A SMOOTH SELBERG SIEVE AND APPLICATIONS
M. RAM MURTY AND AKSHAA VATWANI

ABSTRACT. We introduce a new technique for sieving over smooth moduli in the higher
rank Selberg sieve and obtain asymptotic formulas for the same.

1. INTRODUCTION

The Bombieri-Vinogradov theorem establishes that the primes have a level of distribu-
tion ¢ for any 6 < 1/2. More precisely, letting 7(z) denote the number of primes upto z,
we put for (a,q) =1,

(1.1) Ep(r,qa)= > xeln)— —=

n<x
n=a (mod q)

where yp is the characteristic function of the primes. Then, the primes are said to have a
level of distribution 6 if for any A > 0, we have

x
1.2 max | Ep(z,q,a) |[< —.
) q;ce(“"’“’ P00 < ogya

The chief innovation of Zhang [25] is the extension of the level of distribution of the
primes to beyond # = 1/2, albeit in a weaker sense by restricting the moduli to be
smooth or free of large prime factors. It is this breakthrough, combined with the clas-
sical GPY approach using the Selberg sieve that enabled him to obtain his spectacular
result on bounded gaps between primes in May 2013. Collaborative efforts of a num-
ber of mathematicians [18] succeeded in improving the level of distribution in Zhang’s
equidistribution result from 6 = 1 + -1 to § = 1 + .. More precisely, the following was
proved. Let P*(q) denote the largest prime factor of ¢. Then, for any w, { > 0 satisfying

600w + 180¢ < 7, and any A > 0, we have
1.3 max | Ep(x,q,a) |K
(13) > max | Be(w,q.0) |

q<z®
Pt(q)<axt

(log z)4’

where © = % + 2w. Applying this improved result to Zhang’s work, along with sophis-
ticated numerical techniques, the bound for gaps between primes was reduced from 70
million in [25] to 14950 in [18].

In October 2013, Maynard [13] and Tao [19] independently applied the higher rank
Selberg sieve to the problem of bounded gaps, thereby obtaining bounded gaps between
primes for any positive level of distribution. They also obtained better numerical values.
The natural next step in this sequence of ideas is to combine the new equidistribution
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estimate (1.3) with the higher rank Selberg sieve. This has been done in [19], employing
efficient numerical methods and extensive computations to reduce the bound still further
to 246.

Recently, the authors ([17], [16] gave an axiomatic formulation of the higher rank sieve
as a general method, along with applications. This work allows one to see clearly the un-
derlying structure of the sieve and motivates a more general way to incorporate smooth-
ing into the higher rank Selberg sieve. In [19], the moduli are constrained to be free of
large prime factors by truncating the support of the function 7 appearing in (3.2). Our
method imposes smoothing as an explicit condition and leads to expressions involving
the Dickman and Buchstab functions (cf. Section 4) as would be expected. The general
theory of the same forms the crux of this paper. In forthcoming work, we will discuss
applications of this theory.

2. NOTATION

We will continue with the notation used in [17]. We include the same briefly here for the
sake of completeness. We denote the k-tuple of integers (dy, ..., d;) by d. A tuple is said
to be square-free if the product of its components is square-free. For R € R, the inequality
d < Rmeans that [ [, d; < R. The notions of divisibility and congruence among tuples are
defined component-wise. Divisibility relations between a tuple and a scalar are defined
in terms of the product of the components of the tuple. For example,

qld <= q| H d;.

We define the multiplicative vector function f(d) as the product of its component (multi-
plicative) functions acting on the corresponding components of the tuple, that is,

fld) = Hﬂ(cm-

We use [, ] and (-, ) to denote lcm and ged respectively. In the case of tuples, this means
the product of the lems (or geds) of the corresponding components. We employ the fol-
lowing multi-index notation to denote mixed derivatives of a function on k-tuples, F(t).

. PO = G e

for any k-tuple a with o := Zle aj.

Let P*(q) denote the largest prime factor of ¢. Then ¢ is said to be m-smooth if P*(q) <
m. For a tuple d, P*(d) denotes the largest prime factor dividing any of the components
of d. We use the conventionn ~ N tomean N < n < 2N. In practice we have N — oco. We
fix Dy = logloglog N and let W = [, p. Then W ~ loglog N"*°1) by an application
of the prime number theorem. Let w(n) denote the number of distinct prime factors of n.
The greatest integer less than or equal to x is denoted as |z]. Throughout this paper, ¢

denotes a positive quantity which can be made as small as needed.
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3. THE HIGHER RANK SELBERG SIEVE

In this section, we recall the salient features of the higher rank Selberg sieve discussed
in [17]. The exposition given here is concise for the sake of brevity and the reader is
encouraged to peruse Section 3.2 of the above mentioned paper.

