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Abstract Little is known about the transcendence of certain values of the Gamma
function, Γ (z). In this article, we study values of Γ (z) when Q(z) is an imaginary
quadratic field. We also study special values of the digamma function, ψ(z), and the
polygamma functions, ψt(z). As part of our analysis we will see that certain infinite
products

∞∏

n=1

A(n)

nt

can be evaluated explicitly and are transcendental for A(z) ∈ Q[z] with degree t and
roots from an imaginary quadratic field. Special cases of these products were studied
by Ramanujan. Additionally, we explore the implications that some conjectures of
Gel’fond and Schneider have on these values and products.
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1 Introduction

The Gamma function defined for �(z) > 0 as

Γ (z) :=
∫ ∞

0
e−t t z−1 dt

is well-studied, though much is unknown about the transcendence of Γ (z). It is
known that Γ (1/2) = √

π is transcendental since π is transcendental. In 1984, Chud-
novsky [2] showed that Γ (1/3),Γ (2/3),Γ (1/4),Γ (3/4),Γ (1/6), and Γ (5/6) are
transcendental, along with any integer translate of these fractions, by showing that
firstly, π and Γ (1/3) are algebraically independent, and secondly, π and Γ (1/4) are
algebraically independent. One gets the transcendence of Γ (1/6) by relating it to
Γ (1/3) via the duplication formula

Γ (z)Γ (z + 1/2) = 21−2z
√

πΓ (2z).

For z = 1/6, one can show that Γ (1/6) = 2−1/3√3/πΓ 2(1/3). The remaining values
Γ (2/3),Γ (3/4), and Γ (5/6) are seen to be transcendental by the reflection formula

Γ (z)Γ (1 − z) = π

sin(πz)
.

It is unknown whether or not Γ (1/5) is algebraic or transcendental, though it is con-
jectured to be transcendental. In 1941, Schneider [10] proved that the beta function

B(a, b) := Γ (a)Γ (b)

Γ (a + b)

is transcendental whenever a, b, a + b ∈ Q \ Z. By choosing a = b, we see that
Schneider’s theorem implies that Γ (a) or Γ (2a) is transcendental for any a,2a ∈
Q \Z. In particular, Γ (1/5) or Γ (2/5) is transcendental.

More recently, Nesterenko [7] proved the following result which will be useful for
our purposes.

Theorem (Nesterenko) For any imaginary quadratic field with discriminant −D and
character ε, the numbers

π, eπ
√

D,

D−1∏

a=1

Γ (a/D)ε(a)

are algebraically independent.

Here the character ε(n) = (−D
n

) is the Kronecker–Jacobi symbol. This shows

that in general, π and eπ
√

D are algebraically independent. Additionally, if we have
D = 3, then we obtain the algebraic independence of π, eπ

√
3,Γ (1/3), and if D = 4,

we see that π, eπ ,Γ (1/4) are algebraically independent.
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Special values of the Gamma function at CM points

In this article, we explore properties of the Gamma function at certain CM points
(that is, z ∈C such that Q(z) is an imaginary quadratic field). We show that all values
Γ (α) and Γ (α + 1/2) are transcendental for α /∈ Q of the form k + ia

√
D/q ∈

Q(
√−D) for integers k, a, q . In particular, we will evaluate |Γ (ia/q)|2 explicitly

for a, q ∈ Z and (a, q) = 1. Applying Nesterenko’s theorem allows us to deduce that
Γ (ia/q) is always transcendental.

The digamma function ψ(z) is the logarithmic derivative of Γ (z) while the
polygamma functions ψt(z) are defined as the t th derivatives of ψ(z) with ψ0(z) =
ψ(z). Transcendence of these values at rational values has been studied by Bund-
schuh [1], the first author with Saradha [4, 5], the second author [13], among others.
Here we focus on values of ψt(z) at irrational values.

As a result of the analysis of Γ (z), we also obtain a method for evaluating certain
infinite products

∞∏

n=1

A(n)

nt
(1)

for A(z) ∈ Q[z] monic with degree t . We are able to relate these products to values
of Γ (z) and derive results from there by specifying the roots of A(z).

We point out that some of these results on infinite products of rational functions
were known to Ramanujan [8] 100 years ago. At the time, many values which ap-
peared in his calculations were not known to be transcendental. Some of the results
in [8] are now implied by a more general method shown here with the addition of
showing transcendence of these products. Indeed, in [8], we find some elegant for-
mulas of the following kind:

∞∏

n=1

(
1 +

(
2α

α + n

)3)
= Γ (1 + α)3 sinh(πα

√
3)

Γ (1 + 3α)πα
√

3

and
∞∏

n=1

(
1 +

(
2α + 1

α + n

)3)
= Γ (1 + α)3 cosh(π( 1

2 + α)
√

3)

Γ (2 + 3α)π
.

