1. Prove or disprove: The polynomial
\[\lambda^4 - \lambda^2 - 2 \]
is the characteristic polynomial of the adjacency matrix of a bipartite graph.

2. Calculate the characteristic polynomial of the cycle graph \(C_4 \) on 4 vertices. More generally, calculate the characteristic polynomial of the cycle graph \(C_n \) when \(n \) is even.

3. Let \(d_1, d_2, \ldots, d_n \) be positive integers. Show that there exists a tree on \(n \) vertices with vertex degrees \(d_1, d_2, \ldots, d_n \) if and only if
\[\sum_{i=1}^{n} d_i = 2n - 2. \]

4. Let \(T(n; d_1, \ldots, d_n) \) be the number of labelled trees with \(n \) vertices and degree sequence \(d_1, \ldots, d_n \) with \(d_1 \geq d_2 \geq \cdots \geq d_n \). Prove that
\[T(n; d_1, \ldots, d_n) = \sum_{j=1}^{n-1} T(n-1; d_1, \ldots, d_j-1, \ldots, d_{n-1}). \]
Deduce that
\[T(n; d_1, \ldots, d_n) = \frac{(n-2)!}{(d_1-1)! \cdots (d_n-1)!}. \]

5. Using the binomial theorem, prove by induction on \(r \) the multinomial theorem which states that
\[(x_1 + \cdots + x_r)^n = \sum_{0 \leq i_1, \ldots, i_r \leq n} \binom{n}{i_1, \ldots, i_r} x_1^{i_1} \cdots x_r^{i_r}, \]
where
\[\binom{n}{i_1, \ldots, i_r} := \frac{n!}{i_1! \cdots i_r!}. \]
Deduce from the previous exercise Cayley’s theorem, namely, that the number of trees on \(n \) labelled vertices is \(n^{n-2} \).

6. (a) Let \(X \) be a connected graph on \(n \) vertices. Show that \(X \) has exactly one cycle if and only if \(X \) has \(n \) edges.
(b) Prove that a connected graph with \(n \) vertices and \(e \) edges contains at least \(e - n + 1 \) cycles.
7. If X is a graph and e is an edge, we say that e is a **bridge** if $X - e$ has more connected components than X. Prove that in any tree, every edge is a bridge. Deduce that if X is a tree on n labelled vertices, then each element of $\{X - e : e \in E(X)\}$ is a forest of two trees.

8. Let T_n be the number of trees on n labelled vertices. Using the previous exercise (or otherwise), prove that

$$2(n - 1)T_n = \sum_{i=1}^{n-1} \binom{n}{i} T_{n-i}(n-i).$$

Deduce that

$$\sum_{i=1}^{n-1} \binom{n}{i} i^{i-1}(n-i)^{n-i-1} = 2(n-1)n^{n-2}.$$

9. Let $G(r, s; m)$ be the number of connected bipartite graphs with partite sets of size r and s having m edges, and let $F(r, s; m)$ be the number of such graphs not containing any vertices of degree 1. Prove that

$$F(r, s; m) = \sum_{i,j} \binom{r}{i} \binom{s}{j} (-1)^{i+j} G(r-i, s-j; m-i-j)(s-j)^i(r-i)^j.$$

10. Let $T(r, s)$ be the number of spanning trees in the bipartite graph $K_{r,s}$. Prove that

$$0 = \sum_{i,j} \binom{r}{i} \binom{s}{j} (-1)^{i+j} T(r-i, s-j)(s-j)^i(r-i)^j$$

and deduce $T(r, s) = r^{s-1}s^{r-1}$.