Given a set S of k-tuples (not necessarily finite),

S={n=(ny,...,n)}

in [17], we undertook a systematic study of sums of the form

(3.1) §jwn<§jx03

satisfying certain hypotheses. Here w, is a ‘weight” attached to the tuples n and \;’s are
sieve parameters chosen in terms of a fixed positive real number R and a smooth real
valued test function F supported on the simplex

Ap(1) == {(ts, ..., tp) €[0,00)F i t, + ...+, < 1}.

More precisely, we chose :

logR’" " logR

The sum (3.1) was assumed to satisfy the following hypotheses.

(32) MZM@FC%% bwﬁ.

H1. If a prime p divides a tuple n such that p divides n; and n;, with ¢ # j, then p must lie
in some fixed finite set of primes P.

This allows us to perform the "W trick’, that is restrict n in the above sum to be congruent
to a residue class b (mod W) such that (b;, W) = 1 for all .

H2. The function w,, satisfies

X
2 et

din
n=b (mod W)

for some multiplicative function f and some quantity X depending on the set S.
H3. The components of f satisfy
fip) = =+ 00", witht <1
J
for some fixed o; € N.
We denote the tuple (a4, . .., o) as a and the sum of the components Z?Zl a; as a.

H4. There exists 8 > 0 and Y <« X such that

for any A > 0.

With all this in place, we state below the main results of the higher rank sieve obtained in
[17].
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Lemma 3.1. Set R to be some fixed power of X. Let f be a multiplicative function satisfying H3
and

G, H:[0,00)" = R
be smooth functions with compact support. We denote

G logd\ G log d; log dy,
logR) "~ ~ \logR' ’'logR
and similarly for H. Let the dash over the sum mean that we sum over k-tuples d and e
with [d, e] square-free and co-prime to V. Then,

rp(d)pule) , (logd loge _ ) @ W)
2 e (osn) ™ (iog) = 0 o620 oo

@[ [ (H ﬁ) O(t)H(t)

with G(¢)@ and H(¢)'@ as in the notation of (2.1). Furthermore,
pOl

W puy
) 1_VIV ¢(p)

Theorem 3.2. Let \;'s be as chosen above. Suppose hypotheses H1 to H3 hold and H4 holds with
Y = X. Set R = X%~ for small § > 0. Then,

o (@), X
> (Zxd) (1-+ o(1)CF F) el W) oo

n=b (mod W

where

with e
cﬂ@ﬂ:zzazﬁaz

and

aJI

C(F, F)@ / / (H )f(“U) dt

J=1

4. A REFINED SMOOTHING PROCEDURE

In the axiomatization of the higher rank Selberg sieve discussed in Section 3, it may be
that the hypothesis H4 holds for ¢ in a range that is too restrictive to yield good asymp-
totic formulas. Motivated by estimates of the type (1.3), we would like to consider the
following more relaxed condition on the error term instead of hypothesis H4:

H4* There exists © > 0,0 < £ < 1and Y <« X such that

Y
Y rugl <
5 (logY)4

[de]<Y®
Pt ([d,e])<Y$©/2

for any A > 0.



A SMOOTH SELBERG SIEVE AND APPLICATIONS 5

Accordingly, we now consider the sum (3.1) with additional smoothing conditions im-
posed. Let R, = X©/279. We will replace R in (3.2) by R,. The above setting motivates
the analysis of smooth sums of the kind

Z )\d)\

d 6<R1

and hence a smooth version of the sum considered in Lemma 3.1 must be studied. We do
so by emulating the Fourier analytic method adopted in [17], incorporating the smooth-
ing conditions that arise by use of the partial zeta function as well as the Dickman and
Buchstab functions.

The Dickman function p is defined recursively by the initial condition p(u) = 1, (0 <
u < 1) and the equation

The Buchstab function w is defined similarly, by the initial condition uw(u) :==1,(1 < u <
2) and the relation

uw(u) =1+ /lu— wv)dv, (u>2).

These functions have a long and venerable history. Though Dickman’s paper [5] where he
introduced the function, was published in 1930, it seems that Ramanujan (unpublished)
had studied it more than a decade earlier (see p. 337 of [20]). Indeed, Ramanujan writes
down the following explicit formula for the Dickman function p(u). Put I, = 1 and define

(for k > 1) recursively
/ / diy ..

1,0, <1
t14...+te<u

Then,

o) =3 E ).

