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1. Calculate the area of the bounded region inside the folium of Descartes, 2® 4+ 3% =
31y.

The folium of Descartes is the beautiful closed oval shaped loop (pinched at (0,0) )
in the first quadrant of the x=y plane. We can use Green’s theorem to conclude that

this area enclosed by this loop may be calculated
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a)Sketch the bounded region and show that this region has a boundary which is

parameterized by the vector function 7(¢) : [0, 00) — R?
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To show this we need only calculate the terms 22, y* using the components of the

given parameterization 7(t)
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Next notice that when t=0, 7(0) = (0,0) and as t — oo,7(t) — (0,0). Finally we
observe that the orientation on the folium of Descartes given by the vector function
7(t) is counterclockwise, or positive orientation. This follows from the fact that for
O<t<l,z>yandforl<t<oox<y.

b) Using this parameterization and Green’s Theorem calculate the area of the bounded
region.

From the comment at the beginning of the question (using Green’s theorem)

Area R = / xdy
OR
/3t 6t 3t2 (3t?)
- () (- 2
o \1+#3/\1+  (1+13)

e

Setting u = 1 + 3 gives du = 3t%dt and
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= 3 (wow!)

The area within the folium of Descartes is 3/2 (bet you didnt see that one coming!).

2. Let F = (3z%y + v* + ex)f+ (ey2 + 12:6) I Consider the line integral of F
around the circle of radius a, centered at the origin and oriented counterclockwise.

a) Find the line integral for a=1.

The vector field F looks complicated enough on the cirlce of radius a, to attempt a
calculation using Green’s Theorem, rather than a direct calculation of the circulation

of the vector field around the boundary of the circle. For this purpose we have
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b) For which value of a is the line integral a maximum. Give a clear explanation of

your conclusion.
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The circulation of the vector field around the counterclockwise circle of radius a,
reaches a maximum value when a=2.
3. The electric field E , at the point with position vector 7 in R3, due to a charge q

at the origin is given by
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a) Compute curl E. ISE a path independent vector field? Give a clear explanation

of your conclusion.

The electric field in components is

= T qr qy qz
E p— pr—

2 4 y? + 22 [x2—|—y2+z2]% (22 +y? 4 22

By symmetry we can see (without actually doing the computation)
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From this it immediately follows that the three components of the vector curl E are
identically zero.

The domain of the electric field E is R3/{(0,0,0)}, which means all of R? excluding
the singular point at (0,0,0). This domain is simply connected in R*® which means that
every simple closed curve can be continuously deformed to a point without leaving
the domain of the vector field E. Thus by the converse to the theorem on the curl
test (described in class),we can conclude that there is a potential function, and the
electric field E is conservative in its domain and thus path independent.

b) If possible, find a potential function for E.

To construct a potential function, it is neccessary that we find the function f(x,y, z)

so that
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This function is f(z,y,z) = — which can be easily verified.
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