If we put α = 0 in the second formula, we deduce the strikingly beautiful evaluation
∞∏

n=1

(
1 + 1

n3

)
= cosh(π

√
3/2)

π
, (2)

which is transcendental by Nesterenko’s theorem. One would expect these products
to be transcendental for every rational α, but this deduction can only be made (at
present) for a limited number of rational values of α like α = 1/3,1/4 or 1/6.

Analogous products appear in Ramanujan’s notebooks (see in particular Chaps. 13
and 14) and one finds formulas like (see [9])

∞∏

n=1

(
1 +

(
x

α + n

)2)
= |Γ (α)|2

|Γ (α + ix)|2 .

These formulas will be special cases of our results.
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In the final section, we explore implications of conjectures of Schneider and
Gel’fond on the algebraic independence of certain algebraic powers of algebraic num-
bers. In some cases, we are able to prove conditional results on the transcendence of
values of Γ (z),ψt (z) as well as infinite products (1).

2 Transcendental values of Γ (z) and infinite products

The Gamma function can be written as an infinite product

1

Γ (z)
= eγ zz

∞∏

n=1

(
1 + z

n

)
e−z/n, (3)

where γ is Euler’s constant. The sine function has infinite product

sin(πz)

πz
=

∞∏

n=1

(
1 − z2

n2

)
. (4)

Putting (3) and (4) together gives the reflection formula

Γ (z)Γ (1 − z) = π

sin(πz)
. (5)

Also recall the functional equation

Γ (z + 1) = zΓ (z), (6)

which can be extended for a positive integer n to

Γ (z + n) = (z)nΓ (z) and Γ (z − n) = Γ (z)

(z − n)n
, (7)

where we use the rising factorial or Pochhammer symbol

(z)n := z(z + 1) · · · (z + n − 1).

From these elementary observations, we are able characterize certain special values
of the Gamma function.

Theorem 1 Let α = k + ai
√

D
q

∈ (Z + Q
√−D) \ Z for a positive integer D. For

k > 0,

∣∣Γ (α)
∣∣2 = π(1 − α)2k−1

sin(πα)
and

∣∣∣∣Γ
(

α + 1

2

)∣∣∣∣
2

= π( 1
2 − α)2k

cos(πα)
,

while for k ≤ 0,

∣∣Γ (α)
∣∣2 = π

sin(πα)(α)2|k|+1
and

∣∣∣∣Γ
(

α + 1

2

)∣∣∣∣
2

= π

cos(πα)( 1
2 + α)2|k|

.

All of |Γ (α)|2, |Γ (α + 1
2 )|2, Γ (α), and Γ (α + 1

2 ) are transcendental.
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Special values of the Gamma function at CM points

Proof Note that it is easily seen that Γ (z) = Γ (z) for any z ∈ C. Additionally, we
shift values as in Eq. (7) so that for any non-integral algebraic number z, Γ (±n + z)

is a nonzero algebraic multiple of Γ (z). Using these two observations as well as the
reflection formula (5), for k positive we have that

∣∣Γ (α)
∣∣2 = Γ (α)Γ (α) = (1 − α)2k−1Γ (α)Γ (1 − α) = π(1 − α)2k−1

sin(πα)

and
∣∣∣∣Γ

(
α + 1

2

)∣∣∣∣
2

= Γ

(
α + 1

2

)
Γ

(
α + 1

2

)

=
(

1

2
− α

)

2k

Γ

(
α + 1

2

)
Γ

(
1 −

(
α + 1

2

))
= π( 1

2 − α)2k

cos(πα)
.

If k = −m is non-positive, then

∣∣Γ (α)
∣∣2 = Γ (α)Γ (α) = Γ (α)Γ (1 − α)

(α)2m+1
= π

sin(πα)(α)2m+1

and
∣∣∣∣Γ

(
α + 1

2

)∣∣∣∣
2

= Γ

(
α + 1

2

)
Γ

(
α + 1

2

)
= Γ (α + 1

2 )Γ (1 − (α + 1
2 ))

( 1
2 + α)2m

= π

cos(πα)( 1
2 + α)2m

.

