
prisoners and boxes 1 

The condemned prisoners and the boxes.   

 
A group of 100 condemned prisoners are offered the chance to play the 

following game.  They will be each be allowed to enter a room one at a 

time in any order they wish until all 100 have gone in once.  In the 

room there is a long table with a row of 100 identical wooden boxes 

numbered in order from 1 to 100.  Each box can be opened and inside it 

there is the name of one of the prisoners, such that each of the 100 

names appears exactly once.  However, the ordering of the names in the 

boxes is random.   

 

1 2 3 99 100
 

 

Once inside the room, each prisoner is allowed to open and look inside 

50 boxes—any 50 that he wants.  After he has opened his 50 boxes he 

must leave the room, making sure that the boxes are in exactly the same 

state as he found them, and he is no longer able to communicate with 

any other prisoner.  The reprieve that they have been granted is that at 

the end of the game they will all be spared on condition that every pris-

oner manages to find the box that contains his own name.  On the other 

hand, if at least one of the prisoners fails to find his name, they will all 

be executed at dawn.  Let’s be clear about this—in order to escape exe-

cution, it is necessary that every prisoner find his own name.   

 

The prisoners are allowed to get together before-hand and work out a 

strategy.  How good a strategy can they find and what is the resulting 

probability of success?   

 

This is a fascinating problem.  If you spend a bit of time reflecting on 

the situation (and you should!) you will start to feel that the odds of 

them all surviving seem microscopic.  For example, it seems clear 

enough that no matter what strategy is used, the first prisoner will have 

only a 50% chance of finding his name.  And if he does, he can leave 

no clue as to whether or not he did find his name or what boxes he 

opened or what he found in them.  And then the second prisoner comes 

in.  What can he possibly do to raise his probability much above 50%?  

So we’re down to something close to (0.50)
2
 = 0.25 after only two pris-

oners.  And there are 98 prisoners left to go!  Just to look at an extreme 

case, if every prisoner simply opened 50 boxes at random, the probabil-

ity they’d all win would be 0.50 raised to the power 100 and that’s a 

very small number.   

 

Here is the remarkable result.  There is a strategy which will save them 

all from execution with probability greater than 30%.   

 

Even more remarkable––the solution is elegant and simple.  So simple 

it is easily understood.   

 

But simple as it is, the solution is not, I think, easily found.  For me as a 

mathematician, the absorbing problem is not one of finding the solution 

(I had to be told the answer) but of understanding it.  Having been giv-

en the solution, understand how it works.  That already is a wonderful 

little project.   

 

This is just so hard to believe––such 

a strategy seems preposterous.  How 

could you get a 30% chance that 

every prisoner will find his name? 
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Okay.  Here’s the solution—here’s that simple elegant strategy I prom-

ised you.  I’ll present it for the case of 8 prisoners who are each permit-

ted to open 4 boxes.   

 

What the prisoners should first do is construct an ordering in which 

they will enter the room.  This assigns to each prisoner a number be-

tween 1 and 8.  It doesn’t matter what it is, but each should be provided 

with a list of this ordering.  That’s the only preparation they need to do 

as a group.  Given this, you can think of each box as having two num-

bers, the number on the top which every prisoner can see, and the num-

ber inside, the number of the prisoner’s name that’s hidden inside the 

box.  This is an unknown (random) rearrangement of the numbers from 

1 to 8.   

 

Now here’s what each prisoner does.  The first prisoner, #1, opens box 

1.  If he happens to find his own name there, he’s happy and he leaves, 

otherwise he takes the name he finds in that box and opens the box la-

beled with that prisoner’s number.  In the example at the right, the 

name he finds is that of prisoner #7, and therefore he next opens box 7.  

He continues in this way.  Following the example at the right, the name 

he finds in box 7 is that of prisoner #5, so he next opens box 5.  Luckily 

the name he finds there is that of prisoner #1 and that’s him! and he is 

happy.  If he hadn’t found his name there, he would have been able to 

open one more box, his fourth.  Then prisoner #2 comes in and does the 

same thing except he starts with box 2.  He takes the name he finds 

there (#3), and opens that box.  Etc.  And then prisoner #3 enters.  Etc.  

Finally, all 8 prisoners will have visited the room.   

 

In the above example do they all find their own name?  Yes they do––

let’s check it out by following each prisoner.  Start with #1 and list the 

boxes he opens. We get: 

1 7 5  win 

Now #2: 

2 3 8  win 

Then #3:   

3 8 2  win 

Actually we didn’t need to do #3.  We had already handled #3 in doing 

#2.  That’s a significant observation.  The fact that #2 wins implies that 

all those whose names belong to the boxes that #2 opened will also win, 

in this case, #3 and #8.  The path 2 to 3, 3 to 8, and 8 back to 2, is 

called a cycle of length 3.  All prisoners on that cycle find their name 

after opening 3 boxes. 

 

That observation gives us 6 of the 8 prisoners who win.  The remaining 

two are #4 and #6 and they form a cycle of size 2: (46).  So they both 

also win.  In fact this gives us an interesting way of representing the 

original permutation: as a product of cycles: 

(175)(238)(46) 

Can you see how this cyclic representation holds the key that unlocks 

the success of this strategy?  Indeed, your job is to calculate the proba-

bility of success for this strategy, and then attempt to understand why it 

works so (surprisingly) well. 

box inside 

1 7 

2 3 

3 8 

4 6 

5 1 

6 4 

7 5 

8 2 

 

 

What I do with the class at this 

point is have each student gener-

ate a random permutation of the 8 

numbers, and then work out 

whether or not it yields success.  

