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Abstract

We develop the Turán sieve and a ‘simple sieve’ in the context of bipartite graphs and apply them to
various problems in combinatorics. More precisely, we provide applications in the cases of characters
of abelian groups, vertex-colourings of graphs, Latin squares, connected graphs, and generators of
groups. In addition, we give a spectral interpretation of the Turán sieve.
© 2004 Elsevier Inc. All rights reserved.
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1. A combinatorial Turán sieve

In 1934, Turán[18] gave a very simple proof of a celebrated result of Hardy andRamanu-
jan [8] that the normal order of distinct prime factors of a natural numbern is log logn. If
�(n) denotes the number of distinct prime factors ofn, Turán proved that∑

n�x

(�(n) − log logx)2 � x log logx,

from which the normal order of�(n) is easily deduced. Turán’s original derivation of the
Hardy–Ramanujan theorem was essentially probabilistic and concealed in it an elementary
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sieve method. This method has appeared in various formulations in several places. Most
notable is themonograph of Erdös and Spencer[5, Section 16]and Lovász[12, problem 19,
Section 2]. However, the sieve principle seems to be best emphasized in paper[11], where
the authors introduced the Turán sieve method and applied it to probabilistic Galois theory
problems.
In this paper, we formulate the Turán sieve method in a slightly general context, namely

to that of bipartite graphs. Formulating it thus allows us the freedom to search for new
applications of the method. To illustrate, we consider the problem of obtaining a non-trivial
upper bound for the number of proper (vertex) colourings of a graph. We also consider
related examples.
The extension of sievemethods to a combinatorial setting has been attempted before. For

example, Wilson[19] and Chow[3] have formulated the Selberg sieve in a combinatorial
context (see also Section 2 of[12]). However, due to the fact that the Möbius function of
a lattice is difficult to compute in the abstract setting, it is not clear how one can apply the
Selberg sieve to general combinatorial problems. This obstruction is somewhat eliminated
by the Turán sieve.
Let X be a bipartite graph with finite partite sets (A,B). For a ∈ A, b ∈ B, we write

a ∼ b if there is an edge that joinsa andb. Forb ∈ B, we define thedegreeof b to be

degb := #{a ∈ A, a ∼ b}.
Forb1, b2 ∈ B, thenumber of common neighboursn(b1, b2) of b1 andb2 is defined by

n(b1, b2) := #{a ∈ A, a ∼ b1 anda ∼ b2}.
Thus, ifb1 = b2 = b, n(b1, b2) = degb.

For eacha ∈ A, we define

�(a) := #{b ∈ B, a ∼ b} = # of elements inB that joina.

Notice that∑
a∈A

�(a) =
∑
a∈A

∑
b∈B
a∼b

1 =
∑
b∈B

∑
a∈A
a∼b

1 =
∑
b∈B

degb.

Thus, the ‘expected value’ of�(a) is

1

|A|
∑
b∈B

degb,

where|A| is the cardinality ofA. Tomeasure the difference between�(a) and 1
|A|
∑
b∈B

degb,

we consider the second moment of their difference, namely,

∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

.
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We have

∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

=
∑
a∈A

�2(a) − 2
∑
a∈A

�(a)

(
1

|A|
∑
b∈B

degb

)
+
∑
a∈A

(
1

|A|
∑
b∈B

degb

)2

=
∑
a∈A

�2(a) − 2

|A|

(∑
b∈B

degb

)2

+ 1

|A|

(∑
b∈B

degb

)2

.

The last equality follows from the previous calculation of
∑
a∈A

�(a). It now remains to

consider
∑
a∈A

�2(a). By the definition of�(a), we have

∑
a∈A

�2(a) =
∑
a∈A

∑
b1,b2∈B
a∼b1
a∼b2

1 =
∑

b1,b2∈B

∑
a∈A
a∼b1
a∼b2

1 =
∑

b1,b2∈B
n(b1, b2).

Combining the above results, we obtain the following theorem.

Theorem 1.

∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

=
∑

b1,b2∈B
n(b1, b2) − 1

|A|

(∑
b∈B

degb

)2

.

Notice that

#{a ∈ A, �(a) = 0} ·
(

1

|A|
∑
b∈B

degb

)2

�
∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

.

Combining this inequality with Theorem1, we obtain the following corollary.

Corollary 1 (The Turán sieve).

#{a ∈ A, �(a) = 0}� |A|2 ·

∑
b1,b2∈B

n(b1, b2)

(∑
b∈B

degb

)2 − |A|.

Example 1. Wecan apply Corollary1 to obtain an upper bound for the inclusion-exclusion
principle. LetA be a finite set and{A1, A2, . . . , Ak} be a collection of subsets ofA. We
construct a bipartite graph withB consisting of the setsAi ’s. For a ∈ A, b = Ab ∈ B,
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we will say

a ∼ Ab if a ∈ Ab.

Thus,

�(a) = 0 if and only if a /∈ Ai for all 1� i�k.

Forb, b1, b2 ∈ B, notice that

degb = |Ab| and n(b1, b2) = |Ab1 ∩ Ab2|.
By Corollary1, we have

#{a ∈ A : a /∈ Ai for all i, 1� i�k}� |A|2 ·

k∑
i,j=1

|Ai ∩ Aj |

k∑
i=1

|Ai |2
− |A|.

We thus obtain an inequality for the standard inclusion-exclusion principle.

