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In the last two decades, the theory of Ramanujan graphs has gained promi-
nence primarily for two reasons. First, from a practical viewpoint, these graphs
resolve an extremal problem in communication network theory (see for exam-
ple [2]). Second, from a more aesthetic viewpoint, they fuse diverse branches
of pure mathematics, namely, number theory, representation theory and alge-
braic geometry. The purpose of this survey is to unify some of the recent
developments and expose certain open problems in the area. This survey is by
no means an exhaustive one and demonstrates a highly number-theoretic bias.
For more comprehensive surveys, we refer the reader to [27], [9] or [13]. For a
more up-to-date survey highlighting the connection between graph theory and
automorphic representations, we refer the reader to Winnie Li’s recent survey
article [11].

A graph X is a triple consisting of avertex set V = V (X), an edge set

E = E(X) and a map that associates to each edge two vertices (not necessarily
distinct) called itsendpoints. A loop is an edge whose endpoints are equal.
Multiple edges are edges having the same pair of endpoints. Asimple graph is
one having no loops or multiple edges. If a graph has loops or multiple edges,
we will call it a multigraph. When two verticesu andv are endpoints of an
edge, we say they areadjacent and (sometimes) writeu ∼ v to indicate this.
To any graph, we may associate theadjacency matrix A which is ann × n

matrix (wheren = |V |) with rows and columns indexed by the elements of
the vertex set and the(x, y)-th entry is the number of edges connectingx and
y. Since our graphs are undirected, the matrixA is symmetric. Consequently,
all of its eigenvalues are real.

The convention regarding terminology is not clear in the literature. Most use
the term ‘graph’ to mean a simple graph as we have defined it above. Thus, the
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2 M. Ram Murty

Ramanujan graphs constructed in the literature, which we shall refer to below,
have been all simple graphs. One can enlarge the definition of a Ramanujan
graph to the context of multigraphs so that their construction becomes slightly
simpler (see for instance, Theorem 8 below and the example that follows).

Thedegree of a vertexv, denoted deg(v), is the number of edges incident
with v, where we count a loop with multiplicity 2. With this convention, we
have the familiar “handshaking lemma” of graph theory:

∑

v∈V

deg(v) = 2|E(X)|.

We will say an edgee haslength 1, unless it is a loop, in which case we adopt
the convention that it has length 2. We will denote the length ofe by`(e). For a
multigraph, awalk of length r from x to y is a sequencex = v0, v1, ..., vr

= y

with v

i

∈ V ande

i

= (v

i

, v

i+1) ∈ E for i = 0, 1, ..., r − 1 and
∑

i

`(e

i

) = r.

A path is a walk with no repeated vertex. A word of caution must be inserted
here. In graph theory literature, the distinction between a walk and a path is
as we have defined it above. However, in the number theory circles, the finer
distinction is not made and one uses the word ‘path’ to mean a ‘walk’. (See for
example, [20] and [26].) A graph is said to beconnected if for any x, y ∈ V ,
there is a path fromx to y. The number of walks fromx to y of length r

is clearly given by thex, y-th entry ofAr , where again we have adopted the
convention of counting a loop with multiplicity 2. A graph is calledk-regular

if every vertex has degreek.
The following theorem is basic in graph theory.

Theorem 1. Let A be the adjacency matrix of an undirected graphX. Let
1(X) be the maximal degree of any vertex ofX. If λ is an eigenvalue ofA,
then|λ| ≤ 1(X).

Proof. Let v be an eigenvector ofA corresponding to an eigenvalueλ. Then,
Av = λv. Write v = (x1, ..., xn

)

t and assume without loss of generality that
|x1| = max1≤i≤n

|x

i

|. Then,

|λ||x1| =

∣

∣

∣

∣

∣

n

∑

j=1

a1j

x

j

∣

∣

∣

∣

∣

≤ |x1|

n

∑

j=1

a1j

= |x1|deg(v1) ≤ |x1|1(X)

from which we deduce|λ| ≤ 1(X). This completes the proof. 2

Corollary 2. If X is a k-regular graph, then all the eigenvaluesλ of its
adjacency matrix satisfy|λ| ≤ k.
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Since ak-regular graph is one whose adjacency matrix has every row sum
(and hence every column sum) equal tok, we clearly have thatλ0 = k is an
eigenvalue ofA with eigenvector equal tou = (1, 1, ..., 1)

t . The following
theorem makes this more precise.

Theorem 3. If X is a k-regular graph, thenλ = k is an eigenvalue with
multiplicity equal to the number of connected components ofX.

