The following exercises are from Vector calculus (3rd ed.) by Colley:

Exercise 1 (1.1.26 pg. 8). A 50 kg sandbag is suspended by two ropes. Suppose that a three-dimensional coordinate system is introduced so that the sandbag is at the origin and the ropes are anchored at the points (0,2,1) and (0,-2,1).

- a). Assuming that the force due to gravity points parallel to the vector (0,0,-1), give a vector \mathbf{F} which describes the gravitational force.
- b). Now, use vectors to describe the forces along each of the two ropes.

Solution. a). By assumption, the force \mathbf{F} due to gravity points parallel to the vector $\mathbf{v}:=(0,0,-1)$, hence is proportional to \mathbf{v} , i.e.

$$\mathbf{F} = \lambda \mathbf{v}$$
,

where λ is some real number. Let's also assume that \mathbf{F} points along the negative z-axis, so that $\lambda > 0$ (this doesn't follow from the statement of the problem, but it was probably intended). Since \mathbf{v} has length one, λ is simply equal to the magnitude $\|\mathbf{F}\|$ of the force \mathbf{F} . By general physics, we have $\|\mathbf{F}\| = mg$, where m is the mass of the sandbag and $g \sim 9.81 \frac{m}{s^2}$ is a constant of proportionality. Therefore,

$$\mathbf{F} = (0, 0, -mg) = (0, 0, -490.5N).$$

b). Let T_1 and T_2 be the tension forces in the ropes anchored at (0, 2, 1) and (0, -2, 1), respectively. Since the bag is stationary, we have

$$\mathbf{T_1} + \mathbf{T_2} + \mathbf{F} = 0.$$

By symmetry, the tension forces have no x-component. We can decompose the force vectors into components parallel to the y- and z-axis, writing

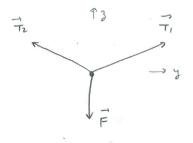
$$\mathbf{T_1} = (0, T_{1,y}, T_{1,z}), \qquad \mathbf{T_2} = (0, T_{2,y}, T_{2,z}), \qquad \mathbf{F} = (0, 0, -mg).$$

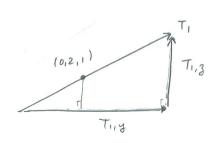
And, invoking symmetry again, we have $T_{1,y} = -T_{2,y}$ and $T_{1,z} = T_{2,z}$. Since also $T_{1,z} + T_{2,z} = mg$, it follows that $T_{1,z} = T_{2,z} = \frac{1}{2}mg$. We know that T_1 points along (0,2,1), so by similarity we have $T_{1,y} = 2T_{1,z}$. Alternatively, to see this we can do some quick trig: calling the angle that T_1 makes with the positive y-axis θ , we have

$$\frac{1}{2} = \tan(\theta) = \frac{T_{1,z}}{T_{1,y}}.$$

Therefore, $T_{1,y} = 2T_{1,z} = mg$.

Putting the above together, $\mathbf{T_1} = (0, mg, \frac{mg}{2})$ and, by symmetry, $\mathbf{T_2} = (0, -mg, \frac{mg}{2})$.





¹Well, assuming that we're on Earth and sufficiently close to the surface.

Exercise 2 (1.3.24, pg. 26). Let A, B, C and D be four points of \mathbb{R}^3 such that no three of them lie on a line. Then ABCD is a quadrilateral (not necessarily one that lies in a plane). Let the midpoints of the four sides of ABCD be denoted by M_1 , M_2 , M_3 and M_4 . Use vectors to show that $M_1M_2M_3M_4$ is always a parallelogram.

Solution. The statement that $M_1M_2M_3M_4$ is a parallelogram (i.e. a simple quadrilateral whose opposite sides are parallel) is equivalent to the statement that we have the vector equalities

$$\overrightarrow{M_1M_2} = \overrightarrow{M_4M_3}$$
 and $\overrightarrow{M_4M_1} = \overrightarrow{M_3M_2}$.

Now, looking at the figure below, we see that

$$\overrightarrow{M_1M_2} = \overrightarrow{M_1B} + \overrightarrow{BM_2} = \frac{\overrightarrow{AB} + \overrightarrow{BC}}{2},$$

$$\overrightarrow{M_2M_3} = \overrightarrow{M_2C} + \overrightarrow{CM_3} = \frac{\overrightarrow{BC} + \overrightarrow{CD}}{2},$$

$$\overrightarrow{M_3M_4} = \overrightarrow{M_3D} + \overrightarrow{DM_4} = \frac{\overrightarrow{CD} + \overrightarrow{DA}}{2},$$

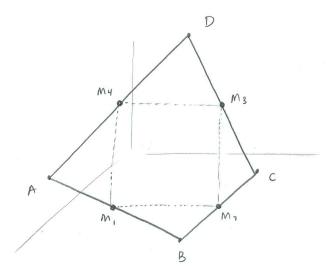
$$\overrightarrow{M_4M_1} = \overrightarrow{M_4A} + \overrightarrow{AM_1} = \frac{\overrightarrow{DA} + \overrightarrow{AB}}{2}.$$

Then

$$\overrightarrow{M_1M_2} - \overrightarrow{M_4M_3} = \overrightarrow{M_1M_2} + \overrightarrow{M_3M_4} = \frac{\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}}{2} \quad \text{and}$$

$$\overrightarrow{M_4M_1} - \overrightarrow{M_3M_2} = \overrightarrow{M_4M_1} + \overrightarrow{M_2M_3} = \frac{\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}}{2},$$

But $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}$ is just the vector formed by going 'once around' ABCD, so it is equal to the 0 vector, as desired!



Exercise 3 (1.5.33). Let Π be the plane in \mathbb{R}^3 with normal vector \mathbf{n} that passes through the point A with position vector \mathbf{a} . If \mathbf{b} is the position vector of a point B in \mathbb{R}^3 , show that the distance between B and Π is given by

 $D = \frac{|\mathbf{n} \cdot (\mathbf{b} - \mathbf{a})|}{\|\mathbf{n}\|}.$

Solution. First, $(\mathbf{b} - \mathbf{a})$ is simply the vector \overrightarrow{AB} . Looking at the figure below and using some geometric intuition, it is clear that the distance from B to Π is given by the length of the projection of \overrightarrow{AB} to the line spanned by \mathbf{n} . But

$$\operatorname{proj}_{\mathbf{n}}(\mathbf{b}-\mathbf{a}) = \frac{\mathbf{n} \cdot (\mathbf{b}-\mathbf{a})}{\left\lVert \mathbf{n} \right\rVert^2} \, \mathbf{n}.$$

by formula (5) on page 22, so that

$$D = \left\| \frac{\mathbf{n} \cdot (\mathbf{b} - \mathbf{a})}{\left\| \mathbf{n} \right\|^2} \mathbf{n} \right\| = \left| \frac{\mathbf{n} \cdot (\mathbf{b} - \mathbf{a})}{\left\| \mathbf{n} \right\|^2} \right| \left\| \mathbf{n} \right\| = \frac{\left| \mathbf{n} \cdot (\mathbf{b} - \mathbf{a}) \right|}{\left\| \mathbf{n} \right\|}.$$