Example 2. From Theorem1, we can derive the classical Turán theorem. Forb1, b2 ∈
B, b1 = b2, we assume that

n(b1, b2) = degb1 · degb2
|A| + e(b1, b2),

where we viewe(b1, b2) to be an ‘error term’ if we were to think of the eventsa ∼ b1 and
a ∼ b2 as ‘independent’. Putting it into Theorem1, we have

∑
a∈A

(
�(a) −

∑
b∈B

degb

|A|

)2

=
∑
b1 =b2

e(b1, b2) +
∑
b∈B

degb

(
1− degb

|A|
)
.

This example is motivated by the classical number theory setting that inspired Turán’s
theorem stated at the outset of this paper. Indeed, letA denote the set of natural numbers
�x andB the set of primes�x1/2. Fora ∈ A, b ∈ B, we will say

a ∼ b if b|a.
Thus,

�(a) = # of distinct primes divisors ofn which are�x1/2.

Also, we have∑
b∈B

degb�
∑

b�√
x

[x
b

]
= x log logx + O(x),
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by a classical theorem of Mertens[13]. Moreover, ifb1 = b2,

n(b1, b2)=
[

x

b1b2

]
= x

b1b2
+ O(1)

= degb1 · degb2
|A| + O(1),

so thate(b1, b2) = O(1). It follows that∑
a�x

(�(a) − log logx)2 = O(x log logx),

which is Turán’s theorem as for eacha ∈ A, there is at most 1 prime divisor ofawhich is
> x1/2.

Corollary1 provides an upper bound for the quantity

#{a ∈ A, �(a) = 0}.
To get a lower bound for it, observe that

{a ∈ A, �(a) = 0} = A \
⋃
b∈B

{a ∈ A, a ∼ b}.

Since the union
⋃
b∈B

{a ∈ A, a ∼ b} is not necessarily disjoint, by the definition of degb,

we have

Proposition 1 (The simple sieve).

#{a ∈ A, �(a) = 0}� |A| −
∑
b∈B

degb.

In Sections 2 and 3, we apply Corollary1and Proposition1 to problems on characters of
abelian groups and vertex-colourings of graphs. In particular, we obtain improvements of
the Rédei Trägheitsatz[16,17]for some abelian groups. In Section 4, we apply Corollary1
to obtain an upper bound for the number of Latin squares of ordern. In Sections 5 and 6,
we apply Proposition1 to get lower bounds for the number of connected graphs and the
number ofn-tuples of elements of a groupGwhich generateG. We conclude this paper by
discussing a spectral interpretation of the Turán sieve method in Section 7.

2. Characters of abelian groups

In this section, we apply Corollary1 and Proposition1 to a problem about characters of
abelian groups.
LetGbe a finite abelian group and{H1, H2, . . . , Hk} a collection of subgroups ofG. For

ann-tuple� = (�1, �2, . . . , �n)of charactersofG,wesay�distinguishes{H1, H2, . . . , Hk},
if for everyHj , there exists a character�i such that�i restricted toHj is not the trivial
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character. Thus, if the set{H1, H2, . . . , Hk} contains all non-trivial subgroups ofG, �
distinguishes all subgroups ofG except the identity. We are interested in the number of
n-tuples of characters ofGwhich distinguish{H1, H2, . . . , Hk}.

Let A be the set of alln-tuples� = (�1, �2, . . . , �n) of characters ofG andB the set of
all Hi ’s. Fora = �a = (�a,1, �a,2, . . . , �a,n) ∈ A, b = Hb ∈ B, we will say

a ∼ b if �a,i restricted toHb is trivial for all i.

Thus, we have

�(a) = 0 if and only if �a distinguishes{H1, H2, . . . , Hk}.
Notice that

|A| = |G|n.
Let b = Hb ∈ B anda = �a ∼ b. Since�a,i restricted toHb is trivial, it can be thought of
as a character of the quotient groupG/Hb. Thus,

degb = (|G|/|Hb|)n.
It follows that

∑
b∈B

degb = |G|n ·
k∑

j=1

1

|Hj |n .

Forb1 = Hb1, b2 = Hb2 ∈ B, we denote byHb1 ∨ Hb2, thejoin of Hb1 andHb2, which is
the smallest subgroup ofG containing bothHb1 andHb2. Fora = �a ∈ A, if a ∼ b1 and
a ∼ b2, the character�a vanishes at bothHb1 andHb2. Thus, it vanishes atHb1 ∨ Hb2 and
defines a character of the quotient groupG/(Hb1 ∨ Hb2). It follows that

∑
b1,b2∈B

n(b1, b2) = |G|n ·
k∑

j1,j2=1

1

|Hj1 ∨ Hj2|n
.

Hence, by Corollary1, we obtain that

Theorem 2. Let{H1, H2, . . . , Hk} be a collection of subgroups of a finite abelian groupG.
WedenotebyDG(n,H1, H2, . . . , Hk) thenumberofn-tuples� = (�1, . . . , �n)of characters
of G distinguishing{H1, H2, . . . , Hk}.We have

DG(n,H1, H2, . . . , Hk)� |G|n ·




k∑
j1,j2=1

1

|Hj1 ∨ Hj2|n
 k∑

j=1

1

|Hj |n




2 − 1



.
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Also, by Proposition1, we have

Theorem 3. Let{H1, H2, . . . , Hk} be a collection of subgroups of a finite abelian groupG.
WedenotebyDG(n,H1, H2, . . . , Hk) thenumberofn-tuples� = (�1, . . . , �n)of characters
of G distinguishing{H1, H2, . . . , Hk}.We have

DG(n,H1, H2, . . . , Hk)� |G|n ·

1−

k∑
j=1

1

|Hj |n


 .

