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In the last two decades, the theory of Ramanujan graphs has gained promi-
nence primarily for two reasons. First, from a practical viewpoint, these graphs
resolve an extremal problem in communication network theory (see for exam-
ple [2]). Second, from a more aesthetic viewpoint, they fuse diverse branches
of pure mathematics, namely, number theory, representation theory and alge-
braic geometry. The purpose of this survey is to unify some of the recent
developments and expose certain open problems in the area. This survey is by
no means an exhaustive one and demonstrates a highly number-theoretic bias.
For more comprehensive surveys, we refer the reader to [27], [9] or [13]. For a
more up-to-date survey highlighting the connection between graph theory and
automorphic representations, we refer the reader to Winnie Li’s recent survey
article [11].

A graph X is a triple consisting of aertex set V = V(X), anedge set
E = E(X) and a map that associates to each edge two vertices (not necessarily
distinct) called itsendpoints. A loop is an edge whose endpoints are equal.
Multiple edges are edges having the same pair of endpoirsiguple graph is
one having no loops or multiple edges. If a graph has loops or multiple edges,
we will call it a multigraph. When two verticest andv are endpoints of an
edge, we say they aeeljacent and (sometimes) write ~ v to indicate this.

To any graph, we may associate t§acency matrix A which is ann x n
matrix (wheren = |V|) with rows and columns indexed by the elements of
the vertex set and the, y)-th entry is the number of edges connectingnd

y. Since our graphs are undirected, the matrils symmetric. Consequently,
all of its eigenvalues are real.

The convention regarding terminology is not clear in the literature. Most use
the term ‘graph’ to mean a simple graph as we have defined it above. Thus, the
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Ramanujan graphs constructed in the literature, which we shall refer to below,
have been all simple graphs. One can enlarge the definition of a Ramanujan
graph to the context of multigraphs so that their construction becomes slightly
simpler (see for instance, Theorem 8 below and the example that follows).

The degree of a vertexv, denoted de@), is the number of edges incident
with v, where we count a loop with multiplicity 2. With this convention, we
have the familiar “handshaking lemma” of graph theory:

> degw) = 2|E(X)|.

veV

We will say an edge haslength 1, unless itis a loop, in which case we adopt
the convention that it has length 2. We will denote the lengthtnyf ¢ (e). For a
multigraph, awalk of length r from x to y is a sequence = v, vy, ..., v, = y
with v; € V ande; = (v;, viy1) € Efori =0,1,...,r —1and

Zﬁ(ei) =7

A path is a walk with no repeated vertex. A word of caution must be inserted
here. In graph theory literature, the distinction between a walk and a path is
as we have defined it above. However, in the number theory circles, the finer
distinction is not made and one uses the word ‘path’ to mean a ‘walk’. (See for
example, [20] and [26].) A graph is said to bennected if for any x, y € V,
there is a path fromx to y. The number of walks from to y of lengthr
is clearly given by thec, y-th entry of A", where again we have adopted the
convention of counting a loop with multiplicity 2. A graph is calledegular
if every vertex has degree

The following theorem is basic in graph theory.

Theorem 1. Let A be the adjacency matrix of an undirected grahLet
A(X) be the maximal degree of any vertex)ofIf A is an eigenvalue ofi,
then|i| < A(X).

Proof. Let v be an eigenvector od corresponding to an eigenvaliieThen,
Av = Av. Write v = (x4, ..., x,)" and assume without loss of generality that
|x1] = Maxy<;<, |x;|. Then,

IMlxal = | Y azpxs| < xal Y az; = [xaldegvr) < [xa| A(X)
j=1 j=1
from which we deducér| < A(X). This completes the proof. O

Corollary 2. If X is a k-regular graph, then all the eigenvaluesof its
adjacency matrix satisfy| < k.
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Since ak-regular graph is one whose adjacency matrix has every row sum
(and hence every column sum) equaktove clearly have thatg = k is an
eigenvalue ofA with eigenvector equal toa = (1, 1, ..., 1)’. The following
theorem makes this more precise.