Proof. We have already proved the first part. Letv = (x1, ..., xn

)

t be an eigen-
vector of A with eigenvaluek. Without loss of generality, suppose|x1| =

max1≤i≤n

|x

i

|. We may also supposex1 > 0. Then

kx1 =

n

∑

j=1

a1j

x

j

≤

n

∑

j=1

a1j

x1 = kx1.

This means, that everyj for which a1j

6= 0, we must havex
j

= x1. In
particular, this is true for allj for which v

j

is adjacent tov1. Repeating the
argument with each of the neighbouring vertices, we deduce thatx

j

= x1 if v

j

is connected tov1. As we may duplicate this argument for each component,
the result is now clear. 2

Thus, ifX is a connectedk-regular graph, we may arrange the eigenvalues as

k = λ0(X) > λ1(X) ≥ · · · ≥ λ

n−1(X) ≥ −k.

It is not difficult to show that−k is an eigenvalue ofX if and only if X

is bipartite, in which case its multiplicity is again equal to the number of
connected components. Any eigenvalueλ

i

6= ±k is referred to as a non-
trivial eigenvalue. We denote byλ(X) the maximum of the absolute values of
all the non-trivial eigenvalues. ARamanujan multigraph is ak-regular graph
satisfying

λ(X) ≤ 2
√

k − 1.

A Ramanujan graph is a Ramanujan multigraph having no multiple edges
or loops. The motivation for these definitions will become apparent in later
sections. The significance of such graphs will also be elaborated upon later.
For the moment, let us state that the explicit construction (see section 5 below)
of such graphs for a fixedk andn → ∞ has only been described in the case
k − 1 is prime [12], [14] or a prime power [15] and it is still an open problem
in the general case. Thus, the simplest case that is open is whenk = 7. That
is, we must construct a family of 7-regular graphsX

i

with |X

i

| tending to
infinity whose corresponding adjacency matrices have non-trivial eigenvalues
λ satisfying|λ| ≤ 2

√

6. In this context, Pizer [18] constructs what he calls
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‘almost’ Ramanujan graphs by using the theory of Hecke operators. More
precisely, he shows that for everyk, there is a family ofk-regular graphsX

i

with
|X

i

| tending to infinity and the non-trivial eigenvaluesλ of the corresponding
adjacency matrices satisfy the inequality|λ| ≤ d(k−1)

√

k − 1 whered(k−1)

denotes the number of positive divisors ofk − 1.
The complete graphK

r

as well as the bipartite graphK
r,r

are easily seen to
be Ramanujan (see the discussion in section 2). The Petersen graph (see Figure
1) is a 3-regular graph whose adjacency matrix has characteristic polynomial
(λ − 3)(λ + 2)

4
(λ − 1)

5, and thus is easily seen to be Ramanujan.

u

u

u u

uu

u

u

uu

Figure 1. The Petersen Graph

Friedman [5] has shown that randomk-regular graphs are close to being
Ramanujan in the sense thatλ1 (as defined above) satisfies

λ1 ≤ 2
√

k − 1 + 2 logk + O(1).

1. Preliminaries

We can define a metric on a connected graph by defining the distanced(x, y)

for x, y ∈ V as the minimal length amongst all the paths fromx to y. The
diameter of a connected graph is then the maximum value of the distance
function. We begin by deriving a simple estimate for the diameter of ak-regular
graph involvingλ(X) due to Chung [3]. IfA is the adjacency matrix, then the
(x, y)-th entry ofAr is the number of walks fromx to y of lengthr. Hence, if
every entry ofAm is strictly positive, then the diameter ofX is at mostm. We
will use this observation below to derive an upper bound for the diameter of a
k-regular graph.
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Let n = |V | andu0, u1, ..., un−1 be an orthonormal basis of eigenvectors
of A with corresponding eigenvaluesλ0, ..., λn−1 respectively. We may take
u0 = u/

√

n whereu = (1, 1, ..., 1)

t as defined earlier. We can write

A =

n−1
∑

i=0

λ

i

u

i

u

t

i

.

More generally,

A

r

=

n−1
∑

i=0

λ

r

i

u

i

u

t

i

.

In particular, we see that the(x, y)-th entry ofAm is

=

∑

i

λ

m

i

(u

i

u

t

i

)

x,y

.

If X is a connectedk-regular graph,λ0 = k and the above expression is

≥

k

m

n

−

∣

∣

∣

∑

i≥1

λ

m

i

(u

i

)

x

(u

i

)

y

∣

∣

∣

.

