Math 402/802: Midterm Test

Students in Math 402: Do any two questions. Students in Math 802: Do all questions.

1. Let $a_0, a_1, a_2, ...$ be a sequence of numbers satisfying $a_0 = 1$, $a_1 = 3$ and

$$a_n = 2a_{n-1} + a_{n-2},$$
 for $n > 2$.

Set

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

(a) Prove that

$$f(x) = \frac{1+x}{1-2x-x^2}.$$

(b) Show that

$$a_n = \frac{1}{2} \left((1 + \sqrt{2})^{n+1} + (1 - \sqrt{2})^{n+1} \right).$$

- 2. In a recent election, an opinion poll reported that the percentage of voters who would be satisfied with each of the three candidates T, H, M for prime minister was 65%, 57%, 58% respectively. Further, 28% would accept T or H, 30% would accept T or M, 27% would accept H or M and only 1% said they would accept any of the three. What percentage would accept none of them?
- 3. Let μ denote the classical Möbius function and F,G be real-valued functions defined on the positive reals.
 - (a) Prove that

$$G(x) = \sum_{n \le x} F\left(\frac{x}{n}\right) \Leftrightarrow F(x) = \sum_{n \le x} \mu(n) G\left(\frac{x}{n}\right),$$

where the summations are over positive integers $n \leq x$.

(b) Prove that

$$\sum_{n \le x} \mu(n) \left[\frac{x}{n} \right] = 1.$$

Deduce that

$$\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1.$$