LetL be a lattice with a unique minimal element0̂. Anorder function� onL is a function
defined on pairs of elementsx, y (with x � y) in L such that�(x, y) = �(x, z)�(z, y). We
sayL is locally finiteif for every positive integern, the number of elementsy ∈ L such that
�(x, y) = n is finite. TheRédei zeta functionof a locally finite latticeL is defined by

�(s;L) =
∑
x∈L

�(0̂, x)�(0̂, x)−s ,

where� is the Möbius function ofL. By the finiteness assumption, the summation on
the right is well defined as a formal Dirichlet series. Moreover, the zeros of�(s;L) are
very often combinatorially significant invariants. For example, it generalizes the chromatic
polynomial of a graph, the inverse of the Dedekind zeta function of a number field, the
inverse of theWeil zeta function for a variety over a finite field, etc. (For more applications
of the Rédei zeta function, see[10].)
Consider the latticeL{H1,H2,...,Hk} spanned by{H1, H2, . . . , Hk}, which is a lattice con-

taining all subgroups ofG that are generated by some finite subsets of theHi ’s. Partially
orderL{H1,H2,...,Hk} by inclusion as the minimal element0̂ is the identity subgroup ofG.
Such a lattice is locally finite with the order function

�(x, y) = |y|
|x| .

Thus, the Rédei zeta function associated toL{H1,H2,...,Hn} is

�(s,H1, H2, . . . , Hk) := �(s;L{H1,H2,...,Hn}) =
∑
0̂�H

�(0̂, H)
1

|H |s ,

whereH runs through all elements ofL{H1,H2,...,Hk}. It was proved in[10, Theorem 10]that

DG(n,H1, H2, . . . , Hk) = |G|n · �(n,H1, H2, . . . , Hk),

from which we can derive that

0��(n,H1, H2, . . . , Hk)�1 (1)

sinceDG(n,H1, H2, . . . , Hk)� |G|n. This result was first proved by Rédei and is known
as Rédei’s Trägheitsatz[16,17].
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Combining Rédei’s result with Theorems2 and3, we conclude that

max


0,1−

k∑
j=1

1

|Hj |n


 � �(n,H1, H2, . . . , Hk)

� min



1,

k∑
j1,j2=1

1

|Hj1 ∨ Hj2|n
 k∑

j=1

1

|Hj |n




2 − 1



.

The above inequality provides better upper and lower bounds than (1) for �(n,H1, H2, . . . ,

Hk) in many cases. For example, for all primesp�x, consider the abelian groupG and its
subgroups{Hp, p�x} which are defined as follows:

G =
∏
p�x

Z/pZ Hp�Z/pZ for all p�x.

In the casen = 1, by Theorem2 and Mertens’ theorem, we obtain

�(1, Hp, p�x)� 1

log logx
+ O

(
1

(log logx)2

)
.

In the casen�2, by Theorem3, we have

�(n,Hp, p�x)�1−
∑
p�x

1

pn
.

As ∑
p�x

1

pn
→ 0 asn → ∞,

we conclude that

�(n,Hp, p�x) → 1 asn → ∞.

We can also apply Theorems2 and3 to vector spaces over a finite field. LetG′ be a
d-dimensional vector space over a finite fieldFq . Let{H ′

1, H
′
2, . . . , H

′
k} be the set of all one-

dimensional subspaces ofG′. Thus,k is the number of one-dimensional subspaces ofG′ and
is equal to(qd −1)/(q −1). LetL{H ′

1,H
′
2,...,H

′
k} be the lattice spanned by{H ′

1, H
′
2, . . . , H

′
k}.

For H ′ ∈ L{H ′
1,H

′
2,...,H

′
k}, the absolute value of the Möbius function�(0̂, H ′) increases

rapidly as the dimension ofH ′ increases. Thus, it is not easy to compute the value of the
Rédei zeta function in this case. However, from Theorem2, we have

�(n,H ′
1, H

′
2, . . . , H

′
k)�

(q − 1)(qn − 1)

qd − 1
,
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which is< 1 if n�(d − 1). In the casen�d, by Theorem3, we have

�(n,H ′
1, H

′
2, . . . , H

′
k)�1− (qd − 1)

qn(q − 1)
> 0.

Remark. As we can see from the above two examples, it seems that Corollary1 and
Proposition1 are complementary. When Corollary1 provides a non-trivial upper bound,
Proposition1 usually fails to give a meaningful lower bound. On the contrary, in the cases
when Proposition1 is valid, Corollary1 is usually not useful.Wewill see the same situation
happens again later in Theorems4 and5.

3. Vertex-colourings of graphs

We now consider a graph colouring problem. LetX = (V ,E) be a simple graph, where
V is the vertex set ofX andE the edge set. We denote byv ande the cardinalities ofV and
E, respectively. For� ∈ N, ��1, suppose we use� colours to colour the vertex setV of
X. A �-colouring Ccan be viewed as a map fromV to {1,2, . . . , �}. We sayC is proper if
no two adjacent vertices have the same value(colour). Our goal is to count the number of
proper colourings ofX.
Let A be the set of all colourings ofX andB the edge set ofX. For a = Ca ∈ A, b =

eb ∈ B, we will say

a ∼ b if the two vertices joined byeb have the same value inCa.

Thus,

�(a) = 0 if and only if Ca is a proper colouring ofX.

Notice that

|A| = �v and |B| = e.

For eachb = eb ∈ B, we have

degb = �v−1,

since the values of the vertices joined byeb are the same. It follows that

∑
b∈B

degb = e · �v−1.