Let us assume thatX is not bipartite (so that−k is not an eigenvalue). Then,
by the Cauchy-Schwarz inequality,

∣

∣

∣

∑

i≥1

λ

m

i

(u

i

)

x

(u

i

)

y

∣

∣

∣

≤ λ(X)

m

(

∑

i≥1

(u

i

)

2
x

)1/2(
∑

i≥1

(u

i

)

2
y

)1/2

.

Recalling that theu
i

’s form an orthonormal basis, this is easily seen to be

≤ λ(X)

m

(1 − (u0)
2
x

)

1/2
(1 − (u0)

2
y

)

1/2
≤ λ(X)

m

(1 − 1/n).

Thus, the(x, y)-th entry ofAm is always positive if

k

m

λ(X)

m

> n − 1.

In other words, we have proved

Theorem 4. (Chung, 1989) LetX be ak-regular graph withn vertices and
diameterm. If X is not bipartite, then

m ≤

log(n − 1)

log(k/λ(X))

+ 1.
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A similar result can be derived fork-regular bipartite graphs. In fact, by a
minor modification of the above proof, one can show that for bipartitek-regular
graphs, we have (see [19])

m ≤

log(n − 2)/2

log(k/λ(X))

+ 2.

The inequality of Theorem 4 shows that the diameter is minimized by min-
imizing λ(X). (Theorem 5 below also shows this.) In communication theory,
one requires the network to have small diameter for efficient operation.

There is another elementary observation about the eigenvalueλ(X) that is
worth making. Observe that the eigenvalues ofAA

t are simply the squares of
the eigenvalues ofA. On the other hand, the trace ofAA

t is simplykn for a
k-regular graphX. Thus, ifX is not bipartite,

k

2
+ (n − 1)λ(X)

2
≥ kn

which gives the inequality

λ(X) ≥

(

n − k

n − 1

)1/2
√

k.

If X is bipartite, then

2k

2
+ (n − 2)λ(X)

2
≥ nk,

in which case

λ(X) ≥

(

n − 2k

n − 2

)1/2
√

k.

If we think of k as fixed andn → ∞, then we see that

lim
n → ∞

λ(X) ≥

√

k.

A theorem due to Alon and Boppana (see [12]) asserts that

lim inf
n → ∞

λ(X

n,k

) ≥ 2
√

k − 1

where the lim inf is taken overk regular graphs withn going to infinity. Several
proofs of this result exist in the literature [12], [9]. A sharper version was
derived by Nilli [17] (who is also known as N. Alon):

Theorem 5. (Nilli, 1991) Suppose thatX is ak-regular graph. Assume that
the diameter ofX is ≥ 2b + 2 ≥ 4. Then

λ1(X) ≥ 2
√

k − 1 −

2
√

k − 1 − 1

b

.
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To keep this paper self-contained, we give the proof in section 3 below.
Let us make the following observation. Ifm = d(u, v) is the diameter ofX,

then the number of walks fromu of lengthm is≤ k

m and as each such walk has
m+1 vertices, we deduce that the number of verticesn satisfies the inequality

n ≤ (m + 1)k

m

.

Thus, if k is fixed andn → ∞, then the diameter also tends to infinity. In
particular, Theorem 5 implies the Alon-Boppana theorem sinceλ(X) ≥ λ1(X).

2. Cayley graphs

There is a simple procedure for constructingk-regular graphs using group
theory. This can be described as follows. LetG be a finite group andS a k-
element multiset ofG. That is,S hask elements where we allow repetitions.
We suppose thatS is symmetric in the sense thats ∈ S impliess

−1
∈ S (with

the same multiplicity). Now construct the graphX(G, S) by having the vertex
set to be the elements ofG with (x, y) an edge if and only ifx−1

y ∈ S. Since
S is allowed to be a multiset,X(G, S) may have multiple edges.

If G is abelian, the eigenvalues of the Cayley graph are easily determined
as follows. The cognoscentii will recognize that it is the classical calculation
of the Dedekind determinant in number theory.

Theorem 6. LetG be a finite abelian group andS a symmetric subset ofG
of sizek. Then the eigenvalues of the adjacency matrix ofX(G, S) are given by

λ

χ

=

∑

s∈S

χ(s)

asχ ranges over all the irreducible characters ofG.

