

0 otherwise.

Therefore∑
j∈FN

ν(j)2 =
|E|4
N

+N4d−1
∑

m∈FN\{0}
|Ê(m,m, . . . ,m)|4.
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The last sum is trivially bounded above as∑
m∈FN\{0}

|Ê(m,m, . . . ,m)|4 ≤
∑

m∈F
d
N

|Ê(m)|4 =
Ad(E,E)
N3d

,

where the last inequality is a consequence of Lemma 8.
Thus we have ∑

j∈FN

ν(j)2 ≤ |E|4
N

+Nd−1Ad(E,E).

If

Ad(E,E) ≤ |E|3
N

,

then ∑
j∈FN

ν(j)2 ≤ |E|4
N

+Nd−2|E|3.

Hence we get

∆(E) ≥ |E|4
|E|4
N + |E|4

N

≥ N

2
,

whenever |E| ≥ Nd−1. Taking |E| ≥ cNd−1, for some c ≥ 1, we have ∆(E) ≥ N
1+ 1

c

.

Hence the theorem.

6. A Variant of the Sum-Product Problem

Here we consider finite fields Fq with q elements where q is a power of an odd prime.
Let E ⊂ F2

q. For j ∈ Fq define

A(j) = |{(x, y) ∈ E × E : (x1 − y1)(x2 − y2) = j}|.
Let

Ω(E) = |{(x1 − y1)(x2 − y2) : (x, y) ∈ E}|.
By the Cauchy–Schwarz inequality we get

Ω(E) ≥ |E|4∑
j A(j)2

.

The aim of this section is to prove the following theorem due to Iosevich–Hart–
Solymosi [3] without using estimates on Kloosterman sums.

Theorem 3. Let E ⊂ F2
q be such that |E| � q3/2 then Ω(E) � q.

Before we begin the proof, we need the following lemmas. We define

Hj = {x ∈ F
2
q : x1x2 = j}.
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Then

A(j) =
∑

x,y∈F2
q

E(x)E(y)Hj(x− y) = q4
∑
m

|Ê(m)|2Ĥj(m).

Our first lemma evaluates Ĥj(m).

Lemma 9. For m ∈ F2
q we have

Ĥj(m) =
1
q
δ(m) +

1
q2

∑
l∈F∗

q

ψ
(
−lj − m1m2

l

)
.

Proof. Using the definition of Fourier transform and the orthogonality of characters
we can write

Ĥj(m) =
1
q2

∑
x∈F2

q

Hj(x)ψ(−x ·m)

=
1
q2

∑
x∈F2

q

ψ(−x ·m)
1
q

∑
l∈Fq

ψ(l(x1x2 − j))

=
1
q3

∑
l∈Fq

ψ(−lj)
∑
x∈F2

q

ψ(−x ·m+ lx1x2)

=
1
q
δ(m) +

1
q3

∑
l∈F∗

q

ψ(−lj)
∑
x∈F2

q

ψ(−x1m1 − x2m2 + lx1x2).

We observe that for l ∈ F
∗
q we get the inner sum

∑
x1,x2∈Fq

ψ(−x1m1 − x2m2 + lx1x2)

= ψ
(
−m1m2

l

) ∑
x1,x2∈Fq

ψ
(
l
(
x1 − m2

l

)(
x2 − m1

l

))
.

We note that ∑
y1,y2∈Fq

ψ(ly1y2) = q.

By change of variable

∑
x1,x2∈Fq

ψ(−x1m1 − x2m2 + lx1x2) = qψ
(
−m1m2

l

)

which completes the proof.
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Lemma 10. We have

∑
j∈Fq

Ĥj(m)Ĥj(n) =




1
q

+O

(
1
q2

)
if m = n = 0,

O

(
1
q2

)
if m = 0 and n �= 0,

−1
q3

if m1 �= 0,m2 �= 0 and m1m2 �= n1n2,

(q − 1)
q3

if m1 �= 0,m2 �= 0 and m1m2 = n1n2.