Writing

cos(πα) = eπike−πa
√

D/q + e−πikeπa
√

D/q

2

and

sin(πα) = eπike−πa
√

D/q − e−πikeπa
√

D/q

2i
,

we see that |Γ (α)|2 and |Γ (α + 1/2)|2 are in πQ(eπ
√

D/q) \ {0} and are therefore
transcendental by Nesterenko’s Theorem. Thus, Γ (α) and Γ (α + 1/2) are transcen-
dental as well. �

Theorem 1 shows that many values of Γ (z) are transcendental, including Γ (ia/q)

and Γ (ia
√

D/q) and Γ (α) when α is an algebraic integer of an imaginary quadratic
field. Note that for k ∈ Z, the argument above can be used to prove that Γ (k + 1/2)

is transcendental. We unfortunately do not get a fully characterizing result for any α

from an imaginary quadratic field, however, from the reflection formula (5) we see
that for any α ∈ Q(

√−D) \ Q at least one of Γ (α) and Γ (−α) is transcendental
since the product is transcendental by Nesterenko’s Theorem.
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The simple observations made above can be used to analyze infinite products of
rational functions (1). In some cases, we are able to relate the product to values of the
Gamma function. In particular, this can be done for any depressed polynomial A(z) ∈
C[z] with any roots which are not natural numbers. By a depressed polynomial

anz
n + · · · + a1z + a0

we mean a polynomial in which an−1 = 0. This is equivalent to the sum of the roots
of the polynomial being 0. In order to see the relation between these products and
values of Γ , we list the roots α1, . . . , αt ∈C \N and write the product

∞∏

n=1

A(n)

nt
=

∞∏

n=1

t∏

j=1

(
1 − αj

n

)
.

For depressed A(z), since
∑t

j=1 αj = 0, we can insert exponentials into the product
yielding

eγ (−α1−···−αt )

∞∏

n=1

t∏

j=1

(
1 − αj

n

)
eαj /n.

Each product
∏∞

n=1(1 − αj/n)eαj /n converges, so we can interchange the order of
multiplication

eγ (−α1−···−αt )

t∏

j=1

∞∏

n=1

(
1 − αj

n

)
eαj /n, (8)

and (3) implies that

∞∏

n=1

A(n)

nt
= (−1)t (α1 · · ·αt )

−1

Γ (−α1) · · ·Γ (−αt )
. (9)

When A(z) is not depressed,
∏∞

n=1 A(n)/nt diverges, however, when the real part
of the sum of the roots of A(z) is zero, then the product A(z)A(z) is depressed with
degree 2t . By (9), we have

∞∏

n=1

A(n)A(n)

n2t
= |α1|−2 · · · |αt |−2

|Γ (−α1)|2 · · · |Γ (−αt )|2 . (10)

The left side of (10) arises naturally as the product of the convergent products

P =
∞∏

n=1

A(n)

nt
es/n and P =

∞∏

n=1

A(n)

nt
e−s/n,

where, and from now on, we write s = α1 + · · · + αt to be the sum of the roots of
A(z). We use the relationship (10) to study the case when A(z) has roots similar to
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Special values of the Gamma function at CM points

the values α and α + 1/2 which were studied in Theorem 1. To simplify the notation
we define the set

S1 := (Z+Q
√−D) ∪

(
Z+ 1

2
+Q

√−D

)
.

Theorem 2 Let A(z) ∈ Q[z] be monic with roots α1, . . . , αt satisfying �(s) =
�(

∑t
j=1 αj ) = 0. If α1, . . . , αt ∈ S1 \N with at least one not an integer, then

|P |2 =
∞∏

n=1

A(n)A(n)

n2t
and therefore P =

∞∏

n=1

A(n)

nt
es/n

are transcendental. If D = 3 or 4 with α1, . . . , αt ∈ S1 ∪ (Z ± 1
D

) \ N with at least
one not an integer, then |P |2 and therefore P are transcendental.

Proof We keep track of contributions to the finite product in (10). For any negative
integer αj = −m, Γ (−αj ) = (m − 1)!. For each non-integer root αj ∈ S1, Theo-
rem 1 implies that |Γ (−αj )|2 contributes π multiplied by some nonzero number

from Q(eπ
√

D/qj ) for some positive integer qj . By Nesterenko’s Theorem, |P |2 is
transcendental and therefore P is transcendental as well, which proves the first asser-
tion.

Now suppose that D = 3 or D = 4. For any αj ∈ Z ± 1/D, by (7) Γ (−αj ) =
ξjΓ ( 1

D
) or Γ (−αj ) = ξjΓ (D−1

D
) for some algebraic number ξj . Note that by (5)

Γ

(
D − 1

D

)
= π

sin(π/D)Γ ( 1
D

)

so that in either case, |Γ (−αj )|2 contributes an algebraic number multiplied by ei-
ther Γ 2(1/D) or π2/Γ 2(1/D) which are both algebraically independent from π and
eπ