Remark. Notice that for the trivial character, we haveλ0 = k. If we have for
all χ 6= 1

∣

∣

∣

∣

∣

∑

s∈S

χ(s)

∣

∣

∣

∣

∣

< k

then the graph is connected by our earlier remarks. Thus, to construct Ramanu-
jan graphs, we require

∣

∣

∣

∣

∣

∑

s∈S

χ(s)

∣

∣

∣

∣

∣

≤ 2
√

k − 1

for every non-trivial irreducible characterχ of G. This is the strategy employed
in many of the explicit constructions of Ramanujan graphs.
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Proof. For each irreducible characterχ , let v
χ

denote the vector(χ(g) : g ∈

G). Let δ
S

(g) equal 0 ifg /∈ S, andm if g ∈ S with multiplicity m. Denote by
A the adjacency matrix ofX(G, S). Thus, thei, j -th entry ofA is the number
of edges betweeni andj . Then,

(Av

χ

)

x

=

∑

g∈G

δ

S

(x

−1
g)χ(g).

By replacingx−1
g by s, we obtain

(Av

χ

)

x

= χ(x)

(

∑

s∈S

χ(s)

)

which shows thatv
χ

is an eigenvector with eigenvalue
∑

s∈S

χ(s)

which completes the proof. 2

We remark that in the above proof, we did not really use the symmetry of
the setS and so the result extends to Cayley digraphs as well.

As mentioned above, this calculation is reminiscent of the Dedekind deter-
minant formula in number theory. Recall that this formula computes detA

whereA is the matrix whose(i, j)-th entry isf (ij

−1
) for any functionf

defined on the finite abelian groupG of ordern. The determinant is

∏

χ

(

∑

g∈G

f (g)χ(g)

)

.

The proof is analogous to the calculation in the proof of Theorem 6 and we leave
it to the reader. As an application, it allows us to compute the determinant of a
circulant matrix. For instance, we can compute the characteristic polynomial
of the complete graph. Indeed, it is not hard to see that by taking the additive
cyclic group of ordern and settingf (0) = −λ, f (a) = 1 fora 6= 0, we obtain
that the characteristic polynomial is

(λ − (n − 1))(λ + 1)

n−1

by the Dedekind determinant formula. As the complete graph of ordern is an
(n − 1)-regular graph, we see immediately from the above calculation that it
is a Ramanujan graph.

Another example of a Ramanujan graph is the bipartite graphK

r,r

. This is
anr-regular graph whose adjacency matrix has eigenvalues equal tor, −r and
0 as is easily checked. In fact, its characteristic polynomial is

(λ − r)(λ + r)λ

2r−2
.
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If G is an abelian group andS is a subset ofG, we can define another set of
graphsY (G, S) calledsum graphs as follows. The vertices consist of elements
of G and(x, y) is an edge ifxy ∈ S. If we allow S to be a multiset, then we
get a graph with multiple edges. Arguing as before, we can show (see [[9], p.
197]):

Theorem 7. Let G be an abelian group. For each characterχ of G, the
eigenvalues ofY (G, S) are given as follows. Define

e

χ

=

∑

s∈S

χ(s).

If e

χ

= 0, thenv

χ

and v

χ

−1 are both eigenvectors with eigenvalues zero. If
e

χ

6= 0, then

|e

χ

|v

χ

± e

χ

v

χ

−1

are two eigenvectors with eigenvalues±|e

χ

|.

To begin, a simple example can be given using Gauss sums. Forp an odd
prime, letG = Z/pZ andS be the multiset of squares. The multigraphX(G, S)

is easily seen to be Ramanujan in view of the fact (see for example, [[16], p.
81]):

∣

∣

∣

∣

∣

∑

x∈Z/pZ

e

2πiax

2
/p

∣

∣

∣

∣

∣

=

√

p

for anya 6= 0. By our convention in the computation of degree of a vertex, we
see thatX(G, S) is ap + 1-regular graph.

Using Theorem 7, Winnie Li [10] constructed Ramanujan graphs in the
following way. LetF

q

denote the finite field ofq elements. LetG = F

q

2 and
take forS the elements ofG of norm 1. This is a symmetric subset ofG and the
Cayley graphX(G, S) turns out to be Ramanujan. The latter is a consequence
of a theorem of Weil estimating Kloosterman sums (see [22]).

These results allow us to construct Ramanujan graphs by estimating charac-
ter sums. However, by allowingS to be a multiset, the construction of Ramanu-
jan multigraphs is slightly simplified, as the following theorem shows.

Theorem 8. Let G = F

q

be a finite field ofq = p

m elements andf (x) a
polynomial with coefficients inF

q

and of degree2 or 3. LetS be the multiset

{f (x) : x ∈ F

q

}.

