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Abstract: We discuss to what extent Euclid’s elementary proof of the infinitude of primes can
be modified so as to show infinitude of primes in arithmetic progressions (Dirichlet’s theorem).
Murty had shown earlier that such proofs can exist if and only if the residue class (mod k ) has
order 1 or 2. After reviewing this work, we consider generalizations of this question to algebraic
number fields.
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1. Introduction

Around 300 B.C., Euclid proved that there are an infinite number of prime num-
bers. The proof is classical and we explain it to high school students. Suppose that
there are only finitely many, p1, p2, . . . , pk say, then the number p1p2 · · · pk + 1 is
not divisible by any of p1, p2, . . . , pk and hence must either be prime or divisible by
a prime not in our list. This contradiction forces an infinitude of prime numbers,
provided there is at least one.

To what extent can this ancient proof be generalized? In 1837, Dirichlet
succeeded in showing that for any l and k satisfying (l, k) = 1, there are infinitely
many primes p such that p ≡ l (mod k ). But his approach was by means of
L-functions and analysis. Our question asks how far Euclid’s proof can be pushed
to yield Dirichlet’s theorem. The existence of such a “Euclidean proof” (to be made
precise later) for certain arithmetic progressions is well-known. For example, using
properties of the cyclotomic polynomial, it is possible to give a “Euclidean proof”
for the infinitude of primes ≡ 1 (mod k ), for any integer k . Such a proof exists for
other progressions as well. The progressions 3 (mod 4) and 5 (mod 6) are treated
in Hardy and Wright [5]. Bateman and Low [2] give such a proof for every coprime
residue class (mod 24). In order to characterize the arithmetic progressions for
which such a proof exists, Murty proved in [7]:
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Theorem 1. (Murty) A “Euclidean proof” exists for the arithmetic progression
l (mod k ) if and only if l2 ≡ 1 (mod k ).

In other words, it is impossible to prove Dirichlet’s theorem for certain ari-
thmetic progressions by Euclid’s method.

However, the paper was published in the Journal of Madras University and is
difficult to obtain. We present this paper in order to make these ideas more accessi-
ble and to present a recent generalization of these results to abelian number fields.

Our first goal is to give a precise definition of a Euclidean proof and then to
give such a proof of the infinitude of primes in progressions l (mod k ) satisfying
l2 ≡ 1 (mod k ), provided at least one such prime exists. Such a proof already
exists in an old paper of I. Schur [10] and we review it in Section 2. In Section
3, we deal with the converse problem. Generalizations to algebraic number fields
are discussed in Section 4. The main tool will be the Chebotarev density theorem
which will show that the class of polynomials we need for a Euclidean proof does
not exist unless l2 ≡ 1 (mod k ).

2. Euclidean proof

Consider the “Euclidean proof” for the arithmetic progression ≡ 1 (mod 4). Sup-
pose that there are only finitely many: p1, . . . , pk (say). Consider the polynomial
f(x) = 4x2 +1 and form the number f(p1 · · · pk) = 4(p1 · · · pk)2 +1. If q is a prime
divisor of this number, then −1 is a quadratic residue mod q . Hence q ≡ 1 (mod
4). Thus either f(p1 · · · pk) is a prime ≡ 1 (mod 4) or is divisible by a prime
q ≡ 1 (mod 4) not in the list p1, . . . , pk . This gives us an infinitude of such primes
provided we have one. Since 5 ≡ 1 (mod 4), we have a proof for this progression.

A similar proof exists for 3 (mod 4). In this case, we use the polynomial
g(x) = 4x−1. If there are only finitely many such primes ≡ 3 (mod 4), p1, . . . , pk
say, then g(p1 · · · pk) = 4(p1 · · · pk)− 1 has prime factors ≡ 1 or 3 (mod 4) since
it is odd. It cannot have all of its prime factors ≡ 1 (mod 4) for otherwise the
number would be ≡ 1 (mod 4) which is not the case. Hence, it has at least one
prime factor ≡ 3 (mod 4) which is not in our list. This again proves an infinitude
provided there is at least one.