Theorem 3. If X is a k-regular graph, them. = k is an eigenvalue with
multiplicity equal to the number of connected componenis. of

Proof. We have already proved the first part. et (x4, ..., x,,)’ be an eigen-
vector of A with eigenvaluek. Without loss of generality, suppose;| =
max <; <, |x;|. We may also supposg > 0. Then

n n
kx, = E apjxj < E apjxi = kxy.
=1 =1

This means, that every for which a;; # 0, we must haver; = xi. In
particular, this is true for alj for which v; is adjacent taw;. Repeating the
argument with each of the neighbouring vertices, we deduce fhatx if v;

is connected tw;. As we may duplicate this argument for each component,
the result is now clear. O

Thus, if X is a connectef-regular graph, we may arrange the eigenvalues as
k=2xro(X) > A(X) = -+ = Ap1(X) = —k.

It is not difficult to show that—k is an eigenvalue oX if and only if X

is bipartite, in which case its multiplicity is again equal to the number of
connected components. Any eigenvalye# =k is referred to as a non-
trivial eigenvalue. We denote by X) the maximum of the absolute values of
all the non-trivial eigenvalues. Ramanujan multigraph is ak-regular graph
satisfying

AMX) <2vk -1

A Ramanujan graph is a Ramanujan multigraph having no multiple edges
or loops. The motivation for these definitions will become apparent in later
sections. The significance of such graphs will also be elaborated upon later.
For the moment, let us state that the explicit construction (see section 5 below)
of such graphs for a fixed andn — oo has only been described in the case

k — 1is prime [12], [14] or a prime power [15] and it is still an open problem

in the general case. Thus, the simplest case that is open isinvken. That

is, we must construct a family of 7-regular grapkis with |X;| tending to
infinity whose corresponding adjacency matrices have non-trivial eigenvalues
A satisfying|A| < 2+/6. In this context, Pizer [18] constructs what he calls
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‘almost’ Ramanujan graphs by using the theory of Hecke operators. More
precisely, he shows that for evérythere is a family ok-regular graph¥’; with
| X;| tending to infinity and the non-trivial eigenvalug®f the corresponding
adjacency matrices satisfy the inequality < d (k — 1)k — 1 whered (k—1)
denotes the number of positive divisorskof 1.

The complete grapK . as well as the bipartite graphy. . are easily seen to
be Ramanujan (see the discussion in section 2). The Petersen graph (see Figure
1) is a 3-regular graph whose adjacency matrix has characteristic polynomial
(A —3)(A + 2*(x — 1)°, and thus is easily seen to be Ramanujan.

Figure 1. The Petersen Graph

Friedman [5] has shown that randdivregular graphs are close to being
Ramanujan in the sense that(as defined above) satisfies

A < 2Vk —1+42logk + O(2).

1. Preliminaries

We can define a metric on a connected graph by defining the disfance)

for x, y € V as the minimal length amongst all the paths frerto y. The
diameter of a connected graph is then the maximum value of the distance
function. We begin by deriving a simple estimate for the diametekeafeyular
graph involvingr(X) due to Chung [3]. IfA is the adjacency matrix, then the
(x, y)-th entry of A" is the number of walks from to y of lengthr. Hence, if
every entry ofA™ is strictly positive, then the diameter &fis at mostn. We

will use this observation below to derive an upper bound for the diameter of a
k-regular graph.
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Letn = |V| andug, us, ..., u,_1 be an orthonormal basis of eigenvectors
of A with corresponding eigenvalues, ..., A,,_1 respectively. We may take
ug = u/+/n whereu = (1,1, ..., 1)" as defined earlier. We can write

n—1
A= E )L,-u,'u;.
i=0

More generally,

n—1
A" = Zkfu,-uf.
i=0
In particular, we see that the, y)-th entry of A™ is
= Zki‘"(u,-uf)x,y.
i

If X is a connected-regular graphio = k and the above expression is
k™ m
>= | > (i) w)y .