SupposeS is symmetric. Then,Y (G, S) is a Ramanujan graph.
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The required character sum estimates come from Weil’s proof of the Rie-
mann hypothesis for the zeta functions of curves over finite fields. In particular,
we have for alla ∈ F

q

, a 6= 0,
∣

∣

∣

∣

∣

∑

x∈F

q

exp(2πitr
F

q

/F

p

(af (x))/p)

∣

∣

∣

∣

∣

≤ (degf − 1)

√

q

providedf is not identically zero (see [[9], p. 94]). In particular, iff has
degree 3, we get the estimate of 2

√

q for the exponential sum. For example, if
u ∈ Z/pZ and we take

S = {x

3
+ ux : x ∈ Z/pZ},

thenS is symmetric and, according to our convention,X(G, S) is ak-regular
graph withk = p + 1. In addition, it is a Ramanujan graph since

∣

∣

∣

∣

∣

∑

x∈Z/pZ

exp(2πia(x

3
+ ux)/p)

∣

∣

∣

∣

∣

≤ 2
√

p

by virtue of the Riemann hypothesis for curves (proved by Weil).
There is a generalization of these results to the non-abelian context. This is

essentially contained in a paper by Diaconis and Shahshahani [4]. Using their
results, one can easily generalize the Dedekind determinant formula as follows
(and which does not seem to be widely known). LetG be a finite group and
f a class function onG. Then the determinant of the matrixA whose rows
(and columns) are indexed by the elements ofG and whose(i, j)-th entry is
f (ij

−1
) is given by

∏

χ

(

1

χ(1)

∑

g∈G

f (g)χ(g)

)

χ(1)

with the product over the distinct irreducible characters ofG.
The following theorem is implicitly contained in [[4], p. 175].

Theorem 9. LetG be a finite group andS a symmetric subset which is stable
under conjugation. LetA be the adjacency matrix of the graphX(G, S) (where
u, v ∈ G are adjacent if and only ifuv

−1
∈ S). Then the eigenvalues ofA are

given by

λ

χ

=

1

χ(1)

∑

s∈S

χ(s)

asχ ranges over all irreducible characters ofG. Moroever, the multiplicity of
λ

χ

is χ(1)

2.
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We remark that theλ
χ

in the above theorem need not be all distinct. For
example, if there is a non-trivial characterχ which is trivial onS, then the
multiplicity of the eigenvalue|S| is at least 1+ χ(1)

2.

Proof. We essentially modify the proof on pp. 176–177 of [4] to suit our
context. We consider the group algebraC[G] with basis vectorse

g

with g ∈ G

and multiplication defined as usual bye

g

e

h

= e

gh

. We defineQ to be the linear
operator that acts onC[G] by left multiplication by

∑

s∈S

e

s

=

∑

g∈G

δ

S

(g)e

g

.

The matrix representation ofQ with respect to the basis vectorse

g

with g ∈ G

is precisely the adjacency matrix ofX(G, S) as is easily checked. Ifr denotes
the left regular representation ofG onC[G], we find that the action of

r(A) =

∑

s∈S

r(s)

onC[G] is identical toQ. Moreover,C[G] decomposes as

C[G] = ⊕

ρ

V

ρ

where the direct sum is over non-equivalent irreducible representations of
G and the subspaceV

ρ

is a direct sum of degρ copies of the subspaceW
ρ

corresponding to the irreducible representationρ. The result is now clear from
basic facts of linear algebra. 2

We refer the reader to [1] for a more detailed proof of the above in a slightly
general context.

3. Relating the diameter andλ1

In this section, we will give the promised proof of the following result of Nilli
[17]:

Theorem 5. LetX be ak-regular graph. If the diameter ofX is≥ 2b+2 ≥ 4,
then

λ1(X) > 2
√

k − 1 −

2
√

k − 1 − 1

b

.

As we remarked earlier, the diameter goes to infinity as|X| goes to infinity.
Thus, we deduce:
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Theorem 10. (Alon-Boppana)

lim inf
n → ∞

λ(X

n,k

) ≥ 2
√

k − 1

whereX

n,k

denotes ak-regular graph withn vertices.

We preface our proof of Theorem 2 with a few remarks from linear algebra.
LetA be a symmetric matrix (a similar analysis applies to Hermitian matrices).
Let λmax andλmin be the largest and smallest eigenvalues ofA respectively.
Then, (see [[7], p. 176]) we have

λmax = max
v 6=0

(Av, v)

(v, v)

and

λmin = min
v 6=0

(Av, v)

(v, v)

.

To see this, observe that ifU denotes the matrix whose columns form an
orthonormal basis of eigenvectors ofA, then we may write

A = UDU

t

whereD is a diagonal matrix whose diagonal entries are the eigenvalues ofA.
Thus,

(Av, v) = v

t

Av = v

t

UDU

t

v =

∑

i

λ

i

|(U

t

v)

i

|

2
.