A characteristic feature of both these proofs is the assertion of the existence
of a polynomial whose values at integer arguments are divisible by primes in the
required progression. In one case, namely f(x) = 4x2 + 1, all values at integer
arguments are only divisible by primes ≡ 1 (mod 4). In the second case, g(x) =
4x − 1, each value at an integer argument is divisible by at least one prime ≡ 3
(mod 4). In either case, a polynomial ∈ Z[x] exists such that in the set of prime
divisors of the polynomial values at integer arguments, there are infinitely many
primes in the desired arithmetic progression. Accordingly, we shall say that a prime
p is a prime divisor of polynomial f ∈ Z[x] if p | f(n) for some n ∈ Z . Thus the
first requirement of a “Euclidean proof” for the arithmetic progression l (mod k )
is the existence of a polynomial with infinitely many prime divisors ≡ l (mod k ).
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It is not at first clear that a polynomial has infinitely many prime divisors.
This is not difficult to establish and was done by Schur ([10], p.41). Since the proof
is in the spirit of Euclid, we give it.

Theorem 2. (Schur) If f ∈ Z[x] is non-constant, then f has infinitely many
prime divisors.

Proof. We may suppose f(0) = c 6= 0. Now, f(x) = ±1 has only finitely many
solutions, so f must have at least one prime divisor. Suppose f only has a finite
number of prime divisors p1, p2, ..., pk . Let Q = p1p2...pk . Then f(Qcx) = cg(x)
for some polynomial g ∈ Z[x] of the form 1 + c1x+ c2x

2 + ... with Q | ci for each
i . Note that g must have a prime divisor, p , by the argument above. Then p | g
implies that p | f . But p - Q (for otherwise, p | 1). This is a contradiction. So f
has infinitely many prime divisors.

We shall denote by P (f) the set of prime divisors of f . Thus, Schur’s the-
orem says that P (f) is infinite. On the other hand, if f is irreducible and of degree
at least 2, then there are infinitely many primes which are not divisors of f . This
is a consequence of the Chebotarev density theorem which will be alluded to in
Section 3.

The next constraint imposed on our hypothetical “Euclidean polynomial”
arises from a theorem of Nagell [9]. We give a direct field theoretic proof. A longer,
but more elementary proof, was given by Nagell [9].

Theorem 3. (Nagell) If f, g ∈ Z[x] are non-constant, then P (f) ∩ P (g) is infi-
nite.

Proof. Suppose α is a root of f and β is a root of g . By Dedekind’s theorem
(see [8], p. 65), except for a finite number of exceptions, p is a prime divisor of f
exactly when p has a first degree prime ideal factor in the field Q(α). A similar
statement holds for g . Consider the field, Q(α, β) = Q(θ) for some θ ∈ OK . If h
is the minimal polynomial of θ then Schur’s Theorem assures us that there are
infinitely many primes which have a first degree prime ideal factor in Q(α, β).
These primes thus have a first degree prime ideal factor in both Q(α) and Q(β).
Thus, except for a finite number of exceptions, these primes are in both P (f) and
P (g).

This theorem has a remarkable consequence. It is well known (see Theorem
4 and 5 below) that the prime divisors of the k -th cyclotomic polynomial consist
of the prime divisors of k and primes p ≡ 1 (mod k ). It follows from the theorem
of Nagell that any polynomial has infinitely many prime divisors ≡ 1 (mod k ) for
any integer k . This forces our “Euclidean polynomial” to have such prime divisors.
Thus the most reasonable definition of a Euclidean proof for the arithmetic
progression l (mod k ) is the existence of a polynomial f ∈ Z[x] such that all
prime divisors of f (apart from finitely many) are either ≡ 1 (mod k ) or l
(mod k ). We may also suppose that this polynomial is irreducible.

We now begin to give a Euclidean proof for every progression l (mod k )
satisfying l2 ≡ 1 (mod k ).
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Let ζ be a primitive k -th root of unity. The field K := Q(ζ) is Galois over
Q with Galois group isomorphic to the group of coprime residue classes modulo
k , which we denote by (Z/kZ)∗ .

