ZEROS OF DEDEKIND ZETA FUNCTIONS AND HOLOMORPHY OF ARTIN L-FUNCTIONS

PENG-JIE WONG

Abstract. For any Galois extension of number fields K/k, the object of this note is to show that if the quotient $\zeta_K(s)/\zeta_k(s)$ of the Dedekind zeta functions has a zero of order at most $\max\{2, p_2 - 2\}$ at $s_0 \neq 1$, then every Artin L-function for $\text{Gal}(K/k)$ is holomorphic at s_0, where p_2 is the second smallest prime divisor of the degree of K/k. This result gives a refinement of the work of Foote and V. K. Murty.

1. Introduction

More than a century ago, Dedekind considered the quotients of his zeta functions and proved that the quotient $\zeta_M(s)/\zeta(s)$ is entire for every pure cubic extension M/\mathbb{Q}. This work suggested that the quotient $\zeta_M(s)/\zeta_k(s)$ of Dedekind zeta functions is entire whenever M/k is an extension of number fields, what is now called the Dedekind conjecture, and led Artin to his famous holomorphy conjecture.

Let K/k be a Galois extension of number fields with Galois group G. Artin conjectured that every L-function $L(s, \chi, K/k)$ attached to a non-trivial irreducible character χ of G extends to an entire function. According to Artin reciprocity, this conjecture is valid if χ is a monomial character, i.e., a character induced from a 1-dimensional character. From this and his induction theorem, Brauer further showed that each $L(s, \chi, K/k)$ extends to a meromorphic function over \mathbb{C}.

Using the theory of induced representations, Aramata and Brauer independently proved the Dedekind conjecture for every Galois extension of number fields. Furthermore, if M is contained in a solvable normal closure of k, Uchida [18] and van der Waall [19] independently established the Dedekind conjecture in this case. In general, the Dedekind conjecture will follow from the Artin conjecture. However, both conjectures are still open. Nevertheless, several important progressions have been made by Langlands and many others (cf. [11, 12, 13, 15, 17]) for (primitive) irreducible representations of dimension 2 and 4. In particular, by the work of Langlands and Tunnell, Artin’s conjecture holds for all 2-dimensional Galois representations with solvable images.

The character-theoretic approach was also adapted by Heilbronn. Indeed, Heilbronn introduced what now are called Heilbronn characters and gave a simple proof of the Aramata-Brauer theorem. In the same spirit of Heilbronn, Stark proved the Artin conjecture is “locally” true if the order of $\zeta_K(s)$ at $s = s_0$ is less than or equal to 1. Inspired by these works, Foote and V. K. Murty [7] derived an inequality for
all Heilbronn characters (cf. Proposition 2.2). Indeed, they gave a variant of the Aramata-Brauer theorem and obtained a partial generalisation of Stark’s result for solvable Galois extensions as follows.

Theorem 1.1. [7] For solvable G with $|G| = p_1^{n_1} \cdots p_k^{n_k}$, where $p_1 < \cdots < p_k$ are distinct primes, if $\text{ord}_{s = s_0} \zeta_K(s) \leq p_2 - 2$, then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$.

We remark that this result has been improved by Foote and Wales (cf. [6, 8]) as well as M. R. Murty and Raghuram [14]. In particular, Foote and Wales proved the following.

Theorem 1.2. [8] Let K/k be a solvable Galois extension of number fields. If $\text{ord}_{s = s_0} \zeta_K(s)$ is at most 2, then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$.

Also, M. R. Murty and Raghuram generalised the theorem of Uchida-van der Waall and then refined Foote-V. K. Murty’s inequality. As we shall demonstrate in Section 2, M. R. Murty-Raghuram’s inequality implies that for G solvable, the Artin conjecture is locally true at $s = s_0$ if the order of the quotient $\zeta_K(s)/\zeta_k(s)$ at $s = s_0$ is at most 1. Clearly, this refines the above-mentioned result of Stark.

In light of this, it is natural to ask if one can refine Theorem 1.1. In this note, we will give an affirmative answer by proving the following.

Theorem 1.3. Let K/k be a Galois extension of number fields with solvable Galois group G, and write $|G| = p_1^{n_1} \cdots p_k^{n_k}$, where $p_1 < \cdots < p_k$ are distinct primes. Then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$ for all irreducible characters χ of G whenever $\text{ord}_{s = s_0} (\zeta_K(s)/\zeta_k(s)) \leq p_2 - 2$.

Theorem 1.4. Let K/k be a solvable Galois extension of number fields. If

$$\text{ord}_{s = s_0} (\zeta_K(s)/\zeta_k(s)) \leq 2,$$

then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$.