√
D by Nesterenko’s Theorem. With each type of contributing value of the Gamma

function, the product (10) will be non-zero of the form

|P |2 = T

πs1Γ s2(1/D)

for some integers s1 ≥ 0, s2 ∈ Z, with (s1, s2) 	= (0,0) and some T ∈Q(eπ
√

D/q). By
Nesterenko’s Theorem, |P |2 and therefore P are transcendental. �

For the final assertion we restrict D to be 3 or 4, but in fact, the explicit value of the
product works for a general value of D. Without having an algebraic independence
result as we do in the cases D = 3 or 4, we cannot conclude transcendence of the
product as stated in Theorem 2. However, if we restrict the polynomial A(z) to have
roots which are either negative integers or of the form αj = kj + 1/6, then we can
conclude transcendence since Γ (1/6) is transcendental. Similarly, if all roots are
negative integers or of the form αj = k + 5/6, then the product is transcendental
since Γ (5/6) is transcendental.
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In some cases, we can remove the condition that the polynomial A(z) is depressed,
or partially depressed (�(s) = 0), and also allow for any complex roots from an
imaginary quadratic field. Doing so prevents us from relating the product (1) to values
of the Gamma function, however, by examining a particular product we can show that
(at least) half of the following products are transcendental.

Theorem 3 Let A(z) ∈ Q[z] be monic with roots α1, . . . , αt ∈ Q(
√−D) \ Z and

write s = ∑t
j=1 αj . The product

∞∏

n=1

A(n)A(−n)

n2t
=

∏t
j=1 sin(παj )

(−π)tA(0)

is transcendental and therefore at least one of
∞∏

n=1

A(n)

nt
es/n or

∞∏

n=1

A(−n)

nt
e−s/n

is transcendental.

Proof The product A(z)A(−z) is depressed, so by collecting factors in the natural
way, we have

∞∏

n=1

(
A(n)

nt

)(
A(−n)

nt

)
=

t∏

j=1

∞∏

n=1

(
1 − αj

n

)(
1 + αj

n

)
.

By Eq. (4), the product equals
∏t

j=1 sin(παj )

πtα1 · · ·αt

=
∏t

j=1 sin(παj )

(−π)tA(0)

since for any monic polynomial P(z) of degree t , the product of all of its roots is
(−1)tP (0). Similar to the conclusion of Theorem 1, this final expression can be re-
written as π−t times a nonzero number from Q(eπ

√
D/q) for some positive integer q .

By Nesterenko’s Theorem, this product is transcendental and the final assertion fol-
lows immediately. �

A natural corollary to Theorem 3 comes from studying the case that A(−n) =
A(n). When A(z) is an even polynomial we have s = 0 and we obtain transcendence
of the product

∏
A(n)/nt immediately by examining (

∏
A(n)/nt )2 as in Theorem 3.

We state the result and leave the details to the reader.

Corollary 4 Let A(z) ∈ Q[z] be monic and even with roots ±α1, . . . ,±αt ∈
Q(

√−D) \Z. The product

∞∏

n=1

A(n)

n2t
= π−t

t∏

j=1

sin(παj )

αj

is transcendental.
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3 Transcendental values of ψt(z)

Methods which were developed in the previous section can be applied to gain insight
into values of the digamma and polygamma functions. We recall some facts about the
digamma function which follow from logarithmically differentiating various identi-
ties involving the Gamma function. From (3) we see that

−ψ(z) = γ + 1

z
+

∞∑

n=1

(
1

n + z
− 1

n

)
, (11)

which shows that, similar to the Gamma function, we have an identity for complex
conjugation of values of ψ(z). Namely, ψ(z) = ψ(z). From (5) we have a reflection
formula

ψ(z) − ψ(1 − z) = −π cot(πz) (12)

and from (6) we obtain the functional equation

ψ(z + 1) = ψ(z) + 1

z
, (13)

which is extended for a positive integer n to

ψ(z + n) = ψ(z) +
n−1∑

j=0

1

z + j
and ψ(z − n) = ψ(z) +

n∑

j=1

1

j − z
. (14)

Similarly, for t ≥ 1 we have

ψt(z) = (−1)t+1t !
∞∑

n=0

1

(n + z)t+1
, (15)

which shows ψt(z) = ψt(z). Additionally, differentiating each of (12) and (13) t

times gives

ψt(z) + (−1)t+1ψt(1 − z) = − dt

dzt

(
π cot(πz)

)
(16)

and

ψt(z + 1) = ψt(z) + (−1)t t !
zt+1

, (17)

respectively, while the latter extends for positive integers n to

ψt(z + n) = ψt(z) + (−1)t t !
n−1∑

j=0

1

(z + j)t+1
(18a)

and

ψt(z − n) = ψt(z) + t !
n∑

j=1

1

(j − z)t+1
. (18b)
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Using these identities, we are able to partially characterize values of ψ and ψt at
certain numbers from an imaginary quadratic field. In the case of Γ (z) in the previous
section, we were able to use identities involving the product Γ (α)Γ (α) in order to
characterize the transcendence of values at imaginary quadratic numbers. Here, we
have additive identities for ψ and ψt and we isolate either the real or imaginary parts
of these numbers.