The study of p(u) became dormant for almost two decades until 1947, when Chowla and
Vijayaraghavan studied it unaware of any earlier work (see [3]). Two years later, Buchstab
[2] studied the same function (again unaware of any earlier work). It was de Bruijn [4],
in 1951, who began exhaustive research into the nature of this function and obtained
an asymptotic expansion for it. In 1980, Hildebrand and Tenenbaum [23, 24] extended
considerably the range of applicability of de Bruijn’s formulas. We refer the reader to the
excellent survey of Moree [14] for further details.

We state some results which will be useful in our analysis. These are from [23], after
minor changes in notation.

Proposition 4.1. (p. 379 of [23]) For the partial zeta function, defined as

o6 =TI (1 - pi)l

p<y
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we have,
Gy(s) = ((s)e” "V (14 O(Le(y) ™)
where
[e’e) e—s—t
J(s) = /0 " dt
and

Le(y) = exp{(logy)*/*}.

Proposition 4.2. (Theorem 7, p. 372 of [23]) Let p be the Dickman function and p be the Laplace
transform of p defined as

Then,
sp(s) = e 7,

We use the notation w' := § + w, where § is the Dirac delta function. Then ﬁ(s) =
1+ @(s), in the distributional sense.

Proposition 4.3. (Theorem 5, p. 404 of [23]) Let w denote the Buchstab function and & be its
Laplace transform given by

Then,

swt(s) = —.

Henceforth, ¢ is a fixed number, 0 < £ < 1. We also recall the following notation which
will be widely used. If g is a vector function, that is, g(¢) is defined as []; g;(¢;), we use
the notation g(¢)* to denote the product [[; g;(¢;)®. It is clear that

wh(t) = HW+(tj) = [J(w(t) +6(t)).

J

We prove some results towards obtaining a smooth version of Lemma 3.1. These will play
an important role in subsequent discussion.

Lemma 4.4. Let f be a multiplicative function satisfying H3 with respect to the tuple a =
(aq,...,ax). Let G, H be smooth functions with compact support as in Lemma 3.1. We retain all
the notation used in Lemma 3.1. Then the RS- smooth sum

Z' u(d)u(g)g ( log d ) ” ( log e )

= Jde]) " \log Ry log Ry )

P*([de])<R§

is asymptotic (as Ry — oo) to

(W)

o (2)
(log Rl)ag ng,H (g) s

(1+0(1))
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where 6g.3,(£)\Y) is the integral

4.1 1 ay (@) g, d
1) [ om0+ )7 (14 )T )
with

T(u,v) @2 = OF (14 iu)€) wF (1 + @))% H((2 + iu + iv)€)2,

no(w) = [ Gty exp(t) expliu - / G(t) explt) expli - 1)t
where exp(t) = H5:1 e'i and the dot denotes the usual dot product of tuples.

Proof. Let y = RS. As the required sum is the same as the one considered in Lemma 3.1
with an additional smoothing condition imposed, we will follow the proof of the afore-
said lemma given in [17], with details to highlight any modifications. All references to
[17] in this proof are understood to refer to the relevant steps in the proof of Lemma 3.1
in that paper.

Using Fourier inversion as in [17], this sum is given by the integral

4.2) / / ng(w)nw(v) Z, (u, v)dudv,
RF JRE
where Z,(u, v) is now Z(u,v) of [17] along with a smoothing condition, that is,
_ o pl(d)pe) 1 1
Zy(4,v) = ; F([d, ¢]) g/ oe s (i) /log s
P ((d.e)<y

Again, we can write an Euler product for Z,(u,v), as in [17], but it will run only over
primes Dy < p < y, as opposed to the Euler product that we had in [17] over primes
greater than D,. This is because, the dash over the sum constrains [d, e] to be co-prime to
W and the smoothing condition means that its prime factors must be below y. Hence, the
Euler product for Z,(u,v) is given by

1 1
H 1 o Z 1+“" + 1+i'u]- - 1+iuj n 1+i1;]- .
pWp<y ploe Rl plos ’a plog Ry "log Ry

After applying H3 to retrieve the behavior of f;(p) for each component 1 < j < k, some
algebraic manipulation along the lines in [17] gives us the following convenient approxi-
mation

1 1+7luj 1 1+ivj
(1 J— a]p logRl) (1 J— a]p logRl)
(4.3) Zy(u,v) = (1+o( H H

24iu;+iv,;
11— "y
j=1 Do<p<y 1—ajp log iy

This leads us to examine for each j, Euler products of the form

(4.4) I1 (1 . pf‘jgj) :

Do<p<y
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with Re(s;) > 0. We write the above Euler product as

ij 1 T 1 &
H (1 - p1+sj) (1 - p1+sj) (1 B p1+s]~)