2. **HEILBRONN CHARACTERS**

We shall start by reviewing the theory of Heilbronn characters. As before, let K/k be a Galois extension of number fields with Galois group G. Fix $s_0 \in \mathbb{C}$. The Heilbronn character (of K/k with respect to $s = s_0$) is defined as

$$\Theta_G := \sum_{\chi \in \text{Irr}(G)} n_{\chi} \chi,$$

where $n_{\chi} = \text{ord}_{s = s_0} L(s, \chi, K/k)$.

One has below a lemma of Heilbronn-Stark.

Proposition 2.1 (Heilbronn-Stark Lemma). For every subgroup H of G,

$$\Theta_G|_H = \Theta_H.$$

Applying this lemma, Foote and V. K. Murty derived:
Proposition 2.2. Let K/k and G be as above. Fix $s_0 \in \mathbb{C}$. Then one has
\[
\sum_{\chi \in \text{Irr}(G)} (\text{ord}_{s=s_0} L(s, \chi, K/k))^2 \leq (\text{ord}_{s=s_0} \zeta_K(s))^2.
\]

Thus, for any $\chi \in \text{Irr}(G)$, the quotient
\[
\frac{\zeta_K(s)}{L(s, \chi, K/k)}
\]
is holomorphic at $s \neq 1$. In particular, by choosing $\chi = 1_G$, the trivial character of G, one then deduces the Aramata-Brauer theorem as mentioned earlier. Besides, this implies the following result of Stark.

Proposition 2.3. If $\text{ord}_{s=s_0} \zeta_K(s) \leq 1$, all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$.

This result has been improved by Foote and V. K. Murty (cf. Theorem 1.1). Moreover, by using the classification of finite simple groups, Foote and Wales [8] derived the following.

Proposition 2.4. Suppose that G is a finite group with a virtual character θ satisfying:

1: $\theta(1) \leq 2$;
2: θ is not a character of G but its restriction to every proper subgroup of G is a character; and
3: If $\chi \in \text{Irr}(G)$ appears in θ with $(\chi, \theta) < 0$, then χ is faithful, non-linear, and primitive.

Then G is either a semi-direct product of a quaternion group of order 8 by a cyclic group of order 3, or $\text{SL}(2, p)$ for some prime $p \geq 5$.

From this and the Langlands-Tunnell theorem, they obtained Theorem 1.2.

In a different vein, based on the work of Uchida and van der Waall, M. R. Murty and Raghuram gave below a variant of Uchida-van der Waall’s theorem, which enables them to improve Foote-V. K. Murty’s inequality, Proposition 2.2.

Theorem 2.5. [14] Let K/k be a solvable Galois extension of number fields with Galois group G. Then for every subgroup H of G and every $\phi \in \text{Irr}(H)$ of degree 1,
\[
\frac{L(s, \text{Ind}_H^G \phi, K/k)}{L(s, \chi, K/k)(\chi|H, \phi)}
\]
is holomorphic at $s \neq 1$. Moreover, for any fixed $s_0 \neq 1$ and any $\chi_0 \in \text{Irr}(G)$ of degree 1, one has
\[
\sum_{\chi \neq \chi_0} (\text{ord}_{s=s_0} L(s, \chi, K/k))^2 \leq \left(\text{ord}_{s=s_0} \frac{\zeta_K(s)}{L(s, \chi_0, k/K)}\right)^2.
\]

We note that assuming M/k is an extension of number fields contained in a solvable Galois extension K/k with Galois group G, there exists a subgroup H of G fixing M. By applying this theorem with $\chi = 1_G$ and $\phi = 1_H$, it is easy to see that $\zeta_M(s)/\zeta_k(s)$ is entire, which is Uchida-van der Waall’s theorem. Also, via this theorem, one can partially improve Stark’s result as follows.
Corollary 2.6. For solvable Gal(K/k), all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0 \neq 1$ if the order of $\zeta_K(s)/L(s, \chi_0, k/K)$ at $s = s_0$ is at most 1.