Theorem 4. (Schur) Let H be a subgroup of (Z/kZ)∗ . Then there is an irre-
ducible polynomial f so that all of the prime divisors of f , with a finite number
of exceptions, belong to the residue classes of H .

Proof. Let Q(η) be the fixed field of H , where η = h(ζ) for some h ∈ Z[x] . Let
m1, ...,ms be coset representatives of H in (Z/kZ)∗ .
Set ηi = h(ζmi), 1 6 i 6 s . Suppose these are not distinct. Let σi denote the au-
tomorphism of Q(ζ)/Q sending ζ to ζi . Then σmi(η) = σmj (η) for some distinct
coset representatives mi,mj of H . But then σmim−1

j
(η) = η , so σmim−1

j
fixes

Q(η) which implies that mi and mj are in the same coset of H . A contradiction.
Thus ηi = h(ζmi), 1 6 i 6 s are the distinct conjugates of η .
Now, we define

f(x) :=
s∏

i=1

(x− ηi).

By the above, f(x) is an irreducible polynomial in Q(x). We will show that f
satisfies the condition in the theorem. Let p be a prime divisor of f so that p - k
and so that p - D(f) (where D(f) is the discriminant of f ). Note that we have
only excluded finitely many primes. Now, since p is a prime divisor of f , there
exists a rational integer a so that

f(a) =
s∏

i=1

(a− ηi) ≡ 0 (mod p).

Let p be any prime ideal dividing (p). Then p | (a − ηi) for some i . Now,
ap ≡ a (mod p) so ap ≡ a (mod p). Also, h(x)p ≡ h(xp) (mod p) for the same
reason. Thus, we get the following congruence:

h(ζmi) ≡ ηi ≡ a ≡ ap ≡ ηpi ≡ h(ζmi)p ≡ h(ζpmi) (mod p).

In particular, we see that p | (h(ζmi) − h(ζpmi)). Now, since p - k , we have that
pmi is coprime to k , so h(ζpmi) is one of η1, . . . , ηs . Suppose h(ζpmi) 6= h(ζmi).
Then p | D(f) and since D(f) is a rational integer, p | D(f). But this contradicts
our choice of p .
Thus, h(ζpmi) = h(ζmi) and so ηi is fixed by the automorphism σp . So Q(ηi) is
fixed by σp . But, by the above remarks Q(ηi) is a Galois extension, and consequ-
ently Q(ηi) = Q(η). Thus σp fixes Q(η) and so p belongs to a residue class of H.
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The following is a converse of Theorem 4.

Theorem 5. (Schur) If f is as in Theorem 4 , then any prime belonging to any
residue class of H divides f .

Proof. Let p be a prime belonging to some residue class of H . Since p ∈ H , σp
leaves Q(η) fixed. In particular,

ηp ≡ h(ζ)p ≡ h(ζp) ≡ h(ζ) ≡ η (mod p).

So for any prime ideal p dividing p , we have ηp ≡ η (mod p). Since, OK is a
Dedekind domain, OK/p is a field and so there are at most p solutions to xp − x
in this field. From this it follows that η ≡ a (mod p) for some rational integer
a . Thus, p | f(a) and since f(a) is a rational integer it follows that p | f(a), as
desired.

Corollary 1. If φk is the k -th cyclotomic polynomial, then all of the prime
divisors of φk are ≡ 1 (mod k) or divide k .

Proof. This result follows from setting H = {1} in the above theorem. We use
the basic fact, from algebraic number theory, that the only primes which divide
the discriminant of φk are those primes which divide k (see [8], p.52).

Note that there are only finitely many primes which divide k . So all of
the prime divisors of φk with the exception of finitely many are ≡ 1 (mod k).
This, in conjunction with Theorem 1 tell us that there are infinitely many primes
≡ 1 (mod k) for any positive integer k .