Let b1 = eb1, b2 = eb2 ∈ B. If b1 = b2 = b, then

n(b1, b2) = degb = �v−1.
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If b1 = b2, there are two possibilities:
(1) eb1 andeb2 share one vertex; thus those three vertices joined byeb1 andeb2 have the

same values. In this case,

n(b1, b2) = �v−2.

(2) eb1 andeb2 do not share any vertex; thus the vertices joined byeb1 have the same
values and the values of the vertices joined byeb2 are the same. Thus,

n(b1, b2) = �v−2.

Hence, we conclude that ifb1 = b2,

n(b1, b2) = �v−2.

Notice also that

#{(b1, b2) ∈ B2, b1 = b2} = e2 − e.

It follows that∑
b1,b2∈B

n(b1, b2)=
∑
b1 =b2

n(b1, b2) +
∑
b∈B

degb

= (e2 − e) · �v−2 + e · �v−1.

Hence, by Corollary1, we obtain

Theorem 4. LetX = (V ,E) be a simple graph with the vertex set V and the edge set E.
Suppose we use� colours to colour the set V. We have

# of proper�-colourings ofX��v ·
{

� − 1

e

}
,

wherev = |V | ande = |E|.

Notice that since

# of proper�-colourings ofX��v,

Theorem4 provides a non-trivial upper bound only if

� − 1

e
�1, i.e., ��(e + 1).

In the case when��e, by Proposition1, we have

Theorem 5. LetX = (V ,E) be a simple graph with the vertex set V and the edge set E.
Suppose we use� colours to colour the set V. We have

# of proper�-colourings ofX��v ·
{
1− e

�

}
,

wherev = |V | ande = |E|.
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A graphX′ is called asubgraphof X if it can be obtained by contracting some edges
of X (thus identifying two vertices that are joined by an erased edge). Consider the lattice
LX spanned by subgraphs ofX. Partially orderLX as follows: we sayX1 � X2 if X1 is a
subgraph ofX2. Hence, the maximal element1̂ ofLX isX.
For � ∈ N, suppose we use� colours to colour the vertex setV (X) of X. The number

of proper�-colourings ofX can be expressed in terms of the Möbius functions ofLX. Let
PX(�) denote the number of proper colourings ofX using� colours. For each colouringC
of X, there exists a unique maximal subgraphX′ such thatC is a proper colouring ofX′.
Thus, we have

�V (X) =
∑
X′�1̂

PX′(�),

whereX′ runs through all elements ofLX. Applying the Möbius inversion formula, we
obtain

PX(�) =
∑
X′�1̂

�(X′, 1̂)�V (X′),

which is thechromatic polynomialof X. In general, it is difficult to estimatePX(�) due to
the fact that theMöbius function�(X′, 1̂) is hard to compute. One of the advantages of both
the Turán sieve and the simple sieve is that they eliminate the use of the Möbius function.
Thus, they can provide estimates ofPX(�) without knowing�(X′, 1̂). Indeed, the graph
colouring problem can be viewed a special case of the character problem that wementioned
in Section 2 (see[1] and[15, Proposition 5.1.2]for explanations).

4. Latin squares

A Latin squareof ordern is ann× nmatrix with entries from{1,2, . . . , n} such that the
entries in each row and the entries in each column are distinct. LetL(n) be the number of
Latin squares of ordern. Since there arenn

2
ways of filling in then2 positions of the matrix

with entries from{1,2, . . . , n}, we have

L(n)�nn
2
.

To obtain the number of Latin squaresL(n) is indeed a special case of the vertex-
colourings of graphs. LetX = Kn × Kn, the graph whose vertex set consists of the points
of ann× nmatrix and in which two vertices are adjacent if and only if they lie in the same
row or column. Suppose we usen colours to colour the vertex set ofX. In this case, the
number of propern-colourings ofX is equal to the number of Latin squares of ordern. Let
V andE be the vertex set and the edge set ofX = Kn × Kn, respectively. Notice that

|V | = n2 and |E| = n2(n − 1).

Applying Theorem4, we can improveL(n) to

L(n)�nn
2 ·
{
1

n2

}
.
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The above upper bound can be improved to

L(n)�(n!)n,
since each entire row is chosen from the set of permutations of{1,2, . . . , n} and there
aren! permutations. Further improvement of an upper bound ofL(n) can be obtained by
considering derangements of{1,2, . . . , n}.
A derangementof {1,2, . . . , n} is a permutation of this set which leaves no point fixed.

Let d(n) be the number of derangements of{1,2, . . . , n}. Using the principle of inclusion-
exclusion, we have[2, Theorem 5.1.3]

d(n) = n!
n∑

i=0

(−1)i

i! .

One can show that this is the nearest integer ton!/e.
Consider a Latin square of ordern. The first row of it is simply a permutation of

{1,2, . . . , n}, and there aren! choices for it. Given the first row, we may (by re-labeling)
assume that it is(1,2, . . . , n); then a legitimate second row is precisely a derangement of
{1,2, . . . , n}. Similarly, all the rows after the first are derangements of the first one. Thus,
we have

L(n)�(n!) · d(n)n−1,

which is roughly(n!)n/en−1. In the following,weapply theTurán sievemethodand improve
this upper bound to

L(n)�C(n!) · d(n)
n−1

n2
,

whereC is a fixed constant.
Given ann × n matrixM, suppose the first row of it is a permutation, say(1,2, . . . , n).

We consider the(n − 1) × n submatrixM0 of M obtained by deleting the first row ofM.
ForM to be a Latin square, all the rows ofM0 must be derangements of the first one. LetA
be the collection of all suchM0’s, i.e.,A contains all(n − 1) × n matrices such that each
entire row is chosen from the set of derangements of{1,2, . . . , n}. Thus, we have

|A| = d(n)n−1.