Do<p<y
1 &

:Dj(l—}-s]) H (].— 1+Sj) ;

Do<p<y p
where
) 1\ %
0= 1L(0-5)(5)
Do<p<y p p

is an Euler product supported on primes Dy, < p < y and analytic for Re(s) > 0. For
Re(s) > 1, we have

Di(s)=1+0( Y  p7?),

Do<p<y

showing that D;(s) = 1+ o(1) as R; (and hence y as well as D,) goes to co. Proceeding as
in [17], we obtain

Do<p<y p|W

Fix some small € > 0. As done in [17], it is possible to show that the main contribution to
(4.2) comes from the region |ul, |v| < (log R)‘. Hence, we would like to analyze ¢, (1 + s;)
as s; — 0. Combining Propositions 4.1 and 4.2, we obtain as s; — 0% and y — oo,

Cy(1+55) = (s;logy)C(1 4 5;)p (s5logy) (1 + O(Le(y) ™))
= (14 0o(1))(s;logy)¢(1 4 s;)p (s5logy)
(1+o(1))(logy)p (s;logy),

where we have used the asymptotic ((1+s) = (1+0(1))s ' as s — 0T for the last equality.
Thus we obtain as s; — 0%,

4 = w — (o —a
H (1 - p1+sj> - (1 + 0(1))¢(W)a3 (log y) P (8] lOg y)

Do<p<y

Applying this to each term appearing in (4.3), recalling that ¢ is defined as logy/log Ry

and o := Zle a;, we have in the region |ul, |v| < (log R)¢,

) = (1 oft) i (logy e [ PRI AL im)er

)l
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as R — oo. To get rid of the denominator in the above expression, we use Proposition 4.3.
This gives

a 5204
(W) (log y)*

H (1 + du;)® (1 + iv;)*

Jj=1

Zy(u,v) = (14 o(1))

[T (1)) wH(1+i0))™ P2 + i +i0;)€)

As ¢ = (logy)/(log R;), we obtain
&
(log 1)

with notation as in the statement of this lemma. Plugging this into the integral expression
(4.2) for the required sum yields the result. 0

(4.5) Zy(u,v) = (1 +0(1))c(W) (1 + iw) (1 + )2 (u, v)@eY,

In order to simplify the integral €5 3 (£)@ appearing in Lemma 4.4, we first consider
the special case « =1 = (1,...,1). We have the following result.

Lemma 4.5. The integral

) = [ [ mo(mw) (1 )1+ i) T 0) Y dude

/Rk P /Rk /Rk wh (s — " (r = )GW (Er)HW (Es)drdsdt,

which can be further simplified by writing each w* (z) as the product

[ [(w(a;) + 6(z))

J

is given by

and expanding the resulting expression. (Here, we use the multi-index notation (2.1) for GL) (u)
and HY (u).)

Proof. We have

T(u, v) 3 = oF (1 +iw)€) wF (1 + w)€) p((2 + iu + w)E).

Then, the interpretation of the vector notation and the definition of the Laplace transform
give us

((1 4 u)¢ Hw+ + duj)€ H/ SUF)Ts gy
= / w-i—(z)e—&(l—i-ig)‘tdf’
Rk
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where the dot denotes dot product of the tuples {(1 + iu) and r and w™(r) := Hle wt(r;).
Similarly, we obtain

o~

(1)) = [ Wt ety

(2 +iu + iv)é) = / p(z)€*£(2+z@+iy).§dz'
RE

Thus, T (u, v)34Y equals

v)
/// _)675(1%@)-(&@e*§(1+iy)-(t+§)dtd§dt_
RF JRE JRE

Plugging this into the required integral gives

(ggq.[ / / / )Ig]ydrdsdt
Rk JRF JRF

To(é(t+ 1) = [ nw)(1 +im)e S0y

Iy(€(t+s)) = /Rk n(v) (1 + iy)e_§(1+i9)~@+§)dg_

By Fourier inversion, we have the identities

with

(4.6) G(z) = farng(w)exp (= (1 +iu) - z)du
H(z) = [ () exp(—=(1+1v) - z) dv.
It is clear from this that Ig(¢ (z + r)) is nothing but
0*G(x)

B R A -
(=1) oxy...0x

thatis, (—1)*GW(¢(¢+1)) in our notation. Repeating this argument for H, we have I, (&(¢+
s)) = (=1)FHW(£(t + s)). Thus, the required integral 65 (€)W is given by

@) L ottt e @G et + )p et -+ )