Let us assume tha is not bipartite (so that-k is not an eigenvalue). Then,
by the Cauchy-Schwarz inequality,

1/2 1/2
S| <0 (Fwk) (St
i>1 = et
Recalling that they;'s form an orthonormal basis, this is easily seen to be

< 2" (1= @021 — we)HM? < a(X)" (1 - 1/n).

Thus, the(x, y)-th entry of A™ is always positive if

In other words, we have proved

Theorem 4. (Chung, 1989) LeK be ak-regular graph withn vertices and
diametenn. If X is not bipartite, then

log(n — 1)
m< ———— .
~ log(k/A(X))
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A similar result can be derived farregular bipartite graphs. In fact, by a
minor modification of the above proof, one can show that for bipartregular
graphs, we have (see [19])

log(n — 2)/2
m<-————"—
~ log(k/A(X))

The inequality of Theorem 4 shows that the diameter is minimized by min-
imizing A(X). (Theorem 5 below also shows this.) In communication theory,
one requires the network to have small diameter for efficient operation.

There is another elementary observation about the eigenvéiiethat is
worth making. Observe that the eigenvaluegidf are simply the squares of
the eigenvalues afl. On the other hand, the trace AfA’ is simply kn for a
k-regular graphX. Thus, if X is not bipartite,

K2+ (n — DAX)? > kn

which gives the inequality

N1/2
A(X) > (" k) Jk.
n—1

If X is bipartite, then
2k% + (n — 2M(X)? = nk,

in which case

o172
A(X)z(n sz) JE.

n—
If we think of k as fixed andi — oo, then we see that

lim A(X) > Vk.

n— oo

A theorem due to Alon and Boppana (see [12]) asserts that

liminf A(X,, ) = 2vk—1
where the liminfis taken overregular graphs with going to infinity. Several
proofs of this result exist in the literature [12], [9]. A sharper version was
derived by Nilli [17] (who is also known as N. Alon):

Theorem 5. (Nilli, 1991) Suppose thaX is ak-regular graph. Assume that
the diameter of is > 2b + 2 > 4. Then

MX) > 2k —1— Z—Vk;pl_l.
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To keep this paper self-contained, we give the proof in section 3 below.
Let us make the following observationsf = d(u, v) is the diameter ok,
then the number of walks fromof lengthm is < k™ and as each such walk has
m + 1 vertices, we deduce that the number of verticeatisfies the inequality

n < (m-+ k™.

Thus, ifk is fixed andn — oo, then the diameter also tends to infinity. In
particular, Theorem 5 implies the Alon-Boppanatheorem siige > A;(X).

2. Cayley graphs

There is a simple procedure for constructingegular graphs using group
theory. This can be described as follows. ebe a finite group and a k-
element multiset o6;. That is,S hask elements where we allow repetitions.
We suppose tha is symmetric in the sense that e S impliess—t e S (with
the same multiplicity). Now construct the gragiiG, S) by having the vertex
set to be the elements 6f with (x, y) an edge if and only it 1y € S. Since
S is allowed to be a multiseff (G, S) may have multiple edges.

If G is abelian, the eigenvalues of the Cayley graph are easily determined
as follows. The cognoscentii will recognize that it is the classical calculation
of the Dedekind determinant in number theory.