As each of the terms|(Ut

v)

i

|

2 is non-negative,

λmin

∑

i

|(U

t

v)

i

|

2
≤ v

t

Av ≤ λmax

∑

i

|(U

t

v)

i

|

2
.

SinceU is an orthogonal matrix, we have
∑

I

|(U

t

v)

i

|

2
=

∑

i

|v

i

|

2
= v

t

v.

Thus, ifv 6= 0,

λmin ≤

(Av, v)

(v, v)

≤ λmax.

The inequalities are easily seen to be sharp by considering the eigenvectors
corresponding toλmax andλmin respectively, which proves our assertion. This
result is usually referred to as the Rayleigh-Ritz theorem in the literature.
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Now letL(X) denote the space of real-valued functions onX. We can equip
the vector spaceL(X) with an inner product by defining

(f, g) =

∑

x∈X

f (x)g(x).

We can view the adjacency matrix as acting onL(X) via the formula

(Af )(x) =

∑

(x,y)∈E

f (y).

For a connectedk-regular graph,λ0 = k is an eigenvalue of multiplicity 1 and
the corresponding eigenspace is the set of constant functions. Hence, we can
decompose our space as

L(X) = Rf0 ⊕ L0(X)

wheref0 ≡ 1 andL0(X) is the space of functions orthogonal tof0. Thus, we
can considerA as operating onL0(X). By the Rayleigh-Ritz theorem,

λ1(X) = max
f 6=0

(f,f0)=0

(Af, f )

(f, f )

.

Since we want a lower bound forλ1(X), it is natural to consider the matrix
1 = kI − A whose eigenvalues are easily seen to bek − λ

i

(0 ≤ i ≤ n − 1).
(1 is a discrete analogue of the classical Laplace operator.) Thus,

k − λ1(X) = min
f 6=0

(f,f0)=0

(1f, f )

(f, f )

.

The strategy now is to find a functionf with (f, f0) = 0, that gives a good
upper bound on the quotient. We can now prove Theorem 5. We follow [9].

Proof of Theorem 5. Letu, v ∈ G be such thatd(u, v) ≥ 2b+2. Fori ≥ 0,
define sets

U

i

= {x ∈ G : d(x, u) = i}

V

i

= {x ∈ G : d(x, v) = i}.

Then, the setsU0, U1, ..., Ub

, V0, V1, ..., Vb

are disjoint, for otherwise, by the
triangle inequality we getd(u, v) ≤ 2b which is a contradiction. Moreover,
no vertex of

U = ∪

b

i=0Ui

is adjacent to a vertex in

V = ∪

b

i=0Vi
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for otherwised(u, v) ≤ 2b+1 which is again a contradiction. For each vertex
in U

i

, at least one lies inU
i−1 and at mostq = k − 1 lie in U

i+1 (for i ≥ 1).
Thus,

|U

i+1| ≤ q|U

i

|.

By the same logic,|V
i+1| ≤ q|V

i

|. By induction, we see that|U
b

| ≤ q

(b−i)

|U

i

|

and|V

b

| ≤ q

(b−i)

|V

i

| for i ≥ 1. We will setf (x) = F

i

for x ∈ U

i

, f (x) = G

i

for x ∈ V

i

and zero otherwise, with theF
i

andG

i

to be chosen later. Now,

(f, f ) = A1 + B1

where

A1 =

b

∑

i=0

F

2
i

|U

i

|

and

B1 =

b

∑

i=0

G

2
i

|V

i

|.

We now chooseF0 = α, G0 = β, F

i

= αq

−(i−1)/2 andG

i

= βq

−(i−1)/2 for
i ≥ 1. We chooseα andβ so that(f, f0) = 0.

Now we derive an upper bound for(1f, f ). Note that

1

2

∑

(x,y)∈E

(f (x) − f (y))

2
= k(f, f ) − (Af, f ) = (1f, f )

by an easy calculation. Recall that no vertex ofU is adjacent to a vertex ofV .
Moreover,f is non-zero only onU ∪ V . Thus, if we letA

U

denote the sum

1

2

∑

(x,y)∈E

x ory ∈U

(f (x) − f (y))

2

and letA
V

be defined similarly, then

(1f, f ) = A

U

+ A

V

.

If we partition according to the contribution from eachU

i

and keep in mind
that eachx ∈ U

i

has at mostq = k − 1 neighbours inU
i+1, we obtain

A

U

≤

b−1
∑

i=1

|U

i

|q

(

q

−(i−1)/2
− q

−i/2
)2

α

2
+ |U

b

|q · q

−(b−1)

α

2
.
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This is easily computed to be

= (

√

q − 1)

2
(

|U1| + |U2|q
−1

+ · · · + |U

b−1|q
−(b−2)

+ |U

b

|q

−(b−1)

)

α

2

+ α

2
(2

√

q − 1)|U

b

|q

−(b−1)

.

