Math 402/802: Assignment 1 (due: October 1, 2015)

Students in Math 402: Do any eight questions. Students in Math 802: Do all questions.

1. If $0 \le k < \lfloor n/2 \rfloor$, show that

$$\binom{n}{k} \le \binom{n}{k+1}.$$

2. Prove that

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$$

for $n \ge 1$.

3. Show that

$$\binom{n}{k} \binom{k}{\ell} = \binom{n}{\ell} \binom{n-\ell}{k-\ell}$$

for each $n \ge k \ge \ell \ge 0$.

4. Show that for $k \geq 1$,

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

5. Show that for $n \ge 1$,

$$\binom{n+k+1}{k+1} = \sum_{i=0}^{n} \binom{k+i}{i}.$$

6. For $0 \le k \le n$, show that

$$\binom{n}{k}k = n\binom{n-1}{k-1}.$$

Deduce that

$$\sum_{A \subset [n]} |A| = n2^{n-1}.$$

7. Let F_n denote the n-th Fibonacci number. Show that

$$\sum_{k=0}^{n} \binom{n-k}{k} = F_{n+1}.$$

8. The Lucas sequence is defined recursively as follows: $L_1=1, L_2=3$ and $L_n=L_{n-1}+L_{n-2}$ for $n\geq 3$. Show that the power series

$$\sum_{n=1}^{\infty} L_n x^n$$

is a rational function and using partial fractions, find an explicit formula for the n-th Lucas number.

1

9. The multiple zeta values $\zeta(k_1,...,k_r)$ are defined as

$$\zeta(k_1, ..., k_r) = \sum_{1 \le n_1 < n_2 \cdots < n_r} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}},$$

with $k_1, ..., k_{r-1} \ge 1$ and $k_r \ge 2$. The *weight* of the multiple zeta value $\zeta(k_1, ..., k_r)$ is defined as the sum $k_1 + \cdots + k_r$ and its *depth* as r. A recent remarkable theorem is that **all** multiple zeta values of weight n are \mathbb{Q} -linear combinations of

$$\{\zeta(a_1,...,a_r): \text{ where } a_i=2 \text{ or } 3, \text{ and } a_1+\cdots+a_r=n\}.$$

Using this theorem, show that the dimension of the \mathbb{Q} -vector space V_n spanned by multiple zeta values of weight n is bounded by d_n where d_n satisfies the recurrence relation $d_n = d_{n-2} + d_{n-3}$, with $d_1 = 0$, $d_2 = 1$. [It is conjectured that the dimension of V_n is exactly d_n but this has not yet been proved.]

10. With d_n as in the previous exercise, find an explicit formula for d_n . Deduce that there are positive constants a, b with b > 1 such that d_n is asymptotic to ab^n as n tends to infinity.