Theorem 5 Let α = k + ai
√

D
q

∈ (Z + Q
√−D) \ Z for a positive square-free inte-

ger D. For k > 0,


(
ψ(α)

) = −π cot(πα)

2i
+

2k−1∑

j=1

i/2

j − α
,



(

ψ

(
α + 1

2

))
= π tan(πα)

2i
+

2k−1∑

j=0

i/2

j − α + 1
2

,

while for k = −m ≤ 0,


(
ψ(α)

) = −π cot(πα)

2i
+

2m∑

j=0

i/2

j + α
,



(

ψ

(
α + 1

2

))
= π tan(πα)

2i
+

2m∑

j=1

i/2

j + α − 1
2

.

Both 
(ψ(α)) and 
(ψ(α + 1
2 )) are transcendental.

Proof For k ≥ 1 we have

2i
(
ψ(α)

) = ψ(α) − ψ(α) = ψ(α) − ψ(1 − α + 2k − 1),

which, after shifting via Eq. (14), is equal to

ψ(α) − ψ(1 − α) −
2k−2∑

j=0

1

1 − α + j
= −π cot(πα) −

2k−2∑

j=0

1

1 − α + j
.

Similarly,

2i

(

ψ

(
α + 1

2

))
= ψ

(
α + 1

2

)
− ψ

(
1 −

(
α + 1

2

)
+ 2k

)

= π tan(πα) −
2k−1∑

j=0

1
1
2 − α + j

.
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Special values of the Gamma function at CM points

Similarly, for k = −m ≤ 0 we have

2i
(
ψ(α)

) = −π cot(πα) −
2m+1∑

j=1

1

j + α − 1

and

2i

(

ψ

(
α + 1

2

))
= π tan(πα) −

2m∑

j=1

1

j + α − 1
2

.

In all cases, transcendence is asserted by Nesterenko’s Theorem. �

Analogously, following a similar shifting technique employed in the proof of The-
orem 5, we obtain explicit values for (part of) the polygamma functions at certain
CM points.

Theorem 6 Let α = k + ai
√

D
q

∈ (Z + Q
√−D) \ Z for a positive square-free inte-

ger D. For k > 0,

ψt(α) + (−1)t+1ψt(α) = − dt

dzt

(
π cot(πz)

)∣∣
z=α

− t !
2k−1∑

j=1

1

(j − α)t+1
,

ψt

(
α + 1

2

)
+ (−1)t+1ψt

(
α + 1

2

)

= dt

dzt

(
π tan(πz)

)∣∣
z=α

− t !
2k−1∑

j=0

1

(j + 1
2 − α)t+1

,

while for k = −m ≤ 0,

ψt(α) + (−1)t+1ψ(α) = − dt

dzt

(
π cot(πz)

)∣∣
z=α

+ (−1)t+1t !
2m∑

j=0

1

(j + α)t+1
,

ψt

(
α + 1

2

)
+ (−1)t+1ψ

(
α + 1

2

)

= dt

dzt

(
π tan(πz)

)∣∣
z=α

+ (−1)t+1t !
2m∑

j=1

1

(j − 1
2 + α)t+1

.

For t even, 
(ψt (α)) and 
(ψt (α + 1
2 )) are transcendental and for t odd, �(ψt (α))

and �(ψt (α + 1
2 )) are transcendental.

Proof By (18a)–(18b) and (16) we can compute the explicit values of each sum. We
leave the calculation to the reader and note that the sums and differences here are
all transcendental by Nesterenko’s Theorem. For the final assertions, if t is even,
ψt(z) − ψt(z) = 2i
(ψt (z)) and for t odd, ψt(z) + ψt(z) = 2�(ψt (z)). �
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4 Implications of conjectures of Schneider and Gel’fond

We now explore implications of conjectures of Schneider and Gel’fond involving
algebraic powers of algebraic numbers. Note that throughout we define log as the
principal value of the logarithm with argument in (−π,π] and define αβ as eβ log(α).
After the solution to Hilbert’s seventh problem, solved by Gel’fond and Schneider
independently, the two were led to formulate some conjectures about the algebraic
independence of various algebraic powers of algebraic numbers. For more details
surrounding these conjectures, we refer the reader to [11, 12] and we point out that
in [11], the following conjecture is credited to Schneider alone.

Conjecture 7 (Gel’fond–Schneider) If α 	= 0,1 is algebraic and if β is algebraic of
degree d ≥ 2, then the d − 1 numbers

αβ, . . . , αβd−1

are algebraically independent.

In previous work, in particular [6], we referred to the previous conjecture
as “Schneider’s conjecture”; however, the conjecture should be credited to both
Gel’fond and Schneider. In this paper, we will refer to Conjecture 7 as the “Gel’fond–
Schneider conjecture”.