Proof. If $\text{ord}_{s=s_0} (\zeta_K(s)/L(s, \chi_0, k/K)) = 0$, then the corollary follows from the above theorem immediately. Otherwise, for $\text{ord}_{s=s_0} (\zeta_K(s)/L(s, \chi_0, k/K)) = 1$, by the Artin-Takagi decomposition

$$\zeta_K(s) = L(s, \chi_0, K/k) \prod_{\chi \neq \chi_0} L(s, \chi, K/k)^{\chi(1)},$$

one can conclude that there exists an irreducible character $\chi' \neq \chi_0$ (say) of G such that $\text{ord}_{s=s_0} L(s, \chi', k/K) \neq 0$. Also, M. R. Murty-Raghuram’s inequality forces that there is at most one such an irreducible character. Thus, for every $\chi \notin \{\chi_0, \chi'\}$, $n_\chi = 0$. Now the Artin-Takagi decomposition assures that both $\chi'(1)$ and $n_{\chi'}$ must be equal to 1, which completes the proof. \qed

3. Lemmata

Let \mathcal{P} be a collection of subgroup-closed and quotient-closed properties of finite groups, namely, if G has the property \mathcal{P} and H is either a subgroup or a quotient group of G, then H also satisfies \mathcal{P}. Let \mathcal{S} be the collection of isomorphic classes of finite groups with the property \mathcal{P}, and $\{r_G\}_{G \in \mathcal{S}}$ be a set of integers such that if H is either a subgroup or a quotient group of G, then $r_G \leq r_H$.

Assume that \mathcal{P} contains the property that groups are solvable, and $G_{mc} \in \mathcal{S}$ is a minimal counterexample for the following statement:

Fix $s_0 \in \mathbb{C}$. Let K/k be a Galois extension of number fields with Galois group G. If $\text{ord}_{s=s_0} (\zeta_K(s)/\zeta_k(s)) \leq r_G$, then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$ for all irreducible characters χ of G.

Adapting the method developed in [7], we have the following sequence of lemmata concerning the properties of the Heilbronn character $\Theta_{G_{mc}}$.

For the sake of convenience, we shall write G for G_{mc} and let $Q^K_M(s)$ stands for the quotient $\zeta_M(s)/\zeta_k(s)$ of Dedekind zeta functions.

Lemma 3.1. Θ_G is not a character of G but $\Theta_G|_H$ is a character of any proper subgroup H of G.

Proof. By the assumption on G, there is an irreducible character χ of G such that n_χ is negative. Since n_χ is the coefficient of χ in the Heilbronn character Θ_G, Θ_G is not a character of G.

Now let H be a proper subgroup of G. Since $r_G \leq r_H$, $\text{ord}_{s=s_0} Q^K_k(s) \leq r_H$. According to the Aramata-Brauer theorem, both $Q^K_k(s)$ and $Q^K_M(s)$ are entire where M denotes the subfield of K/k fixed by H. On the other hand, the Uchida-van der Waall theorem asserts that $Q^K_M(s)$ is also entire. Thus, $Q^K_M(s)$ divides $Q^K_k(s)$ as entire functions, and so $\text{ord}_{s=s_0} Q^K_M(s) \leq \text{ord}_{s=s_0} Q^K_k(s)$ which implies that $\text{ord}_{s=s_0} Q^K_M(s) \leq r_H$. Now by the minimality of G, n_{ψ} is non-negative for any non-trivial irreducible character ψ of H, i.e., Θ_H is a character of H. \qed

Lemma 3.2. If χ is an irreducible character of G such that $n_\chi < 0$, then χ must be faithful, i.e., Ker χ is trivial.
Proof. Suppose, on the contrary, that $\text{Ker } \chi$ is non-trivial, and let M denote its fixed field. Since $\text{Ker } \chi$ is a normal subgroup of G, by the fundamental theorem of Galois theory and the inflation property of Artin L-functions, $L(s, \chi, k)$ is the same whether viewed as an Artin L-function of K/k or an Artin L-function of M/k. Let $N = \text{Gal}(M/k)$ denote the Galois group of the field extension M/k. Since the Aramata-Brauer theorem assures that all the quotients $Q^K_k(s), Q^M_k(s)$, and $Q^M_M(s)$ are entire, one can conclude that $\text{ord}_s = s_0 Q^M_k(s) \leq s_0 Q^K_k(s)$. Thus, $\text{ord}_s = s_0 Q^M_k(s) \leq s_0 Q^K_k(s)$.

However, if we regard χ as a character of N, the minimality of G implies that n_χ is non-negative that contradicts the assumption that $n_\chi < 0$. □

Lemma 3.3. If χ is an irreducible character of G such that $n_\chi < 0$, then χ is not induced from any proper subgroup of G.