Theorem 6. LetG be a finite abelian group anl a symmetric subset ¢f
of sizek. Then the eigenvalues of the adjacency matriX @, S) are given by

oy =D x()
seS
as x ranges over all the irreducible characters 6f

Remark. Notice that for the trivial character, we havg = k. If we have for
all y #1

<k

> x(s)

ses

then the graph is connected by our earlier remarks. Thus, to construct Ramanu-
jan graphs, we require

dox|=2vk-1

seS

for every non-trivial irreducible charactgrof G. This is the strategy employed
in many of the explicit constructions of Ramanujan graphs.
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Proof. For each irreducible charactgy let v, denote the vectaiy (g) : g €
G). Letds(g) equal Oifg ¢ S, andm if g € S with multiplicity m. Denote by
A the adjacency matrix of (G, S). Thus, the, j-th entry ofA is the number
of edges betweehandj. Then,

(Avy)e =Y 8s(x ") x(g).

geCG

By replacingr—1g by s, we obtain

(Avy), = x(x) (Z x(s))

seS

which shows that, is an eigenvector with eigenvalue

> x(s)

seS

which completes the proof. a

We remark that in the above proof, we did not really use the symmetry of
the setS and so the result extends to Cayley digraphs as well.

As mentioned above, this calculation is reminiscent of the Dedekind deter-
minant formula in number theory. Recall that this formula computesidet
where A is the matrix whosdi, j)-th entry is f(ij 1) for any function f
defined on the finite abelian grodp of ordern. The determinant is

I1 (Z f(g)x(g)) :

X \geG

The proofis analogous to the calculation in the proof of Theorem 6 and we leave
it to the reader. As an application, it allows us to compute the determinant of a
circulant matrix. For instance, we can compute the characteristic polynomial
of the complete graph. Indeed, it is not hard to see that by taking the additive
cyclic group of order. and settingf (0) = —A, f(a) = 1fora # 0, we obtain

that the characteristic polynomial is

A—m—=-1))r+1D" 1

by the Dedekind determinant formula. As the complete graph of ardean
(n — 1D)-regular graph, we see immediately from the above calculation that it
is a Ramanujan graph.

Another example of a Ramanujan graph is the bipartite gigph This is
anr-regular graph whose adjacency matrix has eigenvalues eqyattaand
0 as is easily checked. In fact, its characteristic polynomial is

(A —r)A +r)AZ 2,
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If G is an abelian group anglis a subset of;, we can define another set of
graphst (G, S) calledsum graphs as follows. The vertices consist of elements
of G and(x, y) is an edge ifcy € S. If we allow S to be a multiset, then we
get a graph with multiple edges. Arguing as before, we can show (see [[9], p.
197)):

Theorem 7. Let G be an abelian group. For each charactgr of G, the
eigenvalues of (G, S) are given as follows. Define

ey = Zx(s).

seSs

If e, = O, thenv, andv,-1 are both eigenvectors with eigenvalues zero. If
ey # 0, then

ley vy, ey, v,-1
are two eigenvectors with eigenvalugge, |.

To begin, a simple example can be given using Gauss sumg &orodd
prime, letG = Z/pZ andS be the multiset of squares. The multigraptG, S)
is easily seen to be Ramanujan in view of the fact (see for example, [[16], p.
81)):

)
E : eZmaA /p

X€Z/pZ

=V

for anya # 0. By our convention in the computation of degree of a vertex, we
see thalX (G, S) is ap + 1-regular graph.

Using Theorem 7, Winnie Li [10] constructed Ramanujan graphs in the
following way. LetF, denote the finite field of elements. LeG = F,. and
take forsS the elements of; of norm 1. This is a symmetric subset@fand the
Cayley graphX (G, §) turns out to be Ramanujan. The latter is a consequence
of a theorem of Weil estimating Kloosterman sums (see [22]).

These results allow us to construct Ramanujan graphs by estimating charac-
ter sums. However, by allowin§jto be a multiset, the construction of Ramanu-
jan multigraphs is slightly simplified, as the following theorem shows.

Theorem 8. LetG = F, be afinite field oy = p” elements andf (x) a
polynomial with coefficients iR, and of degre or 3. LetS be the multiset

{f(x):x eF,}.