With 60 students I get a pretty 

good statistical sample and usual-

ly get close to the true theoretical 

value.  This exercise also gives 

the students a chance to sit back 

and “internalize” the algorithm.   

 

(175)(238)(46) 

This cyclic representation is a com-

pact way of specifying the permuta-

tion.  It tells us that box 1 contains 

name 7, box 7 contains name 5, box 

5 contains name 1, box 2 contains 

name 3, etc.   

 

 

1

7

2

3

3
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4

7
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2  
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Every permutation has a unique (up to order) representation as a prod-

uct of cycles.  If we write the top-inside permutation as a product of 

cycles, then the key observation is that is the length of the cycle con-

taining any prisoner’s number is the number of boxes he would have to 

open to find his name, and therefore the prisoners who find their name 

are precisely the ones whose cycle has length at most 4. 

 

We conclude that the permutation will meet success precisely when its 

cyclic representation has all cycles of length ≤ 4.  All such permuta-

tions have the property that all 8 prisoners will find their names.   

 

It remains to calculate the probability that a permutation of 8 symbols 

will have all cycles of length ≤ 4.  To do this it helps to know basic 

things about permutations and combinations.   

 

Let’s start by counting the number of permutations of 8 symbols that 

have a cycle of length 5.  To get a cycle of length 5 we need to choose 

5 of the symbols and there are 








5

8
 ways to do that.  Then note that 

there are 4! possible cycles with 5 symbols—start with any one and 

then write the others in all possible orderings.  Finally, for each of these 

there are 3! ways to permute the remaining 3 symbols.  The total count 

is: 










5

8
4! 3!  =  

!3!5

!8
4!3!  =  

5

!8
. 

Now the total number of permutations of 8 symbols is 8! And hence the 

probability that a random permutation will have a 5-cycle is 1/5.  A 

surprisingly simple result, but it’s not easy to “see” right away why it 

ought to be true.  [At least I haven’t found a simple argument.] 

 

Similarly the probability that a random permutation will have a 6-cycle 

is 1/6, etc. Now we want the probability that all cycles have length ≤ 4.  

That’s the same as the probability of having no cycles of length 5 or 6 

or 7 or 8.  Well we can calculate the probability that a random permuta-

tion will have a cycle of length 5 or 6 or 7 or 8.  It will be: 


8

1

7

1

6

1

5

1
0.63  

and hence the probability of no cycle of length greater than 4 is 1 minus 

this which is 0.37.  This strategy delivers a whopping 37% chance of 

success. 

 

What about more prisoners?  Our argument generalizes exactly.  The 

probability of failure for 10 prisoners (having a cycle of length > 5) is  


10

1

9

1

8

1

7

1

6

1
0.64. 

Actually, without doing the calculation, we can easily see that the se-

cond sum exceeds the first, as 1/5 is clearly less than 1/9 + 1/10.  Gen-

eralizing this, we see that the failure probability increases as the num-

ber of prisoners increases (for even numbers of prisoners).  Therefore 

the success probability decreases and the question then is: how small 

does the success probability get?  

Note that these are disjoint possi-

bilities—for example, you 

couldn’t have both a cycle of 

length 5 and a cycle of length 7.  

Thus we can sum the individual 

probabilities. 
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50 51 98 99 10052

1/51 1/52

1/99 1/100

y= x1/

Of course we are already able to write down the answer for 100 prison-

ers.  The failure probability is  

100

1

99

1

53

1

52

1

51

1
   

and with a programmable calculator or a spreadsheet we could easily calculate this.  It turns out to be 0.688 

which is less than 0.7 and that confirms our result that the probability that all 100 prisoners will find their 

names exceeds 30%. 

 

But it’s of considerable interest to discover what happens as the number of prisoners gets very large.  Does 

the success probability approach zero, or does it have a positive limiting value?  This is actually a very nice 

problem.   

 

A lovely way to represent these sums is as the area of a family of rectangles.  Anyone who has worked with 

Riemann sums might well suspect that such an approach might work.  What we want is an area representa-

tion that allows us to see easily how the different sums compare.   

 

The obvious graph to work with is y = 1/x.  It takes a bit of playing around to see how to set things up, but 

the final argument is quite elegant.  Consider the graph below.  The curve has equation y = 1/x, and fifty 

rectangles are erected on the interval [50, 100] each with base 1.  The sum of their areas is exactly the 

above sum.   

 

 

 

 

 

 

 

 

 

Now the sum of these areas is less than the area under the curve on [50, 100], and this is: 

69.02ln
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100
ln50ln100lnln
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 xdx

x
 

The failure probability is less than this so the success probability exceeds 1–ln2 = 0.31.  And the proof is 

complete. 

 

Error analysis: It’s interesting to estimate the error in the above inequality.  The success probability ex-

ceeds 1–ln2 but by how much?  It’s simplest to look at the failure probability  

failure probability  =  
100

1

99

1

53

1

52

1

51

1
      <     2ln

1100

50
 dx

x
. 

The error in the above inequality is the sum of the triangular regions and this is less than what we’d get if 

we made those triangular regions into real triangles (by giving them straight hypotenuses).  Now these tri-

angles all have base 1 so their area is half their height and the sum of these areas is then: 

 

½ [sum of heights]   =  
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=   
200
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So the failure probability is within 1/200 of ln2.   