Proof. We first calculate that

Ĥj(0) =




2
q
− 1
q2

if j = 0,

1
q
− 1
q2

if j �= 0.

Now it is easy to show that∑
j∈Fq

Ĥj(0)2 =
1
q

+O

(
1
q2

)
.

For m �= 0, we have∑
j∈Fq

Ĥj(0)Ĥj(m) =
1
q3

(
2 − 1

q

)∑
l∈F∗

q

ψ
(
−m1m2

l

)

+
1
q3

(
1 − 1

q

)∑
l∈F∗

q

ψ
(
−m1m2

l

) ∑
j∈F∗

q

ψ(−lj)

=
1
q3

∑
l∈F∗

q

ψ
(
−m1m2

l

)

= O

(
1
q2

)
.

Let m,n ∈ F2
q such that m �= 0 and n �= 0. We see that

∑
j∈Fq

Ĥj(m)Ĥj(n) =
1
q3

∑
l∈F∗

q

ψ

(−m1m2 + n1n2

l

)
.

The conclusion follows by orthogonality of character.

Proof of Theorem 3. We observe that∑
j∈F2

q

A(j)2 = q8
∑

m,n∈F2
q

|Ê(m)|2|Ê(n)|2
∑
j∈F2

q

Ĥj(m)Ĥj(n).
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From the previous lemmas we have
∑

j

A(j)2 = q8|Ê(0)|4
(

1
q

+O

(
1
q2

))

+ q8|Ê(0)|2
∑
m

|Ê(m)|2O
(

1
q2

)
− q5

∑
m,n∈F

2
q

m1m2 �=n1n2

|Ê(m)|2Ê(n)|2

+ (q − 1)q5
∑

m,n∈F
2
q

m1m2=n1n2

|Ê(m)|2Ê(n)|2.

Now

∑
m,n∈F

2
q

m1m2=n1n2

|Ê(m)|2Ê(n)|2 ≤
(∑

m

|Ê(m)|2
)2

=
|E|2
q4

.

Therefore ∑
j

A(j)2 � |E|4
q

+ |E|3 + q2|E|2.

We get

Ω(E) � |E|4
|E|4

q + |E|3 + q2|E|2

and the theorem follows.

Application. Suppose A ⊂ Fq. Let E = A × A, then Ω(E) = (A − A)(A − A).
Applying the last theorem we get:

If |A| � q3/4, then |(A−A)(A−A)| � q.

7. Connection to Restriction Theory Over Finite Fields

For a subset S of F = Fd
q and a complex valued function g on S, we define

‖g‖Lp(S) =


∑

ξ∈S

|g(ξ)|p



1/p

.

We also define ǧ to be a function on Fd
q by

ǧ(x) =
∑
ξ∈S

g(ξ)ψ(x · ξ).

For any two exponents p, q, 1 ≤ p, q ≤ ∞. The function g → ǧ is a linear
transformation between Lp(S) and Lq(F ).
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Let RS(p → q) be the smallest real number satisfying

‖ǧ‖Lq(F ) ≤ RS(p → q)‖g‖Lp(S)

for all function g on S. By duality for all function f ∈ Lq′
(F )

‖f̂‖Lp′(S) ≤ RS(p→ q)‖f‖Lp(F ).

Now we consider f = E, indicator function of the set E ⊂ Fd
q and let Sk denote

the circle of radius k.
We note that

∑
m1,m2∈F

d
q\{0}

|m1|2=|m2|2

|Ê(m1)|2|Ê(m2)|2 =
∑
k∈F∗

q


 ∑

|m|2=k

|Ê(m)|2



2

=
∑
k∈F∗

q

‖Ê‖4
L2(Sk)

≤
∑
k∈F∗

q

RSk
(2 → 2)4‖E‖4

L2(Fd
q)

=
|E|2
q2d

∑
k∈F∗

q

RSk
(2 → 2)4.

Hence analog of Erdös distance conjecture for Fq follows if∑
k∈F∗

q

RSk
(2 → 2)4 � 1

q
.

Presently we do not have any heuristic to support this assertion.
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