= [ o0 [ [ @t g0 e ) HO el + o) dudsar
- /Rk p(t) /Rk /]Rk’ wh (s — D“ﬁ(f_Z)g@)(fz)H(D(fg)dzdgdz,

after suitable change of the variables r and s. O

Let a, 3, a, b and ¢ be k-tuples. We now consider the general integral 6 (¢ )(%ﬁ’g’b’g),
defined as

(4.8) / / N6 (w)nr(v) (1 4 iw)*(1 + 10)2Y (u, v) 29 dudy,
Rk JRE

with

/-\

T(w, ) @29 = wF (1 + iw)€)® wr (1 + iw)€)? H((2 + iu + iv))“.
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Note that when all the tuples involved are the same, say o, then we will use the notation
Co.1(£)@ for convenience. We now emulate the proof of the above lemma for this general
case.

Lemma 4.6. The integral €5 4,(€)' 22429 is given by

RE RF ]Rk B

where p., w and w;" are defined as follows. Let x denote the convolution operator. Then,

k
pe(t) = p(t) = [ olt;)*
j=1
k
o | (LY. 0)
7=1 cj tlmes

Similarly,
k

w;(f) = H ) = Hw ;) *w+(rj2

J=1

a; tlmes

Haw $. % (0 +wl(ty)).

4

vV
aj times

The definition of w, is exactly the same. As before, we use the multi-index notation (2.1) for
G@ (u) and H (u).
Proof. We have

(1 +du) w+ (1 + duy)
J

Then for each j, (;1( (14 iu;)€)% is the Laplace transform evaluated at (1 + iu;)¢, of the
convolution product

wh(ry) 9 =wt(ry) * ... xwh(r)),
where w™ is convolved a; times. Thus,
W (1 + iuy)E)™ = / W (ry) et dr,
R
Reverting to the vector notation gives us

S+ e = [ e
R

where w/ is as defined in the lemma. Proceeding similarly, we obtain

WH((1+ i) = / wy (s)e 02,
RE

e
RF
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We now proceed exactly as in the proof of the previous lemma with w*(r),w™(s), p(t)
replaced by w, (r),w, (s), p.(t) respectively to obtain that T (u, v)@%€ is given by

(4_9) ///pc(t)w;(§)w:([)6_5(1”“)'(t”)e_g(l*i”)'(”s)dfd§d§.
RE JRE JRE - -

Thus, we obtain that the required integral is

/Rk /Rk /Rk Pg(t)wg(§)w;(f)lég)[g)d£d§dz’

/ ng 1 + ZU a —E(I—HU) (t+7")du

with

X =

=

Hé / M (0) (1 + i) B0 EFe) gy
Rk

As before, we use the identities (4.6) and change of variable to obtain the desired result.
O

4.1. A smooth higher rank sieve. We work with the setting of the sieve established in
Section 3. Recall the hypotheses H1 to H3 in this section. Instead of H4 we will assume
hypothesis H4* on the error terms. Our main result is then the following smooth version
of Theorem 3.2 of [17], which can be thought of as the {-smooth higher rank sieve.

Theorem 4.7. With \;'s chosen as in (3.2), hypotheses H1, H2, H3, H4* and R, = X®/%7%, we
have

o o X
> < > Ad) (1+0(1))c(W)E %f,f(f)(*)m7

nes dln
n=b (mod W) p+ (d)<R§

with -
W)= g

and €r r (€)' obtained from the expression in Lemma 4.6 by plugging in 8, a,b, c = a.

Proof. Expanding out the square, interchanging the order of summation gives us

IR 5 VRY IED DR VY oS

n=b (mod W) dln d,e<R; [d.e]ln
P+(d)<R§ P+([d&])<3§ n=>b (mod W)

Now one can argue exactly as in Theorem 3.2 of [17], using H1 and the W-trick to impose
the same restrictions on the tuples d, e. Moreover, H2 along with the choice of \;’s gives
that the main term for the desired sum is

vy () ()

P (doe]) < RS
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As H3 holds, one can apply Lemma 4.4 to this sum, to obtain the asymptotic

X
(log Ry )™
as X (and hence R;) goes to infinity. As the choice of \;’s (see (3.2)) in terms of the smooth

compactly supported function F means that they are bounded absolutely, the error term
is given by

(4.10) O( > \T[d,eH)

d,e<R
P*([d.e])<R}

(14 o(1))e(W)E*Er 7 (£) @)

and can be neglected due to the choice of R, after applying H4". O

5. APPLICATION TO BOUNDED GAPS BETWEEN PRIMES

In this section, we apply the sieve with the smoothing procedure discussed above to
the well-known prime k-tuples problem. A set # of distinct non-negative integers is
said to be admissible if for every prime p, there is a residue class b, (mod p) such that
b, ¢ 7 (mod p). That is |7 (mod p)| < p, for every prime p. We will work with a fixed
admissible k-tuple

%: {hh...,hk}.