Suppose is symmetric. Ther¥ (G, S) is a Ramanujan graph.
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The required character sum estimates come from Weil’s proof of the Rie-
mann hypothesis for the zeta functions of curves over finite fields. In particular,
we have for alk € F,, a # 0,

> expritrg, v, (af (1))/p)| < (degf — 1)y/q

xeF,

provided f is not identically zero (see [[9], p. 94]). In particular, ff has
degree 3, we get the estimate qfZ for the exponential sum. For example, if
u € Z/pZ and we take

=3 +ux:x € Z/pZ},

thensS is symmetric and, according to our conventidi(G, S) is ak-regular
graph withk = p + 1. In addition, it is a Ramanujan graph since

Z exp2ria(x® + ux)/p)| < 2/p

X€Z/pZ

by virtue of the Riemann hypothesis for curves (proved by Weil).

There is a generalization of these results to the non-abelian context. This is
essentially contained in a paper by Diaconis and Shahshahani [4]. Using their
results, one can easily generalize the Dedekind determinant formula as follows
(and which does not seem to be widely known). Gebe a finite group and
f a class function or;. Then the determinant of the matrik whose rows
(and columns) are indexed by the element&/aind whos€i, j)-th entry is

f(ij~b) is given by

X
]_[ ( D > f(g)x(g)>

geG

with the product over the distinct irreducible character&of
The following theorem is implicitly contained in [[4], p. 175].

Theorem 9. LetG be afinite group and a symmetric subset which is stable
under conjugation. Led be the adjacency matrix of the graph(G, S) (where

u, v € G are adjacent if and only ifiv~! € S). Then the eigenvalues afare
given by

M X(l);X()

as x ranges over all irreducible characters 6f. Moroever, the multiplicity of
Ay is x (D)2
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We remark that the., in the above theorem need not be all distinct. For
example, if there is a non-trivial charactgrwhich is trivial on S, then the
multiplicity of the eigenvalugsS| is at least 1 x (1)°.

Proof. We essentially modify the proof on pp. 176-177 of [4] to suit our
context. We consider the group algeliffgG] with basis vectors, with g € G
and multiplication defined as usual by, = e,;. We defineQ to be the linear
operator that acts 06[G] by left multiplication by

D e =) 5s(e)ey.

seSs geG

The matrix representation @f with respect to the basis vectetswith g € G
is precisely the adjacency matrix Bf(G, S) as is easily checked. ifdenotes
the left regular representation 6fon C[G], we find that the action of

r(A) = "r(s)

seS

onC[G] is identical toQ. Moreover,C[G] decomposes as
C[G] =&, Vp

where the direct sum is over non-equivalent irreducible representations of
G and the subspack, is a direct sum of deg copies of the subspad&,
corresponding to the irreducible representagioihe result is now clear from
basic facts of linear algebra. 0

We refer the reader to [1] for a more detailed proof of the above in a slightly
general context.

3. Relating the diameter andx
In this section, we will give the promised proof of the following result of Nilli
[17]:

Theorem 5. LetX be ak-regular graph. If the diameter &f is> 2b+2 > 4,
then

AMX) > 2k —1— 2—”k—bl_1.

As we remarked earlier, the diameter goes to infinity’gsgoes to infinity.
Thus, we deduce:
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Theorem 10. (Alon-Boppana)
liminf A(X, ) > 2vk—1

n — oo

whereX, , denotes &-regular graph withn vertices.

We preface our proof of Theorem 2 with a few remarks from linear algebra.
Let A be a symmetric matrix (a similar analysis applies to Hermitian matrices).
Let Amax @and Anmin be the largest and smallest eigenvaluesi akspectively.
Then, (see [[7], p. 176]) we have

(Av, v)
v£0 (v, V)
and
. (Av,
Amin = MIN (4v v).
v#0 (v, V)

To see this, observe that f denotes the matrix whose columns form an
orthonormal basis of eigenvectors 4f then we may write

A=UDU'

whereD is a diagonal matrix whose diagonal entries are the eigenvalues of
Thus,

(Av,v) =v'Av =2V UDU"v = ZM|(U’U),~|2.
As each of the termgU"v);|? is non-negative,
dmin YU V)7 < 0" Av < dmax Y (U )i 2.
i i
SinceU is an orthogonal matrix, we have
DIW =) il =v'v.
1 i