In 1949, Gel’fond [3] proved that the Gel’fond–Schneider conjecture is true for the
cases when d = 2 or 3. Gel’fond also conjectured that logα and αβ are algebraically
independent. Putting this together with Conjecture 7, we have the conjecture that the
numbers

logα, αβ, . . . , αβd−1

are algebraically independent. Following [11], in [6] we called this the “Gel’fond–
Schneider conjecture”, but here we will refer it as the “second Gel’fond–Schneider
conjecture”. For our purposes, α will be a root of unity and we use a modified version
of the conjecture that

π, αβ, . . . , αβd−1

are algebraically independent. In some cases, we need much less, and we state our
special version of the second Gel’fond–Schneider conjecture here.

Conjecture 8 If α 	= 0,1 is algebraic and if β is irrational algebraic, then

logα and αβ

are algebraically independent. For α a root of unity, this implies that π and αβ are
algebraically independent.

We now state conditional results extending Theorems 1, 5, and 6. Note that the
calculations involved in finding explicit values in the proofs of those theorems re-
quired that α and α + 1/2 along with their complex conjugates satisfy a symmetry
condition α = −α + n for some integer n. This symmetry is needed here as well.
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Definition Let

S :=
{
α ∈Q : �(α) ∈ 1

2
Z

}

so that S is the collection of all algebraic numbers α which satisfy the symmetry
α = −α + n for some integer n. In particular, this set contains all algebraic numbers
which are purely imaginary.

Additionally, we recall Lemma 9 from [6] in which the derivatives of the cotangent
function are studied.

Lemma (Lemma 9 of [6]) For k ≥ 2,

dk−1

dzk−1

(
π cot(πz)

) = (2πi)k
(

Ak,1

e2πiz − 1
+ · · · + Ak,k

(e2πiz − 1)k

)
,

where each Ai,j ∈ Z with Ak,1,Ak,k 	= 0.

A similar lemma can be shown for the tangent function and we leave the details to
the reader.

Theorem 9 Let α ∈ S \ Z. If Conjecture 8 is true, then Γ (α),
(ψt (α)) for t even,
and �(ψt (α)) for t odd, are transcendental.

Proof Using the symmetry of α with α, the explicit values for |Γ (α)|2 and each
case of ψt(α) can be found in Theorems 1, 5, and 6. For |Γ (α)|2 and ψ(α) the
result is clear by rewriting each trigonometric function in terms of exponentials and
noting that Conjecture 8 implies that π and (eπi)α are algebraically independent.
Since |Γ (α)|2 is transcendental, Γ (α) must be transcendental as well. For t ≥ 1,
Lemma 9 of [6] stated above shows the result for ψt(α). �

Analogous to Theorem 1, Theorem 9 gives an infinite set of (conditionally) tran-

scendental numbers. In particular, if τ ∈ Q ∩R \ {0}, then Conjecture 8 implies that
Γ (iτ ) is transcendental. As we saw earlier, for example, τ ∈ Q, the result is uncon-
ditional in some cases. Additionally, for any irrational α ∈ S , we have the following
unconditional result. We need only recall the theorem of Gel’fond in which αβ is
transcendental for α 	= 0,1 and β is irrational algebraic.

Corollary 10 If α ∈ S \ Q, then |Γ (α)|2/π is transcendental and therefore
Γ (α)/

√
π is transcendental.

By examining values Γ (α) (or more precisely |Γ (α)|2) individually, we need a
special case of the second Gel’fond–Schneider conjecture in order to conclude tran-
scendence. If we assume the weaker Gel’fond–Schneider conjecture, we get almost
the same result, up to integer translations and complex conjugation.
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Theorem 11 For α1, α2 ∈ S \ Z so that α1 	≡ ±α2 (mod Z), if the Gel’fond–
Schneider conjecture is true, then

Γ (α1)

Γ (α2)
/∈Q.

Moreover, the set {|Γ (α)|2 : α ∈ (S \Z)/Z} contains at most one algebraic number.

Proof Since S ∩Q \Z = {k + 1
2 : k ∈ Z}, we deduce that at least one of α1, α2 must

be irrational. Without loss of generality, α1 /∈ Q. Suppose |Γ (α1)|2/|Γ (α2)|2 = θ1 is
algebraic. Applying the method described in the proof of Theorem 1, we replace our
quotient with values of the sine function and have

θ = eπiα2 − e−πiα2

eπiα1 − e−πiα1

for some θ ∈ Q. By the primitive element theorem, there is an algebraic β of degree
d ≥ 2 such that Q(β) = Q(α1, α2) and we can write each