Fora = Ma ∈ A, we denote by(Ma)i,j the(i, j)th entry of the matrixMa , where 2� i�n

and 1�j �n.
Let B be the set consisting all distinct pairs{(i, j), (i ′, j)} (regardless of their order)

where 2� i, i′ �n, i = i′, and 1�j �n. There are
(
n−1
2

)
choices for the set{i, i′} andn

choices forj. Thus,

|B| = n(n − 1)(n − 2)

2
.

For a matrixa = Ma ∈ A, an elementb = {(ib, jb), (i′b, jb)} ∈ B, we will say

a ∼ b if (Ma)ib,jb = (Ma)i′b,jb .
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Thus,

�(a) = 0 if and only if Ma forms a submatrix of a Latin square.

Hence, we have

L(n) = (n!) · #{a ∈ A, �(a) = 0}.
Thus, to get an upper bound forL(n), it suffices to obtain an upper bound for

#{a ∈ A, �(a) = 0}.
Fix b = {(ib, jb), (i′b, jb)} ∈ B. SupposeMa = a ∼ b. There ared(n) choices of the

ibth row ofMa . Fix the ibth row and consider thei′bth row ofMa . Suppose(Ma)ib,jb =
(Ma)i′b,jb = k. Notice thatk = jb since theibth row is a derangement. There are two
possibilities for thei′bth row:
(1) If (Ma)i′b,k = jb, consider all entries of thei′bth row except(Ma)i′b,jb . View the entry

(Ma)i′b,k as(Ma)i′b,jb . Thus, these(n−1) entries of thei′bth row form a derangement of the
set{1,2, . . . , n} \ {k} and there ared(n− 1) choices of them. Notice that since(Ma)i′b,k is
identified with(Ma)i′b,jb , it follows that(Ma)i′b,k = jb.
(2) If (Ma)i′b,k = jb, consider all entries of thei′bth row except(Ma)i′b,jb and(Ma)i′b,k.

The remaining(n−2) entries form a derangement of the set{1,2, . . . , n}\{jb, k} and there
ared(n − 2) choices of them.
Hence, we have totally(d(n − 1) + d(n − 2)) choices of thei′bth row. Also, there are

d(n) choices of each remaining(n − 3) rows. Thus, we have

degb = d(n)n−2 · (d(n − 1) + d(n − 2)).

It follows that∑
b∈B

degb = d(n)n−2 · (d(n − 1) + d(n − 2)) · n(n − 1)(n − 2)

2
.

Let b1 = {(ib1, jb1), (i′b1, jb1)} andb2 = {(ib2, jb2), (i′b2, jb2)} be two elements ofB.
Suppose∣∣{ib1, i′b1} ∩ {ib2, i′b2}

∣∣ = r1 and
∣∣{jb1} ∩ {jb2}

∣∣ = r2,

where 0�r1�2 and 0�r2�1. We denote byM(r1, r2) the number of pairs(b1, b2) ∈ B2

such that|{ib1, i′b1} ∩ {ib2, i′b2}| = r1 and|{jb1} ∩ {jb2}| = r2. There are six possibilities for
the pair(r1, r2):
(1) |{ib1, i′b1} ∩ {ib2, i′b2}| = 2 and|{jb1} ∩ {jb2}| = 1.

In this case,b1 = b2. From the discussion of degb, we have

n(b1, b2) = d(n)n−2 · (d(n − 1) + d(n − 2))

and

M(2,1) = n(n − 1)(n − 2)

2
.
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(2) |{ib1, i′b1} ∩ {ib2, i′b2}| = 1 and|{jb1} ∩ {jb2}| = 1, sayib1 = ib2.

There ared(n) choices for theib1(= ib2)th row ofMa and(d(n − 1) + d(n − 2))2

choices of thei′b1th andi′b2th rows. Also, there ared(n) choices of each remaining
(n − 4) rows. Thus,

n(b1, b2) = d(n)n−3 · (d(n − 1) + d(n − 2))2.

There are
(
n−1
1

)(
n−2
1

)(
n−3
1

)
choices for the set{ib1(= ib2), i

′
b1
, i′b2} andn choices for

jb1(= jb2). Thus,

M(1,1) = n(n − 1)(n − 2)(n − 3).

(3) |{ib1, i′b1} ∩ {ib2, i′b2}| = 0 and|{jb1} ∩ {jb2}| = 1.

There are(d(n))2 choices of theib1th andib2th rows and(d(n−1)+d(n−2))2 choices
of thei′b1th andi′b2th rows.Also, there ared(n) choices of each remaining(n−5) rows.
Thus,

n(b1, b2) = d(n)n−3 · (d(n − 1) + d(n − 2))2.

There are
(
n−1
2

)(
n−3
2

)
choices for the sets{ib1, i′b1} and {ib2, i′b2} and n choices for

jb1(= jb2). Thus,

M(0,1) = n(n − 1)(n − 2)(n − 3)(n − 4)

4
.

(4) |{ib1, i′b1} ∩ {ib2, i′b2}| = 2 and|{jb1} ∩ {jb2}| = 0, sayib1 = ib2 andi
′
b1

= i′b2.
There ared(n) choices for theib1(= ib2)th row and(d(n−2)+2d(n−3)+ d(n−4))
choices for thei′b1(= i′b2)th row.Also, there ared(n) choices of each remaining(n−3)
rows. Thus,

n(b1, b2) = d(n)n−2 · (d(n − 2) + 2d(n − 3) + d(n − 4)).