Theorem 6. If l2 ≡ 1 (mod k) then there are infinitely many prime ≡ l (mod k) ,
provided there is at least one.

Proof. The case l ≡ 1 (mod k) is dealt with in the discussion following Corollary
1. Thus, we may suppose that l is not congruent to 1 (mod k).
We can thus apply the above theorems to the subgroup H = {1, l} of (Z/kZ)∗ .
Suppose L is the fixed field of H . Now, set h(ζ) = (u − ζ)(u − ζl) for some
rational integer u , to be chosen later. First note that if m1, . . . ,ms denote the
coset representatives of H in (Z/kZ)∗ , and if we pick u so that the h(ζmi) are
distinct for i = 1, . . . , s then L = Q(h(ζ)). Note that we have only excluded a
finite set of values for u . Applying Theorem 3 to H with η = h(ζ) gives us a
polynomial f(x) all of whose prime divisors (apart from finitely many) are ≡ 1
or l (mod k). We may write down f explicitly:

f(x)2 =
∏

(a,k)=1

(x− (u− ζa)(u− ζla)).

Now, note that f(0) = φk(u) where φk is the k -th cyclotomic polynomial.
We now choose u to be a non-zero multiple of k so that f(0) = φk(u) ≡ 1 (mod k).
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By Corollary 1, every prime divisor of φk either divides k or is ≡ 1 (mod k). Thus,
every prime divisor of φk(u) = f(0) is ≡ 1 (mod k).

Now pick some prime p ≡ l (mod k) so that p does not divide the discri-
minant of f . By Theorem 4, we may find some b so that p | f(b). In fact,
we can choose b so that p2 - f(b). Note that if p2 | f(b), then f(b + p) =
f(b) + pf ′(b) ≡ pf ′(b) (mod p2). But since p - D(f), we have that f has no do-
uble roots mod p and so f ′(b) 6= 0 (mod p). So, f(b) ≡ 0 (mod p2) implies that
f(b+ p) 6= 0 (mod p2). Thus, replacing b with b+ p if necessary, we can choose b
so that p | f(b) but p2 - f(b).

Now suppose there are finitely many primes ≡ l (mod k) call them p =
p1, p2, p3, . . . , pm . Also let q1, . . . , qt be the prime divisors of D(f). Let Q =
p2p3 . . . pmq1 . . . qt . By the Chinese Remainder Theorem find c so that:

c ≡ b (mod p2)

c ≡ 0 (mod kQ)

Thus f(c) ≡ f(b) (mod p2) and f(c) ≡ f(0) (mod kQ). Now, by The-
orem 3 the only prime divisors of f are those primes which divide k , divide
the discriminant of f , or are ≡ 1 or l (mod k). Since f(0) is only divisible by
those primes ≡ 1 (mod k) it follows that f(c) is only divisible by those primes
≡ 1 (mod k) and p ≡ l (mod k). Since p2 - f(c), it follows that f(c) ≡ l (mod k).
But f(c) ≡ f(0) ≡ 1 (mod k). Contradiction. Thus there must be infinitely many
primes ≡ l (mod k).

We can utilize these theorems to construct Euclidean proofs for new arith-
metic progressions, hitherto unconsidered by these methods. For example, such a
proof should exist for primes ≡ 4 (mod 15). By the methods of the above proof,
consider the polynomial

f(x) = (x− (ζ + ζ4))(x− (ζ2 + ζ8))(x− (ζ7 + ζ13))(x− (ζ11 + ζ14))

where ζ denotes a primitive 15-th root of unity. Simplifying the above gives

f(x) = x4 − x3 + 2x2 + 1.

Writing f as
f(x) = (x2 − x/2− 1)2 + 15x2/4,

we note that -15 is a quadratic residue for every prime divisor of f which is unequal
to 3 or 5. By quadratic reciprocity, this means that

(p
3

)(p
5

)
= 1.