Becauseq−(i−1)

|U

i

| ≥ q

−i

|U

i+1|, for i ≥ 1, we have,

A

U

≤ (

√

q − 1)

2
(A1 − α

2
) + (2

√

q − 1)

A1 − α

2

b

which is less than
(

1 + q − 2
√

q +

2
√

q − 1

b

)

A1.

Similarly,

A

V

<

(

1 + q − 2
√

q +

2
√

q − 1

b

)

B1.

Combining these inequalities gives

k − λ1(X) ≤

A

U

+ A

V

A1 + B1
< 1 + q − 2

√

q +

2
√

q − 1

b

which proves the theorem, sincek = q + 1. 2

The Alon-Boppana theorem can also be deduced from a result of Serre (as
noted in [[9], p. 209]). This says that for anyε > 0, there exists a positive
constantc = c(ε, k) such that for everyk-regular graphX, the number of
eigenvaluesλ of X with λ > (2 − ε)

√

k − 1 is at leastcn wheren is the
number of vertices ofX. Thus, everyk-regular graph has a positive proportion
of eigenvalues larger than(2 − ε)

√

k − 1.

4. Expanders

For any subsetA of a graphX, we may define theboundary of A, denoted∂A,
by

∂A = {y ∈ X : d(y, A) = 1}.

That is, the boundary ofA consists of vertices which are adjacent to some
vertex inA. Letc be a positive real number. Ak-regular graphX with n vertices
is called ac-expander if

|∂A|

|A|

≥ c
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for all subsetsA with |A| ≤ |X|/2. Expander graphs play an important role in
computer science and the theory of communication networks (see [2]). These
graphs arise in questions about designing networks that connect many users
while using only a small number of switches. Our interest in them lies in the
fact that the theory ofc-expanders can be related to the eigenvalue questions
of the previous section.

The idea is to apply the Rayleigh-Ritz ratio in the following way. As observed
in the previous section, letf be a function orthogonal to the constant function.
Then

(1f, f )

(f, f )

≥ k − λ1(X)

for ak-regular graph. Fix a subsetA of X. If we set

f (x) =

{

|X\A| if x ∈ A

−|A| if x /∈ A

then it is easily seen that(f, f0) = 0. On the other hand, a direct calculation
shows that

(f, f ) = |X||A||X\A|.

By using the formula

(1f, f ) =

1

2

∑

(x,y)∈E

(f (x) − f (y))

2

we easily check that

(1f, f ) = |X|

2
|∂A|

so that by the Rayleigh-Ritz theorem we obtain

|∂A|

|A|

≥ (k − λ1(X))

|X\A|

|X|

.

By the definition of an expander, we consider only subsetsA with |A| ≤ |X|/2,
so that(k − λ1)/2 is an expander constant forX. Thus, makingλ1 as small as
possible gives us good expander graphs. By the Alon-Boppana theorem, we
cannot do better than

λ1(X) ≤ λ(X) ≤ 2
√

k − 1.

Hence, Ramanujan graphs also make good expanders.
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5. Explicit Ramanujan graphs

In this section, we give a brief outline of the explicit construction of Ramanujan
graphs due to Lubotzky, Phillips and Sarnak [12]. Letp andq be unequal
primesp, q ≡ 1( mod 4). Let u be an integer so thatu2

≡ −1( modq).
By a classical formula of Jacobi, we know that there are 8(p + 1) solutions
v = (a, b, c, d) such thata2

+ b

2
+ c

2
+ d

2
= p. Among these, there are

exactlyp + 1 with a > 0 andb, c, d even, as is easily shown. To each suchv

we associate the matrix

ṽ =

(

a + ub c + ud

−c + ud a − ub

)

which gives usp + 1 matrices inPGL2(Z/qZ). We letS be the set of these
matricesṽ and takeG = PGL2(Z/qZ). In [LPS], it is shown that the Cayley
graphsX(G, S) are Ramanujan graphs. As we varyq, we get an infinite family
of such graphs, allp + 1-regular.

