
Math 802 - Combinatorics Fall 2015 - November 26, 2015

Assignment 3 François Séguin

Question 1

Let (P1,≤1) and (P2,≤2) be two locally finite posets. Show that

µ((x1, y1), (x2, y2)) = µ(x1, x2)µ(y1, y2).

Solution

First, note that since both P1 and P2 are locally finite posets, then so is P1 × P2 as the

product poset. Indeed,

[(x1, y1), (x2, y2)] = {(x, y)|x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2} = [x1, x2]× [y1, y2]

as sets, and so is finite.

Now we will use an induction argument to show the desired statement. Fix (x1, y1) in the

poset P1×P2. We will induce on (x2, y2). Note that whenever (x1, y1) 6≤ (x2, y2), both sides

of the desired equation are trivially equal to 0 (as one of µ(x1, x2) and µ(y1, y2) is zero).

For the base case, consider (x2, y2) = (x1, y1). Then, by definition,

µ((x1, y1), (x1, y1)) = 1 = µ(x1, x1)µ(y1, y1).

Now suppose that the statement is true for (x, y) < (x2, y2) (that is (x, y) ≤ (x2, y2) and

(x, y) 6= (x2, y2)).

First recall that by definition, in any poset, if α 6= γ then∑
α≤β≤γ

µ(α, γ) = 0

that is ∑
α≤β<γ

µ(α, γ) = −µ(α, β).

Getting back to the case at hand, since (x1, y1) 6= (x2, y2) here,

0 =
∑

(x1,y1)≤(x,y)≤(x2,y2)

µ((x1, y1), (x, y))

=
∑

x1≤x≤x2
y1≤y≤y2

µ((x1, y1), (x, y)).
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Now we split the sum to get

0 =
∑

x1≤x<x2
y1≤y<y2

µ((x1, y1), (x, y))

︸ ︷︷ ︸
S1

+
∑

x1≤x<x2

µ((x1, y1), (x, y2))︸ ︷︷ ︸
S2

(1)

+
∑

y1≤y<y2

µ((x1, y1), (x2, y))︸ ︷︷ ︸
S3

+µ((x1, y1), (x2, y2)).

Since all the summands in the three sums above satisfy the Induction hypothesis, we have

that

S1 =
∑

x1≤x<x2
y1≤y<y2

µ(x1, x)µ(y1, y)

=

( ∑
x1≤x<x2

µ(x1, x)

)( ∑
y1≤y<y2

µ(y1, y)

)
and by the remark above

= (−µ(x1, x2)) (−µ(y1, y2))

= µ(x1, x2)µ(y1, y2).

Also,

S2 =
∑

x1≤x<x2

µ(x1, x)µ(y1, y2)

= µ(y1, y2)
∑

x1≤x<x2

µ(x1, x)

= −µ(x1, x2)µ(y1, y2)

and similarly,

S3 =
∑

y1≤y<y2

µ(x1, x2)µ(y1, y)

= −µ(x1, x2)µ(y1, y2)

plugging everything back in (1), we get,

0 = µ(x1, x2)µ(y1, y2)− µ(x1, x2)µ(y1, y2)

− µ(x1, x2)µ(y1, y2) + µ((x1, y1), (x2, y2))

and so we get

µ(x1, x2)µ(y1, y2) = µ((x1, y1), (x2, y2)).
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Question 2

Find a formula for the number of sequences of length n using the symbols A,B,C,D which

have the symbols A,B,C appearing at least once.

Solution

This is a simple application of the Inclusion-Exclusion principle.

Let S be the set of all sequences of length n using the symbols A,B,C,D. Let SA be

those sequences in S which do not use the symbol A, and similarly for SB and SC . Finally,

for L ⊆ {A,B,C}, define SL =
⋂
?∈L S? (and as usual S∅ = S). Then, the desired quantity

is simply expressed by

N(n) :=

∣∣∣∣∣∣S \
⋃

?∈{A,B,C}

S?

∣∣∣∣∣∣ =
∑

L⊆{A,B,C}

(−1)|L| |SL|

First note that |S| = 4n. Now when L consist of one symbol, |SL| is the number of

sequences where this symbol does not appear, which is clearly 3n (the number of sequences

on three symbols). Similarly, if L contains two symbols, |SL| = 2n as it is the number of

sequences on two symbols. Finally, if L = {A,B,C}, then |SL| = 1 = 1n as the only sequence

of the character D is (D,D, . . . , D).