We use the ‘W trick” to remove the effect of small primes, that is we restrict n to be in
a fixed residue class b modulo W, where W = [ _,, p and b is chosen so that b + h; is
co-prime to W for each h,. This choice of b is possible because of admissibility of the set
. One can choose Dy = logloglog N, so that W ~ (loglog N)!*°() by an application of
the prime number theorem, as noted earlier.

Recall that xp denotes the characteristic function of the primes. Consider the expres-

sions
Sl = E (07%
n~N
n=b (mod W)
and

Sy = Z (Z xe(n + hm)> y,,

n~N
n=b (mod W)
where a,, are non-negative parameters.
For p positive, we denote by S(XN, p) the quantity

k
(5.1) Sy — pSi = Z (Z xe(n + h;) — P) Q.-
nzbr(lgtj)\é W) =t

The key idea then used is as follows. We state it as a proposition for convenient future
reference.

Proposition 5.1. Given a positive number p, if

S(N,p) >0
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forall large N, then there are infinitely many integers n such that at least |p|+1of n+hy,...,n+
hy, are primes.

Proof. The definition of S(NN, p) gives that the sum

k
Z (Z xe(n + h;) — p) a, > 0.
n~N j=1
n=b (mod W)

As a,, are non-negative parameters, we must have

k
pr(n—i-hj) —p> O,
j=1

for some n ~ N. As this happens for all large IV,

k
Z X]p(?”b + h]) >p
j=1

holds for infinitely many integers n. As each xg(n + h;) is an integer, this completes the
proof. O

Fix some 0 < ¢ < 1. Writing n for the tuple (n + hq,...,n + h;), we make the following
choice of sieve parameters a,, :

2
an:< 3 )\d),
dln
PH(d)<R§

with the sequence ()\;) chosen in terms of F as in (3.2). We will refer to the corresponding
sums with this choice of sieve parameters as S;(§) and S3(§) respectively. We proceed
to derive asymptotic formulas for S;(£) and S;(£) by applying our smooth higher rank
sieve.

5.1. Asymptotic formula for 5;({). Recall that S;(¢) denotes the £-smooth sum

Si€) = Y ( > Ad)2

_ n~N dleL'i‘thj
n=b (mod W) pt (d)<R§

Theorem 5.2. Choose © < 1. With \ys chosen as in (3.2) and Ry = N®/?7°, we have
Wkl N
W)k (log Ry)

S1(6) = (1 +0(1)) P ()W,

with €r (€)Y given by

2
[oow([  wre-orea) o
(RT)* Ak(1/€)
where Ay (1/€) is the simplex {t € [0, oo]" : 2?21 t; <1/&}
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Proof. We wish to prove this as an application of Theorem 4.7. Note that the setting of the
sieve and verification of conditions H1 to H3 are the same as in the proof of Lemma 4.2 in
[17]. Asry = O(1) in this case, |\4|’s are bounded, and © < 1, H4* follows from the bound

N
Z 1< Z 1<<W

[d.e]<N® [d.e]<N®
PF([de)<Ne0/?
for any A > 0. The tuple a is in this case just the tuple 1 = (1,...,1)and o = } ; oj = k.
We have i
w
(W) = ——=,
)= S
and X = N/W exactly as before. It is clear that the result now follows directly from
Theorem 4.7. The integral €= (£)W is as in Lemma 4.5. It can be simplified to

/ p(t) / / wh (s — twt (r — ) FY (&8) FY (&r)drdsdt
(R+)k AR(1/6) JAr(1/e)

2
= / p(t) < / wh(r—t)F (1)(§z)d£) dt,
(R+)k Ak(1/€)

where the limits of integration arise since the support of F(x) is the simplex Ax(1) and
the support of the Dickman function p(u) is RT. O

Remark. We remark that when { = 1, the above theorem gives back precisely Lemma
4.2 of [17] as a special case. Indeed, S;(1) is nothing but S, as the smoothing condition is
redundant when ¢ = 1. Consider the final expression for €= (¢)Y) obtained from Lemma
4.5. If £ = 1, then the support of the function F and hence the range of integration is the
usual simplex
Ap(1) == {(ts, ..., tp) €[0,00)F 1t + ...+, < 1}.