Thus, p ≡ 1, 2, 4, or 8 (mod 15). Also, by writing

f(x) = (−x2 + x/2− 1/2)2 + 3(x+ 1)2/4,
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we deduce that any prime divisor of f satisfies
(
−3
p

)
= −1 which implies p ≡ 1

or 11 (mod 12). Similarly,

f(x) = (−x2 + x/2− 3/2)2 − 5(x− 1)2/4

implies
(

5
p

)
= 1 so that p ≡ 1 or 4 (mod 5). Putting all this together, we

deduce that any prime divisor of f is either ≡ 1 or 4 (mod 15). Clearly the
polynomial f(15x + 1) also has its prime divisors ≡ 1 or 4 (mod 15). Since
f(15x + 1) = 15xg(x) + 4, not all prime divisors of f(15x + 1) are ≡ 1 (mod
15). If the primes ≡ 4 (mod 15) were finite, then let Q denote their product and
consider f(15Q+ 1) = 15Qg(Q) + 4. This has no prime divisor ≡ 4 (mod 15) as
it is coprime to Q . But this is a clear contradiction. This completes the proof.

3. The converse problem

Suppose that we are given a polynomial ∈ Z[x] such that all its prime divisors
(with finitely many exceptions) are either ≡ 1 or l (mod k ). We would like to
show that this implies that l2 ≡ 1 (mod k ). We prove:

Theorem 7. (Murty) Let f ∈ Z[x] . Suppose that with finitely many exceptions,
all prime divisors of f are either ≡ 1 or l (mod k ). Then l2 ≡ 1 (mod k ).

Proof. A classical theorem of Bauer [1] states that if H is normal over Q and
every prime which has a first degree prime ideal factor in K splits completely in
H then H ⊂ K . We apply this to our situation. Let K be the field obtained
from Q by adjoining a root of f . Let L denote the compositum of Q(ζ) and K ,
where ζ is a k -th root of unity. Then L/K is Galois, as L is the splitting field of
the cyclotomic polynomial over K . Let Hl denote the subfield of Q(ζ) left fixed
by (l). By the theorem of Bauer cited above, it follows that Hl ⊂ K . Moreover,
Q(ζ)∩K = Hl because K has, by hypothesis infinitely many prime ideals of degree
one whose norms are ≡ l (mod k ). Then, Gal(L/K ) injects into Gal(Q(ζ)/Hl )
because any automorphism of L/K which when restricted to Q(ζ) is trivial, is
also trivial on Q and hence on Hl . Moreover, this map is surjective since there
are infinitely many prime ideals of degree one in K which when restricted to Q(ζ)
reduce to σl , the automorphism which has the property σ(ζ) = ζl . Hence, in our
case, Gal(L/K ) ∼= Gal(Q(ζ)/Hl ).

By the Chebotarev density theorem [11], there are infinitely many prime
ideals of K of degree one whose Frobenius automorphism is any given conjugacy
class of our Galois group. By the surjectivity established above, it follows that there
are infinitely many prime ideals of K of degree one whose Frobenius automorphism
restricts to any given element of (l). In particular, there are infinitely many prime
divisors of f which are ≡ l2 (mod k ). This forces l2 ≡ 1 or l (mod k ). Hence,
l2 ≡ 1 (mod k ) since (l, k) = 1.

Thus, philosophically, Dirichlet’s theorem in its entirety cannot be proved
by “Euclidean” methods. This fact was first proved by the author in [6] over ten
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years ago but subject to the additional hypothesis that we consider only abelian
polynomials. Subsequently, this hypothesis was weakened to allow normal polyno-
mials. But even this last restriction has been removed and now the theorem stands
in its complete aesthetic form.

The methods of the paper can be generalized. One can prove in a similar
spirit the following.

Theorem 8. Let H be a subgroup of (Z/kZ)∗ . There is a polynomial ∈ Z[x]
such that it has infinitely many prime divisors belonging to a non-trivial residue
class of H .