6. Counting walks in regular graphs

If A is the adjacency matrix ofX, it is clear that the(x, y)-th co-ordinate
of A

r enumerates the number of walks of lengthr from x to y. We will be
interested inproper walks, that is, walks which do not have back-tracking. We
are interested in counting the number of proper walks of lengthr in ak-regular
graph. LetA

r

denote the matrix whose(x, y)-th entry will be the number of
proper walks fromx to y. Then,A0 = I andA1 = A and clearly

A

2
= A2 + kI

sinceA2 encodes the number of proper walks of length 2. Inductively, it is
clear that

A1Ar

= A

r+1 + (k − 1)A

r−1,

since the left hand side enumerates walks of lengthr + 1 which are extended
from proper walks of lengthr and the right side enumerates first the proper
walks of lengthr + 1 and proper walks of lengthr − 1 which are extended to
‘improper’ walks of lengthr.

This recursion allows us to deduce the following identity of formal power
series:

Proposition 11.
(

∞

∑

r=0

A

r

t

r

)

(

I − At + (k − 1)t

2
I

)

= (1 − t

2
)I.

From this result, it is possible to establish the rationality of the zeta function
of a regular graph (see Theorem 12 below).
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7. The Ihara zeta function

Let X be ak-regular graph and setq = k − 1. Motivated by the theory of the
Selberg zeta function, Ihara [8] was led to make the following definitions and
construct the graph-theoretic analogue of it as follows. A proper walk whose
endpoints are equal is called aclosed geodesic. If γ is a closed geodesic, we
denote byγ r the closed geodesic obtained by repeating the walkγ r times.
A closed geodesic which is not the power of another one is called aprime

geodesic. We define an equivalence relation on the closed geodesics as follows.
(x0, ..., xn

) and(y0, ..., ym

) are equivalent if and only ifm = n and there is ad
such thaty

i

= x

i+d

for all i (and the subscripts are interpreted modulon). An
equivalence class of a prime geodesic is called aprime geodesic cycle. Ihara
[Ih] then defines the zeta function

Z

X

(s) =

∏

p

(

1 − q

−s`(p)

)

−1

where the product is over all prime geodesic cyclesp and`(p) is the length
of p.

Ihara proves the following theorem:

Theorem 12. For g = (q − 1)|X|/2, we have

Z

X

(s) = (1 − u

2
)

−g det(I − Au + qu

2
I )

−1
, u = q

−s

.

Moreover,Z
X

(s) satisfies the “Riemann hypothesis” (that is, all the singular
points in the region0 < <(s) < 1 lie on <(s) = 1/2 ) if and only ifX is a
Ramanujan graph.

Proof. (Sketch) We assume that the zeta function has the shape given (see
[25]) and show that it satisfies the Riemann hypothesis if and only ifX is
Ramanujan. Letφ(z) = det(zI − A) be the characteristic polynomial ofA.
If we setz = (1 + qu

2
)/u, then the singular points ofZ

X

(s) arise from the
zeros ofφ(z). First suppose thatZ

X

(s) satisfies the “Riemann hypothesis.”
Then, for any singular points0, we haveq|u0|

2
= 1 whereu0 = q

−s0. Let
z0 = (1 + qu

2
0)/u0 be the corresponding eigenvalue ofA. Since,

zu

u

=

(1 + qu

2
)u

uu

=

u + q|u|

2
u

|u|

2

we see that

|z0| = q|u0 + u0| ≤ 2
√

q

so thatX is Ramanujan. Conversely, ifX is Ramanujan,|z0| ≤ 2
√

q for any
eigenvaluez0 of A. As z0 is real, this meansz2

0 ≤ 4q and

u0 :=
z0 ±

√

z

2
0 − 4q

2q
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either is not real oru0 = ±1/

√

q. If the latter is the case, we are done. In the
former case, we have as before

z0 =

u0 + q|u0|
2
u0

|u0|
2

and the reality ofz0 forcesq|u0|
2

= 1, as desired. 2

Hashimoto [6], as well as Stark and Terras [23] have defined a zeta function
for an arbitrary graph and established its rationality. The definition of this zeta
function is simple enough. LetN

r

be the number of closed walksγ of length
r so that neitherγ nor γ

2 have backtracking. Then, thezeta function of the
graphX is defined as

Z

X

(t) = exp

(

∞

∑

r=1

N

r

t

r

r

)

.

This definition is very similar to the zeta function of an algebraic variety. It
would be interesting to interpret the singularities ofZ

X

(t) in terms of properties
of the graph. For instance, these zeta functions have a pole att = 1 and
Hashimoto [6] has shown that the residue att = 1 is related to the number
of spanning trees of the graphX. Thus, this number is the graph-theoretic
analogue of the class number of an algebraic number field. These constructions
raise the intriguing question of whether there is a generalization of the notion
of a graph to that of a ‘supergraph’ whose zeta function would (in some cases)
coincide with those higher dimensional zeta functions of varieties.
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