αj = 1

M

d−1∑

a=0

na,jβ
a

for some integers M,na,j . Let α = eπi/M and define xa = αβa = eπiβa/M for a =
1, . . . , d − 1 so that

eπiαj =
d−1∏

a=0

eπina,j βa/M = γjx
n1,j

1 · · ·xnd−1,j

d−1 ,

where γj = eπin0,j /M is a root of unity. If the Gel’fond–Schneider conjecture is true,
then

x1, . . . , xd−1

are algebraically independent and the equation

θ = γ2x
n1,2
1 · · ·xnd−1,2

d−1 − γ −1
2 x

−n1,2
1 · · ·x−nd−1,2

d−1

γ1x
n1,1
1 · · ·xnd−1,1

d−1 − γ −1
1 x

−n1,1
1 · · ·x−nd−1,1

d−1

implies that the function

F(X1, . . . ,Xd−1) = γ2X
n1,2
1 · · ·Xnd−1,2

d−1 − γ −1
2 X

−n1,2
1 · · ·X−nd−1,2

d−1

γ1X
n1,1
1 · · ·Xnd−1,1

d−1 − γ −1
1 X

−n1,1
1 · · ·X−nd−1,1

d−1

is constant. We show that F is not constant by examining F at some special points.
Let y be a new indeterminate and for some e = (e1, . . . , ed−1) ∈ Zd−1 to be specified
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later, let Xi = yei . Writing nj = (n1,j , . . . , nd−1,j ) we have that

G(y) := F
(
ye1 , . . . , yed−1

) = γ2y
n2·e − γ −1

2 y−n2·e

γ1yn1·e − γ −1
1 y−n1·e .

To ensure that G(y) is not constant, and that we are not dividing by 0, we require that

(n1 ± n2) · e 	= 0,

n1 · e 	= 0.

To prove the existence of such an e, examine the box BD = (0,D]d−1, for positive
integer D, which contains a total of Dd−1 lattice points. We wish to avoid points
which satisfy the equations

(n1 ± n2) · e = 0,

n1 · e = 0.

Note that these equations are not satisfied trivially because α1 	= ±α2 (mod Z) and
α1 /∈ Q. Since there are at most Dd−2 lattice points in BD which satisfy each equa-
tion, for D large enough we choose e from at least

Dd−1 − 3Dd−2 > 1

remaining lattice points. With such an e chosen, it is clear that G(y) is not constant
which implies that the quotient |Γ (α1)|2/|Γ (α2)|2 is not algebraic. The final asser-
tion follows immediately. �

The Gel’fond–Schneider conjecture is known to be true for d = 2 or 3, and we
immediately have the following unconditional result.

Corollary 12 For α1, α2 ∈ S \ Z with α1 	≡ ±α2 (modZ) and [Q(α1, α2) : Q] is 2
or 3,

Γ (α1)

Γ (α2)
/∈Q

so that at most one of Γ (α1),Γ (α2) is algebraic.

Similar to Theorem 9, if we assume the second Gel’fond–Schneider conjecture to
be true, then we can extend Theorems 2, 3, and 4.

Theorem 13 Let A(z) ∈ Q[z] be monic with roots α1, . . . , αt ∈ S \ N with �(s) =
�(

∑t
j=1 αj ) = 0. If the second Gel’fond–Schneider conjecture is true, then the prod-

ucts

|P |2 =
∞∏

n=1

A(n)A(n)

n2t
and therefore P =

∞∏

n=1

A(n)

nt
es/n

are transcendental.
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Proof From (10) we have,

|P |2 = |α1|−2 · · · |αt |−2

|Γ (−α1)|2 · · · |Γ (−αt )|2 .

Suppose that A(z) has no irrational roots. If all roots are in Q\Z, then since Q∩S \Z
contains only half-integers, the product is unconditionally transcendental due to the
transcendence of π . If there are any (negative) integer roots which contribute integer
factorial values to the product, then there must also be positive roots from Q\Z since
�(

∑t
j=1 αj ) = 0. Again the product is unconditionally transcendental in this case.

Now suppose there is at least one irrational root. Due to the symmetry between
αj and αj , and following the method demonstrated in the proof of Theorem 1, each
value |Γ (αj )|2 can be replaced with an algebraic multiple of π/ sin(παj ). Thus, for
some non-zero ξ ∈Q, the product is equal to

ξπ−t
t∏

j=1

(
eπiαj − e−πiαj

)
. (19)

By the primitive element theorem, there is an algebraic β of degree d ≥ 2 such that
Q(β) = Q(α1, . . . , αt ). Thus, we can write each

αj = 1

M

d−1∑

a=0

na,jβ
a

for some integers M,na,j . Let α = eπi/M and define xa = αβa = eπiβa/M for a =
1, . . . , d − 1 so that

eπiαj =
d−1∏

a=0

eπina,j βa/M = γjx
n1,j

1 · · ·xnd−1,j

d−1 ,

where γj = eπin0,j /M is a root of unity. The second Gel’fond–Schneider conjecture
implies that