There are
(
n−1
2

)
choices for the set{ib1(= ib2), i

′
b1

= (i′b2)} andn(n − 1) choices for
jb1 andjb2 . Thus,

M(2,0) = n(n − 1)2(n − 2)

2
.

(5) |{ib1, i′b1} ∩ {ib2, i′b2}| = 1 and|{jb1} ∩ {jb2}| = 0, sayib1 = ib2.

There ared(n) choices of theib1(= ib2)th row and(d(n − 1) + d(n − 2))2 choices of
the i′b1th andi′b2th rows. Also, there ared(n) choices of each remaining(n − 4) rows.
Thus,

n(b1, b2) = d(n)n−3 · (d(n − 1) + d(n − 2))2.

Also, there are
(
n−1
1

)(
n−2
1

)(
n−3
1

)
choices for the set{ib1(= ib2), i

′
b1
, i′b2} andn(n − 1)

choices forjb1 andjb2. Thus,

M(1,0) = n(n − 1)2(n − 2)(n − 3).
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(6) |{ib1, i′b1} ∩ {ib2, i′b2}| = 0 and|{jb1} ∩ {jb2}| = 0.

There ared(n)2 choices of theib1th andib2th rows and(d(n−1)+ d(n−2))2 choices
of thei′b1th andi′b2th rows.Also, there ared(n) choices of each remaining(n−5) rows.
Thus,

n(b1, b2) = d(n)n−3 · (d(n − 1) + d(n − 2))2.

Also, there are
(
n−1
2

)(
n−3
2

)
choices for the sets{ib1, i′b1} and {ib2, i′b2} andn(n − 1)

choices forjb1 andjb2. Thus,

M(0,1) = n(n − 1)2(n − 2)(n − 3)(n − 4)

4
.

Combining all the above information together, we obtain∑
b1,b2∈B

n(b1, b2)= d(n)n−3(d(n − 1) + d(n − 2))2 · n
3(n − 1)(n − 2)(n − 3)

4

+d(n)n−2 · d̃(n) · n(n − 1)(n − 2)

2
,

where

d̃(n) = d(n − 1) + nd(n − 2) + 2(n − 1)d(n − 3) + (n − 1)d(n − 4).

Applying the fact that

d(n) = n!
n∑

i=0

(−1)i

i! ,

we obtain

d(n − 1) + d(n − 2) = d(n)

n − 1
.

From this, we can derive

d̃(n)= (d(n − 1) + d(n − 2)) + (n − 1)(d(n − 2) + d(n − 3))

+(n − 1)(d(n − 3) + d(n − 4))

= d(n) · (2n − 3)

(n − 1)(n − 2)
+ d(n − 2) · (n − 1)

(n − 2)(n − 3)
.

Thus, we have∑
b∈B

degb = d(n)n−1 · n(n − 2)

2

and ∑
b1,b2∈B

n(b1, b2)= d(n)n−1 · n(n
4 − 5n3 + 10n2 − 10n + 6)

4(n − 1)

+d(n)n−2 · d(n − 2) · n(n − 1)2

2(n − 3)
.
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Hence, by Corollary1, we obtain

#{a ∈ A, �(a) = 0}�d(n)n−1 ·
{

2(n2 − 3n + 3)

n(n − 1)(n − 2)2
+ 2d(n − 2)(n − 1)2

d(n)n(n − 2)2(n − 3)

}
.

It follows that

Theorem 6. LetL(n) be the number of Latin squares of order n andd(n) the number of
derangements of{1,2, . . . , n}.We have

L(n)�(n!) · d(n)n−1 ·
{

2(n2 − 3n + 3)

n(n − 1)(n − 2)2
+ 2d(n − 2)(n − 1)2

d(n)n(n − 2)2(n − 3)

}
.

Thus, we obtain

L(n)� 2(n!)n
n2en−1 · (1+ O(1/n2)).

This improves the upper bound ofL(n) given in[2].

Remark. Computing the asymptotic formula ofL(n) is a major open problem. The best
partial result is due to Godsil and McKay[7] who obtained an asymptotic formula for the
number ofk × n Latin rectangles whenk = o(n6/7).

We can further improve Theorem6. Given ann × n matrix M, for M to be a Latin
square, the first row and the first column ofM are permutations of{1,2, . . . , n}. Without
loss of generality, we can assume that the first row is(1,2, . . . , n) and the first column is
(1,2, . . . , n)T . If M is a Latin square, the second row ofM is a derangement of{1,2, . . . , n}
with (M)2,1 = 2. Thus, there ared(n)/(n − 1) many choices for it. Similarly, there are
d(n)/(n − 1) many choices for all the rows ofM after the first one. Thus, we have

L(n)�n! · (n − 1)! ·
(

d(n)

n − 1

)n−1

= (n!) · d(n)n−1 · (n − 1)!
(n − 1)n−1 .

Applying the Stirling’s formula

n! = nne−n
√
2�n(1+ o(1)),

we have

L(n)� (n!)n√2�(n − 1)

e2(n−1)
· (1+ o(1)).