We thus have

∑
L⊆{A,B,C}

(−1)|L| |SL| =
3∑
i=0

(
3

i

)
(−1)i(4− i)n

= 4n − 3 · 3n + 3 · 2n − 1.

Therefore, the desired formula is

4n − 3n+1 + 3 · 2n − 1.

Question 3

Draw the Hasse diagram for S3 with the Bruhat order and determine completely the Möbius

function on this poset.

Solution

We define the Bruhat order on Sn as follows. A permutation σ covers a permutation τ if and

only if σ(k) = τ(k) for all k ∈ [n] except two indices i and j with i < j where σ(i) > τ(i)

(and there is no proper chain of covering between σ and τ). In other words, the table format
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of permutations σ and τ are identical except for two entries on the bottom lines which are

swapped. Look at the number appearing in the first of these two entries; the permutation

having the largest number there covers the other one. From this definition, we list the

elements of S3 in the table below and look for the possible coverings.

σ Table format σ covers . . . with inversion (i, j) = . . .

1

(
1 2 3

1 2 3

)
∅

(12)

(
1 2 3

2 1 3

)
1 (1, 2)

(23)

(
1 2 3

1 3 2

)
1 (2, 3)

(123)

(
1 2 3

2 3 1

)
(12) (2, 3)

(23) (1, 3)

(132)

(
1 2 3

3 1 2

)
(12) (1, 3)

(23) (1, 2)

(13)

(
1 2 3

3 2 1

)
(123) (1, 2)

(132) (2, 3)

From this, we see that the corresponding Hasse diagram is the following.

1

(12) (23)

(132) (123)

(13)

To compute the Möbius function for this poset, we start by considering µ(1, ·). Looking

at the Hasse diagram above, it is easy to see that the Möbius function in this case is given

in the following table.
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· µ(1, ·)
1 1

(12)
-1

(23)

(123)
1

(132)

(13) -1

Furthermore, we can also see easily that for both σ = (12) and (23), we have that

µ(σ, (123)) = µ(σ, (132)) = −1 and µ(σ, (13)) = 1. Finally, we have µ((123), (13)) =

µ((132), (13)) = −1.

The above combined with the fact that µ(σ, σ) = 1 for any σ ∈ S3 determines the Möbius

function on any element of this poset.

Question 4

Let G be a group acting on a set X and H a group acting on a set Y . Assume that X and

Y are disjoint and let U = X
∐
Y . For g ∈ G, h ∈ H and z ∈ U , define

(g, h) · z =

{
g · z if z ∈ X
h · z if z ∈ Y.

Show that this defines an action of G×H on U .

Solution

We simply need to verify that the two axioms of a group action.

In G×H, the identity is simply (1G, 1H). Therefore we have that for any z ∈ U ,

(1G, 1H) · z =

{
1G · z if z ∈ X
1H · z if z ∈ Y

=

{
z if z ∈ X
z if z ∈ Y

= z.

For the next axiom, first note that for any (g, h) ∈ G ×H, (g, h) · z ∈ X ⇔ z ∈ X and

similarly (g, h) · z ∈ Y ⇔ z ∈ Y . Now let (g1, h1), (g2, h2) ∈ G×H, and z ∈ U . We have

(g1, h1) · [(g2, h2) · z)] =

{
(g1, h1) · (g2 · z) if z ∈ X
(g1, h1) · (h2 · z) if z ∈ Y
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By the above remark, the first case also implies that (g2 · z) ∈ X and so g1 is applied to

g2 · z, and similarly for the second case. We have

=

{
g1 · (g2 · z) if z ∈ X
h1 · (h2 · z) if z ∈ Y

Since both the actions of G on X and H on Y satisfy the axioms of group action, we have

=

{
(g1g2) · z if z ∈ X
(h1h2) · z if z ∈ Y

= (g1g2, h1h2) · z
= [(g1, h1) ·G×H (g2, h2)] · z

and thus both axioms of group action are satisfied.

Question 5

Let G be a finite group acting on a finite set X. Show that if G acts transitively on X, then

1

|G|
∑
g∈G

|fix(g)| = 1.