4. Generalizations

Let K/k be abelian with Galois group G . Let σ ∈ G . Then a very weak form of
the Chebotarev density theorem is the statement that there exist infinitely many
prime ideals ℘ ⊂ k so that p has Frobenius element σ for each p lying above
℘ . We can generalize the methods of Section 2 to give a Euclidean proof of this
statement for any σ of order 2. The work of K. Conrad [3] generalizes the theorem
of Murty in Section 3 and shows that no Euclidean proof is possible if the order
of σ is not 2.

We generalize the idea of a prime divisor and a Euclidean proof in the natural
way. We call a prime ideal ℘ ⊂ k a prime divisor of a polynomial f if ℘ | f(a)
for some a ∈ Ok . Likewise, a Euclidean proof for σ ∈ Gal(K/k ) is the existence
of a polynomial f ∈ Ok[x] so that all of the prime divisors of f (apart from finitely
many) have Frobenius element either 1 or σ . With these definitions in hand, we
proceed to show that a Euclidean proof exists if σ has order 2.

Theorem 9. Let k ⊂ K be algebraic number fields, where K is a Galois exten-
sion of k . Let H be a subgroup of Gal(K/k) . Then there exists an irreducible
polynomial f(x) ∈ Ok[x] such that all (but finitely many) of the prime divisors,
℘ , of f have Frob(p) ∈ 〈H〉 for all primes p lying above ℘ .

Proof. We suppose that K = k(α). Now, if we let L be the fixed field of H , then
L = k[η] where η = h(α) for some polynomial h ∈ k[x] . Let σ1, ..., σs be the coset
representatives of H in Gal(K/k ). Set ηi = σi(η) = h(σi(α)) for each 1 6 i 6 s .

Suppose ηi = ηj for i 6= j . Then σ−1
j σi fixes η and so σj and σi are in the

same coset of H , which is a contradiction. Thus the ηi are the distinct conjugates
of η .

It follows that the minimal polynomial of η is

f(x) =
s∏

i=1

(x− ηi).

By the above, f(x) is irreducible in k[x] . We will show that f satisfies the
conditions of the theorem.
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Let ℘ be a prime divisor of f so that ℘ does not ramify and so that ℘ -
D(f), the discriminant of f . We have only excluded a finite set of primes. Since
℘ is a prime divisor of f , there exists an a ∈ Ok such that f(a) =

∏
(a −

ηi) ≡ 0 (mod ℘). Let p be any prime ideal of OK dividing ℘ . Then p divides
(a − ηi) for some i . If ψ is the Frobenius automorphism of p , we have ψ(a) ≡
a (mod ℘) so ψ(a) ≡ a (mod p).

From this simple identity, we get:

ψ(a) ≡ ψ(ηi) ≡ h(ψ ◦ σi(α)) ≡ a ≡ ηi ≡ h(σi(α)) (mod p).

In particular, h(σi(α)) ≡ h(ψ ◦σi(α)) (mod p). Now, h(ψ ◦σi(α)) = ψ(ηi) = ηj =
h(σj(α)) for some j . If j 6= i , then p | D(f). Since D(f) ∈ k this would mean
that ℘ | D(f), contradicting our choice of ℘ . Thus j = i and so ψ(ηi) = ηi . Thus
ψ fixes a conjugate field of k(η) and so ψ ∈ 〈H〉 .
Theorem 10. For f as in the theorem above, if ℘ is a prime with Frob(p) ∈ 〈H〉
for some p lying above ℘ then ℘ divides f .

Proof. Let ψ be the Frobenius element of p . Then ψ fixes k(ηi) for some i . In
particular, ψ(ηi) = ηi . Thus

η
NormK/k(℘)
i ≡ ηi (mod p).

Since OK/p is a field, the equation xNormK/k(℘) ≡ x (mod p) has at most
NormK/k(℘) distinct solutions. Notice that the elements of Ok already provide
us with this many solutions. Thus ηi ≡ a (mod p) for some a ∈ Ok . So, p | f(a)
and since f(a) ∈ k we have ℘ | f(a) as required.

Corollary 2. If φ is the minimum polynomial of α then the prime divisors of φ
either divide dK/k or have Frobenius element 1.