Fix the first row and the first column ofM. Consider the(n − 1) × (n − 1) submatrixM1
of M obtained by deleting the first row and the first column ofM. Applying an argument
similar to the proof of Theorem6, the Turán sieve method implies that

L(n)� C′(n!)n√n

e2(n−1)n2
,

whereC′ is a fixed constant, which provides a better upper bound forL(n) than the one
given in Theorem6.
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5. Connected graphs

For n ∈ N, let �(n) be the set of all partitions of 1,2, . . . , n. For example,� =
{1,2,3}{4,5} is an element of�(5) and we say{1,2,3} and {4,5} areblocksof �. A
partial order of�(n) is defined by refinements witĥ0 = {1,2, . . . , n} as the minimal el-
ement. For example, in�(5), we have{1,2,3,4,5} � {1,2,3}{4,5} � {1,2}{3}{4,5}.
Notice that in the lattice�(n), an elements lies right abovê0 if it contains exactly two
non-empty blocks.
LetGn be the set of all graphs ofn vertices. To eachG ∈ Gn, we associate a partition

�G ∈ �(n) that represents the connected components ofG. For example, ifG is a graph
of 5 vertices, suppose the vertices 1,2,3 are connected, so are 4 and 5, but neither 4 nor 5
connect to any of 1,2,3. Then we associate toG the partition�G = {1,2,3}{4,5}. Notice
thatG is connected if and only if�G = {1,2, . . . , n}. Our goal is to count the number of
graphs inGn that are connected.
Let A = Gn andB the set of all elements of�(n) that contain exactly two non-empty

blocks. Fora = Ga ∈ A, b = �b ∈ B, we will say

a ∼ b if �b � �Ga .

Thus,

�(a) = 0 if and only if Ga is a connected graph.

Since there are
(
n
2

)
possible edges of a graph ofn vertices, we have

|A| = 2(
n
2).

Forb ∈ B, if the two blocks of�b containk and(n − k) elements, respectively, we have

degb = 2(
k
2)2(

n−k
2 ),

where 1�k�(n−1). Since there is no distinction between the two blocks ofb, without loss
of generality, we can assume that 1�k�[n2], where[n2] is the largest integer� n

2. Notice
that for each fixedk, we have

(
n
k

)
many choices for a block ofk elements. It follows that

∑
b∈B

degb = 2(
n
2) ·

[ n2 ]∑
k=1

(
n

k

)
2k(k−n).

Applying Proposition1, we have

# of connected graphs inGn�2(
n
2) ·


1−

[ n2 ]∑
k=1

(
n

k

)
2k(k−n)


 .

For 1< y < [n2], we write

[ n2 ]∑
k=1

(
n

k

)
2k(k−n) =

∑
k<y

(
n

k

)
2k(k−n) +

[ n2 ]∑
k�y

(
n

k

)
2k(k−n).
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A choice of y will be made later. Notice that 2k(k−n) is a decreasing function ofk for
1�k�[n2]. Also, the maximum value of

(
n
k

)
appears whenk = [n2] and( n

[ n2 ]
)
�2n. Hence,

we have

[ n2 ]∑
k�y

(
n

k

)
2k(k−n) � 2y(y−n)

(
n

[n2]
) [ n2 ]∑

k�y

1

� 2y(y−n) · 2n · n
= 2y

2−(y−1)n · n.
By choosingy = 3, we obtain

[ n2 ]∑
k�3

(
n

k

)
2k(k−n) � 2−n.

Also, we have

∑
k<3

(
n

k

)
2k(k−n)�n · 21−n + n2 · 24−2n � n · 2−n.

Hence, it follows that

[ n2 ]∑
k=1

(
n

k

)
2k(k−n) � n · 2−n + 2−n −→ 0,

asn → ∞. We recover a theorem of Gilbert[6].

Theorem 7(Gilbert). For n ∈ N, letGn be the set of all graphs of n vertices. We have

#{G ∈ Gn, G is connected}� |Gn| · {1− �(n)},
where�(n) → 0 asn → ∞. Thus, almost all graphs are connected.

6. Generators of finite groups

We now consider a problem about generators of groups. LetG be a finite group. A
subgroupH ⊆ G is calledmaximalif H = G and whenever there exists another subgroup
K such thatH ⊆ K ⊆ G, then eitherK = H or K = G. LetGr denote the set of all
r-tuples(g1, g2, . . . , gr ) such thatgi ∈ G for all 1� i�r. We are interested in counting
the number ofr-tuples that generate the full groupG. We use the notation〈g1, g2, . . . , gr 〉
to denote the group generated by elementsg1, g2, . . . , gr .
Let A be the set containing allr-tuples(g1, g2, . . . , gr ), i.e.,A = Gr . Let B be the

set of all maximal subgroups ofG. For a = (ga,1, ga,2, . . . , ga,r ) ∈ A, b = Hb ∈ B,
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we will say

a ∼ b if 〈ga,1, ga,2, . . . , ga,r 〉 ⊆ Hb.

Thus,

�(a) = 0 if and only if 〈ga,1, ga,2, . . . , ga,r 〉 = G.

Notice that

|A| = |G|r .
SinceHb is maximal,

a ∼ b if and only if ga,i ∈ Hb for all i.

Hence, we have

degb = |Hb|r .
By Proposition1, we have

#{(g1, g2, . . . , gr ) ∈ Gr, 〈g1, g2, . . . , gr 〉 = G}� |G|r −
∑
b∈B

|Hb|r .

For example, a folklore conjecture of Netto[14] predicted that ifAn is the alternating
group onn letters, then the probabilitypn that two randomly chosen elements ofAn generate
An tends to 1 asn → ∞. The simple sieve in this context was used by Dixon[4] to prove
this conjecture. It turns out that the maximal subgroups ofAn can be easily classified, and
this in turn, leads to a simple proof of Netto’s conjecture.

7. A spectral interpretation of the Turán sieve method

LetM = Ma,b be the|A| × |B| incidence matrix of the bipartite graphX = (A,B), i.e.,

Ma,b =
{
1 if a ∼ b,

0 otherwise.

For 	 = e2�i/|A|, define the|A| × |B| matrixM as follows:

Ma,b = 1√|A|
|A|∑
j=1

	jaMjb.