In particular while integrating over this simplex, for each ¢; we have the bounds 0 <
t; < 1. Recall that in this range, the Dickman function p is simply 1, while the Buchstab
function w is 0. Thus in the final expression of Lemma 4.5, putting { = 1and G,H = F,
only the term involving the product d(s — t)d(r — t) survives, giving us

Grr (1) = /A FVw

This is nothing but the functional 7(F) of Lemma 4.2 in [17].
5.2. Asymptotic formula for S5(§). Let us recall the sum S3(§). We may write

k
=2 5"
m=1

where

S = > xe(n+hn) ( 3 Ad)

djn+h;Vj

n~N
n=b (mod W) p+ (d)<R§

We proceed to derive an asymptotic formula for S (€).
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Theorem 5.3. Choose © = 1/2 + 2w — 0, with some small § > 0 and w a positive number such

that (1.3) holds (namely, w satisfies 600w + 1801 < 7, where n = ©&). With \;'s chosen as in

(3.2) and R, = N®/?7%, we have

Wk 7(2N) —7(N) .,
~leg @)

¢(W)k (log Rl)k—l £ Fm,Fm (f) )

where the function F,, acting on (k — 1)-tuples is defined in terms of F by

SY(E) = (1+0(1))

‘Fm(LUl, e Ty 1, Tt 1y - - - ,xk) = f(l’l, Ce ,xm,l,O,me, R ,Q}k>

and €r,, 7, (€)W is given by

2
/ p(t) ( / w(r —t)FP (ff)dz> dt.
(RH)k—1 Ap_1(1/€)

(Here, Ay(1/€) is as defined in Theorem 5.2.)
Proof. Hypotheses H1, H2 and H3 hold as in the proof of Lemma 4.3 in [17] to give

P m(2N) — w(N)
¢(W) Hj;ém (/b(dj)
and 74 = Ep(N,q,a), where a is some residue class co-prime to ¢ = W ][] j2m d; and

Ep(z,q,a) is as defined by (1.1).
To check H4* with Y = N, it suffices to check that

N
Ep(N —_
[d%@ | ]P’( >qaa)’<<(logN)A7
a,e|<

Pt ([d.e])<N®*

forany A > 0. As W < loglog N, we see that there exists ¢ > 0 small enough so that

Z ‘EP(N,Q,G)’ < Z ’EIP<N7Q7G)‘

[d,e] <N®© q<NO+e
PF([de])<N®¢ PT(q)<N®¢
< Z |E]P‘(N7Qaa')|
q<N%+2w
PT(q)<N"

which is of the order of N(log N)~4, for any A > 0 by (1.3).

Keeping in mind the additional constraint d,, = 1 on tuples d as described in Lemma
4.3 of [17], which forces the mth component of the function F to be zero, the result follows
as an application of Theorem 4.7. O

It can be observed as before that putting £ = 1 yields Lemma 4.3 of [17]. Furthermore,

in the expression obtained for Sém) (€) above, it is clear that the specific value of m has no
role to play. Due to the symmetry of the integrals, we can write

k
(5.2) Sa(€) =Y S (€)

W+F1 1(2N) — 7(N)
¢(W)r (log fy )+t

= (1+0(1)) &k Gr, 7 (W,



A SMOOTH SELBERG SIEVE AND APPLICATIONS 17

with notation as in Theorem 5.3, setting m = k.

We remark that the densities depending on ¢ in the expressions for S;(£) and S3(§) are
strictly positive, as can be seen from the positive integrands and limits of integration.
Thus, ¢- smoothing gives for the sums S} and S, the expected asymptotic formulas mul-
tiplied by some strictly positive density factor depending on . This is indeed what one
would expect, in the spirit of the classical Buchstab iteration procedure.

6. SOME MATERIAL TOWARDS NUMERICAL BOUNDS

Choosing some © which is admissible in the derivation of the asymptotic formula for
()1 as well as (), one obtains the following after using the prime number theorem.

Theorem 6.1. Choose © = 1/2+ 2w, with w > 0 and 600w + 180§ < 7. Then, with \;'s chosen
as in (3.2) in terms of F, and R = N®/>7%, we have as N — oo,

S(N,v) =8y —vS;

WL N (O 0 0
~ ¢(W)k (log R)k§ ((5 - 5) kcg}—k,fk (f) - Vg%]—',]-‘(g) > .
Combining Proposition 5.1 with the above result, we need
0\ kGrA©Y
A Z 5| 2 ek
D v ( 2 ) EGE

This suggests that we should maximize the functional appearing above, prompting us to
define

Cg}—k:}—k (5) W)
Mile) = sup ke

where the supremum is taken over all symmetric smooth functions supported on Ay(1).
This can be viewed as the ‘¢-smooth” analogue of the classical functional M}, encountered
in [13], [19] and [17]. We will express M} (&) in a more amenable form, which also makes
it easier to check that M} (1) is indeed the functional M, defined in (33) of [19].