Thus, ifv # 0,
(Av, v) -

= )\max~

Amin <
™= ()
The inequalities are easily seen to be sharp by considering the eigenvectors
corresponding t@.max andimin respectively, which proves our assertion. This
result is usually referred to as the Rayleigh-Ritz theorem in the literature.
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Now let L(X) denote the space of real-valued functionsfoWe can equip
the vector spacé (X) with an inner product by defining

(f,8) =) f(x)gx).
xeX
We can view the adjacency matrix as actinglorX) via the formula

AHE = > fO.

(x,y)€E

For a connectef-regular graph).o = k is an eigenvalue of multiplicity 1 and
the corresponding eigenspace is the set of constant functions. Hence, we can
decompose our space as

L(X) =Rfo® Lo(X)

where fo = 1 andLy(X) is the space of functions orthogonal fg¢ Thus, we
can consided as operating oiLo(X). By the Rayleigh-Ritz theorem,

X)) = ma8< ((Ii‘f’f))'
(flff;é)—O ’

Since we want a lower bound far (X), it is natural to consider the matrix
A = kI — A whose eigenvalues are easily seentébexr; (0 <i <n —1).
(A is a discrete analogue of the classical Laplace operator.) Thus,

k—1(X) = milg ((Aff—];)
<f;'}f>:o U

The strategy now is to find a functiofiwith (f, fo) = 0, that gives a good
upper bound on the quotient. We can now prove Theorem 5. We follow [9].

Proof of Theorem 5. Letu, v € G be suchthai (u, v) > 2b+2. Fori > 0,
define sets

U={xeG:dx,u) =i}
Vi={xeG:dx,v)=i}.

Then, the set&/y, Uy, ..., Uy, Vo, V1, ..., V,, are disjoint, for otherwise, by the
triangle inequality we ged (1, v) < 2b which is a contradiction. Moreover,
no vertex of

U = U_yU;
is adjacent to a vertex in

vV =U_yV

1
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for otherwised (1, v) < 2b+ 1 which is again a contradiction. For each vertex
in U;, at least one lies iv;_1; and at mosy = k — 1 lie in U; 1 (fori > 1).
Thus,

|Uis1l < qlU;l.

By the same logid,V; ;1| < ¢|V;|. By induction, we see that/,| < ¢~ |U;|
and|V,| < ¢® V| fori > 1. We will setf (x) = F; forx € U;, f(x) = G;
for x € V; and zero otherwise, with the andG; to be chosen later. Now,

(fvf):A1+Bl

where
b
Ay=Y_ FU|
i=0
and
b
Bi=) GZVil.
i=0

We now choos&y = a, Go = B, F; = ag~ Y/ andG; = B¢~ ~V/? for
i > 1. We choose andg so that(f, fo) = 0.
Now we derive an upper bound foA f, f). Note that

1 2
5 2 F@—FON? =k )= (Af )= (AL
(x,y)eE

by an easy calculation. Recall that no vertexois adjacent to a vertex of.
Moreover, f is non-zero only o/ U V. Thus, if we letA; denote the sum

1
5 2 (F@=fo)?
fotvey

and letAy be defined similarly, then
(Af, f) =Au + Ay.