Let M0 be the(|A| − 1) × |B| matrix obtained by deleting the last row ofM. Also, we

denote byM∗
0 := MT

0 the|B|× (|A|−1)matrix which is the complex conjugate transpose
of M0.
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Consider the|B| × |B| Hermitian matrixM∗
0M0. Forb1, b2 ∈ B, the(b1, b2)th entry of

M∗
0M0 is

(M∗
0M0)b1,b2 =

|A|−1∑
a=1

(M∗
0)b1,a(M0)a,b2

= 1

|A|
|A|−1∑
a=1


 |A|∑

k=1

	−kaMk,b1




 |A|∑

j=1

	jaMj,b2




= 1

|A|
|A|∑

j,k=1

Mk,b1Mj,b2


|A|−1∑

a=1

	a(j−k)


 .

Notice that

|A|−1∑
a=1

	a(j−k) =
{ |A| − 1 if j = k,

−1 if j = k.

We obtain

(M∗
0M0)b1,b2 = 1

|A| (|A| − 1)
|A|∑
j=1

Mj,b1Mj,b2 − 1

|A|
|A|∑

j,k=1
j =k

Mk,b1Mj,b2

=
|A|∑
j=1

Mj,b1Mj,b2 − 1

|A|
|A|∑

j,k=1

Mk,b1Mj,b2

= n(b1, b2) − degb1 · degb2
|A| .

Thus, we can rewrite Theorem1 as

Proposition 2. DefineM0 andM∗
0 as before. We have

∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

=
∑

b1,b2∈B
(M∗

0M0)b1,b2.

Let v = (1,1, . . . ,1)t be a|B| × 1 vector. Let(·, ·) denote the standard dot product. For
any|B| × |B| matrixT, we have

(T v, v) =
∑

b1,b2∈B
Tb1,b2.

Hence, from proposition2, we have

∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

= (T v, v),

whereT = M∗
0M0.
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The expression(T v,v)
(v,v)

is known asRayleigh–Ritz ratio. Let �max(T ) and�min(T ) be the
maximumand theminimumeigenvalues of the symmetricmatrixT, respectively.A theorem
of Rayleigh–Ritz[9, Theorem 4.2.2]states that for any non-zero vectorv, we have

max
v =0

(T v, v)

(v, v)
= �max(T ) and min

v =0

(T v, v)

(v, v)
= �min(T ).

Combining the above information with Proposition2, we get

Proposition 3. LetT = M∗
0M0.We have

�min(T ) · |B|�
∑
a∈A

(
�(a) − 1

|A|
∑
b∈B

degb

)2

��max(T ) · |B|.

We now recall the following facts about the eigenvalues of Hermitian matrices:
(1) The sets of eigenvalues ofM∗

0M0 andM0M
∗
0 are equal. In particular,

�max(M
∗
0M0) = �max(M0M

∗
0),

which implies a dual form of our sieve inequality.
(2) SupposeT v = �max(T )v, wherev = (x1, x2, . . . , x|B|)T . Suppose

|xb1| = max
1� i� |B| |xi | = 0.

Then we have

|B|∑
b2=1

Tb1,b2 · xb2 = �max(T )xb1.

Thus,

|�max(T )||xb1|�
|B|∑
b2=1

|Tb1,b2||xb2|� |xb1|
|B|∑
b2=1

|Tb1,b2|.

It follows that

|�max(T )|�
|B|∑
b2=1

|Tb1,b2|.

Thus, we conclude that

|�max(T )|� max
b1

|B|∑
b2=1

|Tb1,b2|.
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Remark. Suppose we assign to each elementb ∈ B aweight functionXb ∈ C. Let �̃ be a
twisted�-function with respect toXb. More precisely,

�̃(a) =
∑
b∈B
a∼b

Xb.

Then we have

∑
a∈A

∣∣∣∣∣�̃(a) −
∑
b∈B

Xb · degb|A|

∣∣∣∣∣
2

=
∑

b1,b2∈B
Xb1Xb2n(b1, b2) − 1

|A|

∣∣∣∣∣
∑
b∈B

Xb · degb
∣∣∣∣∣
2

=
∑

b1,b2∈B

{
n(b1, b2) − 1

|A| degb1 degb2
}
Xb1Xb2

=
∑

b1,b2∈B
(M∗

0M0)b1,b2Xb1Xb2,

whereM0 andM∗
0 are defined as before. Letṽ = (X1, X2, . . . , X|B|)T . Notice that

∑
a∈A

∣∣∣∣∣�̃(a) −
∑
b∈B

Xb · degb|A|

∣∣∣∣∣
2

= (T ṽ, ṽ),

whereT = M∗
0M0. As in the proof of Proposition3, we have

∑
a∈A

∣∣∣∣∣�̃(a) −
∑
b∈B

Xb · degb|A|

∣∣∣∣∣
2

��max(T ) ·
∑
b∈B

|Xb|2.

This upper bound is indeed the best one that we can get since there existsXb’s such that
the equality holds.

We believe that the combinatorial Turán sieve will have more applications in the future.
The purpose of this paper is mainly to introduce it as a viable tool to deal with questions
of this kind. For instance, is it possible to show that the probabilityPG that two randomly
selected elements of a simple groupG generateG tends to 1 as|G| → ∞?Apparently (see
[4]), this has been resolved in the affirmative using the full classification of finite simple
groups. In another direction, can the Turán sieve be used to count the number of Latin
rectangles in ranges that have not been treated previously? We hope that this will be the
case and relegate to future research the scope of the Turán sieve.
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