Solution

Recall the following lemma.

Lemma 1 (Burnside’s Lemma). Let G be a finite group acting on a finite set X. Then,

|X/G| = 1

|G|
∑
g∈G

|fix(g)|

where |X/G| denote the number of orbits of X under the action of G.

From this, we see that we only need to prove that the number of orbit of X when G acts

transitively is 1.

Fix an element x ∈ X. G acting transitively means that for any element y ∈ X, there

exists a g ∈ G such that y = g · x. In other words, every element of X is in the orbit of x.

That is to say that Gx = X, and since any action partitions X in non-empty disjoint orbits,

it is clear that there can only be 1 orbit in this case. Burnside’s Lemma then implies that

1

|G|
∑
g∈G

|fix(g)| = 1

as required.
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Question 6

Show that the number of permutations of type (c1, c2, . . . , cn) in Sn, denoted pn(c1, . . . , cn)

is
n!

1c1c1!2c2c2! · · ·ncncn!

when
∑n

i=1 i · ci = n, and 0 otherwise.

Solution

We start by fixing (c1, c2, . . . , cn) such that
∑n

i=1 i · ci = n. If this last condition is not

satisfied, then we would need more than n elements to permute and there is no permutation

of such cycle type in Sn.

Then, notice that given any permutation of this cycle type, we can order its cycles by

length and write it as

(α1) · · · (αc1)︸ ︷︷ ︸
1−cycles

(αc1+1αc1+2) · · · (αc1+c2−1αc1+c2)︸ ︷︷ ︸
2−cycles

· · · · · · (αn−k · · ·αn−1αn)︸ ︷︷ ︸
k−cycles

Since the cycle type is fixed, the parentheses add no information to the above and given

an ordering of [n], there is such a permutation of this cycle type. Note that there are exactly

n! such ordering of [n].

However, we have counted each permutation more than once as two such ordering might

give rise to the same permutation. Namely, for the l-cycles, there are cl! ways to permute

the cycles between themselves without changing the permutation. Also, for each cycle, there

are l ways to write it by cycling it (e.g. (123) = (231) = (312)). Putting all of this together,

there are lclcl! ways to modify the ordering of [n] with respect to the l-cycles, while giving

rise to the same permutation. Since this holds for every cycle length, we conclude that we

counted each permutation exactly 1c1c1!2
c2c2! · · ·ncncn! times. Thus, pn(c1, . . . , cn) is

n!

1c1c1!2c2c2! · · ·ncncn!
.

Question 7

Calculate the cycle index polynomial PS3(x1, x2, x3) where S3 acts on [3] in the usual way.

Solution

We begin by listing all elements of S3 along with their cycle type.

Note that since the action of S3 is the usual action, its association with S3 is the identity

and the cycle type is simply the cycle type of the original element in S3.
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σ (c1, c2, c3)

1 (3, 0, 0)

(12) (1, 1, 0)

(13) (1, 1, 0)

(23) (1, 1, 0)

(123) (0, 0, 1)

(132) (0, 0, 1)

Thus, the cycle index polynomial is simply

PS3(x) =
1

6

∑
σ∈S3

xσ

=
1

6

(
x31 + 3x1x2 + 2x3

)
.

Question 8

Let G and H be finite groups acting on finite sets X and Y respectively. In Question 4, we

defined an action of G×H on X
∐
Y . If PG and PH indicate the cycle index polynomial of

G acting on X and H acting on Y respectively, show that the cycle index polynomial PG×H
of G×H acting on X

∐
Y is PGPH .

Solution

First call n = |X|, m = |Y | and without loss of generality, let n ≥ m. Let us look at PG×H .

We have by definition that

PG×H(x) =
1

|G| |H|
∑

(g,h)∈G×H

x(g,h)

=
1

|G| |H|
∑
g∈G

∑
h∈H

x(g,h).