π, x1, . . . , xd−1

are algebraically independent and our non-zero product rewritten in terms of the xa’s

|P |2 = ξπ−t
t∏

j=1

(
γjx

n1,j

1 · · ·xnd−1,j

d−1 − γ −1
j x

−n1,j

1 · · ·x−nd−1,j

d−1

)

is transcendental, thus P is transcendental as well. �

We now extend Theorem 3 and note that the explicit form calculated there is true
for any A(z) ∈C[z] with non-integer roots.
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Theorem 14 Let A(z) ∈Q[z] be monic with roots α1, . . . , αt ∈ Q \Z. The product

∞∏

n=1

A(n)A(−n)

n2t
=

∏t
j=1 sin(παj )

(−π)tA(0)

and if the second Gel’fond–Schneider conjecture is true, the product is transcendental
and therefore, at least one of

∞∏

n=1

A(n)

nt
es/n or

∞∏

n=1

A(−n)

nt
e−s/n

is transcendental.

Proof With the explicit value given in terms of the sine function, we note that if all
roots are rational, π forces the product to be unconditionally transcendental. If there
is at least one irrational root, then the proof is exactly the same as that of Theorem 13
beginning from Eq. (19). �

Corollary 15 Let A(z) ∈ Q[z] be monic and even with roots ±α1, . . . ,±αt ∈ Q \Z.
The product

∞∏

n=1

A(n)

n2t
= π−t

t∏

j=1

sin(παj )

αj

and is transcendental if the second Gel’fond–Schneider conjecture is true.

Note that in Theorems 13, 14 and Corollary 15, we can multiply each product by
an appropriate power of π and be left with a finite expression containing no π . In
this setting, if we require that A(z) has at least one irrational root, then we can still
conclude transcendence by assuming the weaker Gel’fond–Schneider conjecture. We
leave the details to the reader.

5 Concluding remarks

In some of the above results on infinite products (1), we rely on assuming that A(z)

has no roots in N, however, these cases can be handled with only a slight variation. For
simplicity, assume that A(z) is depressed with degree t , having roots n1, . . . , nl ∈ N

and α1, . . . , αt−l ∈C \N. We have

∞∏′

n=1

A(n)

nt
=

∞∏′

n=1

[
l∏

i=1

(
1 − ni

n

) t−l∏

j=1

(
1 − αj

n

)]
,
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where
∏′ represent the products avoiding any roots of A(z). Similar to (8), we insert

exponential factors,

∞∏′

n=1

[
l∏

i=1

(
1 − ni

n

)
eni/n

t−l∏

j=1

(
1 − αj

n

)
eαj /n

]

and interchange the order of multiplication to obtain
[

l∏

i=1

∞∏′

n=1

(
1 − ni

n

)
eni/n

][
t−l∏

j=1

∞∏′

n=1

(
1 − αj

n

)
eαj /n

]
.

By inserting the obvious missing factors from each infinite product, we can write the
product as

el

[
l∏

i=1

ξi

∏

n	=ni

(
1 − ni

n

)
eni/n

][
t−l∏

j=1

λj

∞∏

n=1

(
1 − αj

n

)
eαj /n

]
,

where

ξi =
l∏

j=1,j 	=i

(
1 − ni

nj

)−1

and λj =
l∏

i

(
1 − αj

ni

)−1

.

Since A(z) is depressed, we multiply by one final exponential factor equal to 1 to
obtain

eleγ (−n1−···−αt−l )

[
l∏

i=1

ξi

∏

n	=ni

(
1 − ni

n

)
eni/n

][
t−l∏

j=1

λj

∞∏

n=1

(
1 − αj

n

)
eαj /n

]
.

Note that Γ (z) has a simple pole at each negative integer −n with residue (−1)n/n!
and we have

lim
z→−ni

eγ z
∏

n	=ni

(
1 + z

n

)
e−z/n = lim

z→−ni

nie
z/ni

z(z + ni)Γ (z)
= e−1(−1)ni+1ni !

so that
∞∏′

n=1

A(n)

nt
= (−1)t [∏l

i=1(−1)ni ξini !][∏t−l
j=1 λjα

−1
j ]

Γ (−α1) · · ·Γ (−αt−l )
.

With the product evaluated explicitly, we see that the numerator is algebraic and
so the characterization of these products relies on understanding the nature of the
Gamma function at the non-integral roots of A(z). As a concluding example illustrat-
ing the above technique, we evaluate a product similar to (2). One can check that the
technique described above gives,

∞∏′

n=1

(
1 − 1

n3

)
=

∞∏

n=2

(
1 − 1

n3

)
= 1

3Γ (−ρ)Γ (−ρ2)
= cosh(π

√
3/2)

3π
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for ρ = e2πi/3 = −1
2 + i

√
3

2 , and the product is transcendental by Nesterenko’s theo-
rem.
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