Proof. Set H = 1 in the theorem above, and note that ℘ divides dK/k = D(f)
if and only if it ramifies.

Theorem 11. Let k ⊂ K be algebraic number fields where K is an abelian
extension of k . Choose any σ ∈ Gal(K/k) of order 2. Then there are infinitely
many prime ideals in Ok with Frobenius element σ , provided there is at least 1
not dividing D(f) .

Proof. Let c be a conductor of K/k whose only prime divisors are ramified primes
and let c0 be its finite part. Let K = k(α). We may suppose that NormK/k(α) ≡
1 (mod c0) and NormK/k(α) ≡ 1 (mod dK/k). Indeed, if α generates K then so
does xα + y for any non-zero x and any y in k . Thus choosing x ∈ dK/kc0 and
y = 1 guarantees the above conditions.

Now we apply the above two theorems to the subgroup H = {1, σ} of
Gal(K/k ). Suppose L is the fixed field of H . We set h(α) = (u − α)(u − σ(α))
for u ∈ Ok , to be chosen later. If σ1, . . . , σs denote the coset representatives of
H in Gal(K/k ), and if we pick u so that the h(σi(α)) are distinct, then h(α)
generates L . We have only discarded a finite set of u .
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Thus, the above theorems give us a polynomial f(x) all (but finitely many)
of whose prime divisors have Frobenius element 1 or σ . In fact, our choice of h(α)
ensures that f(0) = φ(u) (where φ is the minimal polynomial of α). So, by the co-
rollary above, we have that every prime divisor of f(0) has Frobenius element 1 or
divides dK/k . If we choose u ∈ dK/k , then f(0) ≡ NormK/k(α) ≡ 1 (mod dK/k).
Thus, the only prime divisors of f(0) will have Frobenius element 1.

Now pick some prime ℘ with Frobenius element σ so that ℘ does not divide
D(f). By Theorem 10 we may find a b ∈ Ok so that ℘ | f(b). In fact, we can
choose b so that ℘2 - f(b). Indeed, if ℘2 | b choose some l ∈ ℘ so that l /∈ ℘2 .
Then f(l+ b) ≡ f(b) + lf ′(b) ≡ lf ′(b) (mod ℘2). Since ℘ - D(f) and ℘ | f(b), we
have that ℘ - f ′(b). Thus ℘ | f(l + b) but ℘2 - f(l + b). Thus we may replace b
with l + b if necessary to ensure that ℘ | f(b) and ℘2 - f(b).

Now suppose that there are only finitely many primes with Frobenius element
σ , call them ℘ = ℘1, ℘2, . . . , ℘m . By the Chinese remainder theorem, we may find
c ∈ Ok so that:

c ≡ b (mod ℘2)

c ≡ 0 (mod ℘2℘3 . . . ℘mD(f)c0)

Thus, f(c) ≡ f(b) (mod ℘2) and f(c) ≡ f(0) (mod ℘2℘3 . . . ℘mD(f)c0).
Now, by Theorem 9 the only prime divisors of f are those which divide dK/k
or D(f) or have Frobenius element in H . Since f(0) is only divisible by those
primes with Frobenius element 1, the congruence conditions guarantee that f(c)
is divisible only by those primes with Frobenius element 1 and ℘ but not ℘2 .
Thus f(c) has Frobenius element σ . But f(c) ≡ 1 (mod c0). Replacing c with
c + n if necessary (where n ∈ Z ∩ ℘2℘2℘3 . . . ℘mD(f)c0 ), we ensure that f(c) ≡
1 (mod* c). And so f(c) has Frobenius element 1. Contradiction.

The converse problem is tackled by K. Conrad in [3]. Suppose K/k is an
abelian extension and let f ∈ Ok[x] . Set S = {σ | σ is the Frobenius element
of p for some prime ideal p in K dividing f} . In his paper, Conrad proves that
S is a group. Thus if f is a polynomial arising from a Euclidean proof for σ ∈
Gal(K/k ), then S = {1, σ} is a group. Thus σ must have order 2.
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