Now consider the monomial x(g,h). Of all the elements of X
∐
Y , (g, h) acts on those

of X the same way g would and on those of Y the same way h would. Thus, the cycle

decomposition of (g, h) as an element of Sym(X
∐
Y ) is simply a concatenation of the cycles

of g in Sym(X) with the cycles of h in Sym(Y ). Hence, the number of k-cycles in (g, h) is

the number of k-cycles in g, say ck(g), plus the number of k-cycles in h, say ck(h). Therefore,

x(g,h) = x
c1(g)+c1(h)
1 x

c2(g)+c2(h)
2 · · · xcn(g)+cn(h)n

where obviously cm+1(h) = · · · = cn(h) = 0. So

= xgxh.
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Note in particular that even though a priori the monomial x(g,h) is composed of nm variables,

only the first n variables x1, . . . , xn will appear.

We then have that

PG×H(x) =
1

|G| |H|
∑
g∈G

∑
h∈H

x(g,h)

=
1

|G| |H|
∑
g∈G

∑
h∈H

xgxh

=

(
1

|G|
∑
g∈G

xg

)(
1

|H|
∑
h∈H

xh

)
= PG(x)PH(x).

Question 9

Let p be a prime number. Show that the number of n × n matrices with entries in Z/pZ
with determinant not divisible by p is given by

(pn − 1)(pn − p) · · · (pn − pn−1).

Solution

First note that as p is prime, Z/pZ is a field with p elements Fp. Therefore, the set of n× n
matrices with entries in Z/pZ with determinant not divisible by p is the set of n×n matrices

in Fp with non-zero determinant in the field, i.e. it is simply the ring GLn(Fp). Given a n×n
matrix over a field K, we know that its determinant is non-zero if and only if its columns

are linearly independent, non-zero vectors in the vector field Kn.

Here, the question amounts to counting the ways to write n vectors of Fnp that are linearly

independent.

For the first vector, there are pn − 1 choices as any vector except for the zero vector

works.

For the second choice, we have pn − p possibilities as anything but Fp multiples of the

first vector works, and there are p of the latter.

For the third vector, we can chose anything that is not a Fp linear combination of the

previous two vectors. Since there are p × p = p2 such linear combinations, the number of

ways to choose the third vector is pn − p2.
We can continue this process for each of the n vectors, noting that for the (k+1)th vector,

there are pk Fp-linear combinations of the previous k vectors, and so there are pn − pk ways

to choose this one. We conclude that the total number of n × n matrices with non-zero

determinant in Fp is

(pn − 1)(pn − p) · · · (pn − pn−1).
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Question 10

Let Sn act on [n] in the usual way. Let PSn be the cycle index polynomial. Prove that PSn

is the coefficient of zn in the power series expansion of

exp(zx1 + z2x2/2 + z3x3/3 + · · · ).

Solution

First note that

PSn(x) =
1

n!

∑
σ∈Sn

xσ

=
1

n!

∑
σ∈Sn

x
c1(σ)
1 x

c2(σ)
2 · · ·xcn(σ)n .

Since any σ ∈ Sn has some cycle type, we can instead sum over all the possible cycle types.

Using the notation from Question 6,

=
1

n!

∑
(c1,...,cn)

pn(c1, . . . , cn)xc11 x
c2
2 · · ·xcnn

=
1

n!

∑
(c1,...,cn)∑

i i·ci=n

n!

1c1c1!2c2c2! · · ·ncncn!
xc11 x

c2
2 · · ·xcnn

=
∑

(c1,...,cn)∑
i i·ci=n

xc11 x
c2
2 · · · xcnn

1c1c1!2c2c2! · · ·ncncn!
.

Now consider

exp(zx1 + z2x2/2 + z3x3/3 + · · · ) =
∞∏
n=1

exp

(
znxn
n

)
.

Expanding each factor in its power series, we get

=
∞∏
n=1

(
∞∑
k=0

(
znxn
n

)k
1

k!

)

=
∞∏
n=1

(
∞∑
k=0

znkxkn
nkk!

)
.

When trying to expand this product, we will need to pick exactly one term of the sum for

each factor of the product. Suppose that in the ith factor we pick the cthi term of the sum.
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Then, the resulting term will have a zn precisely if
∑∞

i=1 i · ci = n. Now note that this forces

all ci with i > n to be zero. From this, we see that the coefficient of zn will be the sum over

all possible choices of (c1, . . . , cn) satisfying the condition stated, that is∑
(c1,...,cn)∑

i i·ci=n

xc11 x
c2
2 · · ·xcnn

1c1c1!2c2c2! · · ·ncncn!

which is exactly PSn as calculated above.
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