We write FU(z) as G(z). Then G is a symmetric smooth function supported on the
simplex A, (1). Expressing G as

G, O F(t)
Gla) = 0T <8x1 0Ty 10Ty . .. @xk) ’

we see from the fundamental theorem of calculus that the function 7 that appears in
Theorem 5.3 is simply the anti-derivative of G with respect to the mth component, eval-
uated at z,, = 0. It is also clear that the anti-derivative of G’ with respect to the mth
component has the same support as 7. Hence, we can write

0 O F(x)
/0 G(&)diﬂm = - (3.%’1 0Ty 10Ty, - . . 8xk)

In particular, ]—",9) evaluated at {r, namely F, ,9) (&r) equals

= —.7:,%) ().

T =0

- / G(&”h ooy T, xk)dxk-
0
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This allows us to recast M}, in terms of G(z) as
kJp(G,§)
2 M = ZIRAT ST
(6.2) k(§) W TG

where the supremum is taken over all symmetric smooth functions supported on A (1)
and the functionals Ji (G, §) and I(G, ) are defined as follows.

(63) H(C.€) = /W)klp(z) ( /. L ( /OOOG@m,...,srkl,@dx) dz) dt,

and

69 1G.9= [ ([ we-noen) K

We would like estimates for the new integrals J(G,¢) and I(G, €) in terms of the func-
tionals J(G, 1) and (G, 1) that appear for the higher rank sieve without smoothing. Recall
from [17] that

%) 2
6.5) J(G1) = /A . ( /0 G(z)dtk) dty . dby 1,
and
6.6 I1(G,1) = G(t)%dt.
(6.6) (G,1) /A 6w

Let us define the functional

wro= [ oo([ oe-ore) @

The problem thus reduces to finding upper and lower bounds for this functional in terms
of

)= [ P
(RF)*
Lower bound. Using the bound w*(u) = w(u)+d(u) > 6(u) for any v € R*, we can write

Iy(F,€) = / p(t)F(Et)*dt = ¢7" p(ta/€) ... p(te/E) F () dL

Rk (RH)k

Upper bound. By the Cauchy-Schwarz inequality, we have

( / W+(£—t)F(§£)d£>2§ [ ete-trar [ rea

(R*)k (RT)k (RT)k
— g_k](F) / w+(£ — Z)Qdf
(RT)*

This gives
I'i,(F "I(F —t)drdt ) .
k( ’f) =¢ ( ) (/(R+)k P(E) /(R+)k “ (7” D é)
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Bounding the integrals that arise in the lower and upper bounds above needs some work
and we defer this to a future paper. We expect that effective bounds for these integrals
should yield a general result involving a remainder term that would encompass contri-
butions both with and without smoothing. More precisely, we should be able to capture
contributions from moduli below Y’ and also from moduli up to Y© with prime fac-
tors below Y*. Implementing these ideas and obtaining numerical improvements would
entail the use of variational techniques as well as the following identities involving the
Dickman and Buchstab functions.

Recall that the Dickman function is supported on R*. Broadhurst [1] gives a closed
form for the Dickman function in terms of polylogarithms, in certain ranges. We state
below the closed form in the range 0 to 2.

Proposition 6.2. The Dickman function in the domain [0, 2] is given by

{1 ifo<u<l
PRUTZY 1=logu ifl1<u<?

Proposition 6.3. The convolution p * p in the domain [0, 2] is given by,

(u) = U ifo<u<l1
pa\t) = 3u—2ulogu—2 ifl<u<2

Proof. The support of p gives
patu) = [ plt)olu ).
0

If 0 < u < 1, then the integrand is simply 1, giving the desired answer. For 1 < u < 2, we
write the above integral as

| sttwtu—vdes [ pop—nar+ [ oot

-1
Let us consider the first integral. The limits of integration imply that 0 < ¢ < 1 and
1 <wu—t <2, giving that this integral is

u—1
/ (1 — log(u — t))dt.
0
Similarly, the second integral is simply
1
/ i,
u—1

/ (1 —logt)dt.
1

Evaluating these integrals gives the desired expression for ps(u). O

while the third is given by

Recall that the Buchstab function w(u) is supported on u > 1.
Proposition 6.4. The Buchstab function in the domain |0, 2] is given by

0 fo<u<l1
“(“)_{ 1/u %gugz

The actual implementation of these results we reserve for a future date.
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7. CONCLUDING REMARKS

We believe that this implementation is just the beginning of a larger program. We en-
deavor to explore further applications of this theory to other classical questions of number
theory.
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