If we partition according to the contribution from eath and keep in mind
that eachx € U; has at mos§ = k — 1 neighbours irU; 1, we obtain

b—1
- _i/n2 o
AU§Z|Ui|q (g i-b/2 _, 1/2) &2+ |Uplq - g~ Va2,
i=1
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This is easily computed to be

= (/g = D? (Vs +U2lg "+ -+ Upalg™ "2 +|Uslg~ V) @
+a?(2y/q — D|Uplqg~ D,

Becausey D |U;| > ¢|U;44], fori > 1, we have,

Ay < (Vg —D*(A1—adH+ 2/ - 1) A1 ; o
which is less than
<1+q —2/q9 + #) Aj.
Similarly,
Ay < (l—i—q —-2q + %) B;.
Combining these inequalities gives
k—r(X) < % <l+q—2ﬁ+2fT_l
which proves the theorem, sinke= ¢ + 1. 0

The Alon-Boppana theorem can also be deduced from a result of Serre (as
noted in [[9], p. 209]). This says that for ary> 0, there exists a positive
constantc = c(e, k) such that for everg-regular graphX, the number of
eigenvalues. of X with A > (2 — €)~/k — 1 is at leasicn wheren is the
number of vertices oX. Thus, every-regular graph has a positive proportion
of eigenvalues larger thai@ — €)v/k — 1.

4. Expanders
For any subseA of a graphX, we may define théoundary of A, denoted A,
by
A={ye X :d(y,A) =1}.

That is, the boundary ofA consists of vertices which are adjacent to some
vertexinA. Letc be a positive real number./&regular graptX with n vertices
is called ac-expander if

|0 A]
RS Z C
|Al
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for all subsetsA with |A| < |X|/2. Expander graphs play an important role in
computer science and the theory of communication networks (see [2]). These
graphs arise in questions about designing networks that connect many users
while using only a small number of switches. Our interest in them lies in the
fact that the theory of-expanders can be related to the eigenvalue questions
of the previous section.

Theideaisto apply the Rayleigh-Ritz ratio in the following way. As observed
in the previous section, lgt be a function orthogonal to the constant function.
Then

(Afs )
k—Ar(X
T > 1(X)

for ak-regular graph. Fix a subsdtof X. If we set

[ IX\A| ifxeA
f(x)_{ —|A] ifxgA

then it is easily seen thélf, fo) = 0. On the other hand, a direct calculation
shows that

(f, 1) = IXIIAl| X\A].
By using the formula
1
(ALH=5 D (f)—f)
2 (x,y)eE

we easily check that
(Af, f) = 1X?3A]
so that by the Rayleigh-Ritz theorem we obtain

BALS (k- a4l

Al X
By the definition of an expander, we consider only subdetsth [A| < |X|/2,
so that(k — A1)/2 is an expander constant f&r. Thus, making.; as small as
possible gives us good expander graphs. By the Alon-Boppana theorem, we
cannot do better than

MX) < A(X) <2Vk—-1.

Hence, Ramanujan graphs also make good expanders.
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5. Explicit Ramanujan graphs

In this section, we give a brief outline of the explicit construction of Ramanujan
graphs due to Lubotzky, Phillips and Sarnak [12]. lpeaind g be unequal
primes p,q = 1(mod 4. Let u be an integer so that? = —1(modg).

By a classical formula of Jacobi, we know that there afe 8 1) solutions

v = (a, b, c,d) such that? + b?> + ¢? + d> = p. Among these, there are
exactlyp + 1 witha > 0 andb, ¢, d even, as is easily shown. To each such
we associate the matrix

5 a—+ub ¢+ ud
"\ —c+ud a—ub

which gives usp + 1 matrices inPG L»(Z/qZ). We letS be the set of these
matricesv and takeG = PGL2(Z/qZ). In [LPS], itis shown that the Cayley
graphsX (G, S) are Ramanujan graphs. As we varywe get an infinite family
of such graphs, alp + 1-regular.

6. Counting walks in regular graphs

If A is the adjacency matrix ok, it is clear that the(x, y)-th co-ordinate
of A" enumerates the number of walks of lengtfrom x to y. We will be
interested irproper walks, that is, walks which do not have back-tracking. We
are interested in counting the number of proper walks of lengitak-regular
graph. LetA, denote the matrix whosg, y)-th entry will be the number of
proper walks fronx to y. Then,Ag = I andA; = A and clearly

A% = Ay + kI

since A, encodes the number of proper walks of length 2. Inductively, it is
clear that

A1A, = A+ (k= DA,

since the left hand side enumerates walks of lemgthl which are extended
from proper walks of lengtlr and the right side enumerates first the proper
walks of lengthr + 1 and proper walks of length— 1 which are extended to
‘improper’ walks of lengttr.

This recursion allows us to deduce the following identity of formal power
series:

Proposition 11.

(Z A,t’) (I —Ar + (k- 1)t21) =1-1)I.
r=0

From this result, it is possible to establish the rationality of the zeta function
of a regular graph (see Theorem 12 below).
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7. The lhara zeta function

Let X be ak-regular graph and sgt= k — 1. Motivated by the theory of the
Selberg zeta function, lhara [8] was led to make the following definitions and
construct the graph-theoretic analogue of it as follows. A proper walk whose
endpoints are equal is calledctsed geodesic. If y is a closed geodesic, we
denote byy" the closed geodesic obtained by repeating the watktimes.

A closed geodesic which is not the power of another one is callpdnze
geodesic. We define an equivalence relation on the closed geodesics as follows.
(x0, ..., X,) @and(yo, ..., y,») are equivalent if and only it = n and there is &

such thaty; = x;,4 for all i (and the subscripts are interpreted moduloAn
equivalence class of a prime geodesic is callgdime geodesic cycle. |hara

[Ih] then defines the zeta function

Zx(s) =[[@—q~ ")
p
where the product is over all prime geodesic cyglegnd£(p) is the length
of p.
Ihara proves the following theorem:

Theorem 12. For g = (¢ — 1)|X|/2, we have
Zx(s) = A —u®>)¢det — Au+ qu’D)™Y, u=q"".

Moreover,Zy (s) satisfies the “Riemann hypothesis” (that is, all the singular
points in the regiord < N(s) < 1lieonf(s) = 1/2)ifand only if X is a
Ramanujan graph.

Proof. (Sketch) We assume that the zeta function has the shape given (see
[25]) and show that it satisfies the Riemann hypothesis if and onky i$
Ramanujan. Le$ (z) = det(z] — A) be the characteristic polynomial df.
If we setz = (1 + qu®)/u, then the singular points dfx (s) arise from the
zeros of¢ (z). First suppose thafx(s) satisfies the “Riemann hypothesis.”
Then, for any singular point, we haveg|uol> = 1 whereug = ¢g~%. Let
z0 = (1 + qu3)/ug be the corresponding eigenvalueAfSince,

A+qudu  u+qlul’u

-
u un N )2
we see that

|zol = qluo + uol <2/q

so thatX is Ramanujan. Conversely, ¥ is Ramanujanjzo| < 2,/q for any
eigenvaluey of A. As zq is real, this meansi < 4¢ and

zoi,/z3—4q

up .= Zq
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either is not real ong = +1/,/7. If the latter is the case, we are done. In the
former case, we have as before

o+ qluol®uo
|uol?

and the reality of, forcesg|ug|? = 1, as desired. a

Hashimoto [6], as well as Stark and Terras [23] have defined a zeta function
for an arbitrary graph and established its rationality. The definition of this zeta
function is simple enough. L&¥, be the number of closed walksof length
r so that neithey nor 2 have backtracking. Then, theta function of the
graphX is defined as

[e¢]

N
Zy(t) = exp(Z rt ) .

r=1

This definition is very similar to the zeta function of an algebraic variety. It
would be interesting to interpret the singularities®f(¢) in terms of properties

of the graph. For instance, these zeta functions have a pale=atl and
Hashimoto [6] has shown that the residue at 1 is related to the number

of spanning trees of the grapti. Thus, this number is the graph-theoretic
analogue of the class number of an algebraic number field. These constructions
raise the intriguing question of whether there is a generalization of the notion
of a graph to that of a ‘supergraph’ whose zeta function would (in some cases)
coincide with those higher dimensional zeta functions of varieties.
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