Proof. If there was a character ψ of a proper subgroup H of G such that $\chi = \text{Ind}_G^H \psi$, then the induction-invariance property of Artin L-functions implies that $n_\chi = \text{ord}_s = s_0 L(s, \psi, K/K_H)$, where K^H is the fixed field of H. However, the latter value is non-negative by Lemma 3.1, a contradiction. □

Following [7], we now decompose Θ_G into three parts θ_1, θ_2, and θ_3 as follows. Let θ_3 be the sum of all terms $n_\lambda \chi$ so that λ is not faithful characters of G, and let $-\theta_2$ be the sum of all terms $n_\chi \chi$ for which n_χ is negative. According to Lemma 3.2, one has $(\theta_2, \theta_3) = 0$.

Finally, θ_1 is defined by $\theta_1 := \Theta_G + \theta_2 - \theta_3$.

It is clear that θ_1 is the sum of all terms $n_\psi \psi$ where ψ is a faithful irreducible character with $n_\psi > 0$, and that θ_1 is orthogonal to θ_2 and θ_3.

We will derive further information about θ_2 and θ_3 by restricting to an appropriate subgroup of G. As one shall see, the main tool is Clifford’s theorem. Observe that since G is solvable and non-abelian, it admits a normal subgroup N of prime index p (say), which contains the centre $Z(G)$ of G.

Lemma 3.4. Let N a normal subgroup of G of prime index p, which contains the centre $Z(G)$ of G. Then one has $(\theta_2|N, \theta_3|N) = 0$.

Moreover, $\theta_1|N - \theta_2|N$ is either zero or equal to a character ϕ of N.

Proof. First of all, Clifford’s theorem (see, for example, [5, pp. 53-54]) asserts that for every $\chi \in \text{Irr}(G)$, either $\chi|N$ is irreducible or χ is induced from N. In particular, if χ is a constituent of θ_3, Lemma 3.3 forces that $\chi|N$ must be irreducible.

Secondly, a theorem of Blichfeldt (see [4, Corollary 50.7]) tells us that if G had a non-central abelian normal subgroup, then every faithful irreducible character of G would be induced from a proper subgroup. However, Lemma 3.3 forces that it
cannot happen. In other words, all abelian normal subgroups of G must be central, i.e., contained in the centre $Z(G)$.

Now as every non-trivial normal subgroup of G possesses a non-trivial abelian subgroup which is normal in G, it follows that for every non-faithful λ of G,

$$\text{Ker } \lambda \cap Z(G)$$

is non-trivial. In other words, none of irreducible constituents of θ_3 is faithful in $Z(G)$. Since $Z(G) \subseteq N$, one then derives

(3.1)

$$(\theta_2|_N, \theta_3|_N) = 0.$$

Finally, the Heilbronn-Stark lemma and Lemma 3.1 tell us that

$$\Theta_N = \theta_1|_N - \theta_2|_N + \theta_3|_N$$

is a character of N, which together with (3.1) completes the proof. □

Lemma 3.5. Suppose that $\theta_1|_N - \theta_2|_N$ is a character ϕ of N. Then there is an irreducible character ψ appearing in $\theta_1 - \theta_2$ such that

$$\psi(1) \leq r_G.$$

Proof. By choosing an irreducible constituent ϕ_1 of $\phi = \theta_1|_N - \theta_2|_N$, let ψ be an irreducible constituent of $\theta_1 - \theta_2$ such that $\psi|_N$ contains ϕ_1. If $\psi|_N = \phi_1$, then it is clear that

$$\psi(1) = \phi_1(1) \leq \phi(1).$$

Otherwise, since $[G : N] = p$, Clifford’s theorem asserts that

$$\psi|_N = \sum_{i=1}^{p} \phi_i,$$

where ϕ_i’s are distinct G-conjugate irreducible characters. Furthermore, as ϕ_1 appears in $\phi = \theta_1|_N - \theta_2|_N$ and ϕ is a G-stable character of N, each ϕ_i must appear in ϕ. In particular,

$$\psi(1) = \sum_{i=1}^{p} \phi_i(1) \leq \phi(1).$$

Together with our assumption and the fact that the trivial character is not faithful, the Heilbronn-Stark lemma then yields

$$r_G \geq \text{ord}_{s=s_0} \frac{\zeta_K(s)}{\zeta_K(s)}$$

$$= \Theta_G(1) - n_{1_G}$$

$$= \Theta_N(1) - n_{1_G} \lambda_N(1)$$

$$= \phi(1) + \theta_3'(1)$$

$$\geq \phi(1),$$

where the last inequality holds provided that $\theta_3' := \theta_3|_N - n_{1_G} \lambda_N$ is either zero or a character, and hence the lemma follows. □
Lemma 3.6. Let H be the subgroup generated by $\mathbb{Z}(G)$ and an element $x \in G\setminus N$. Then
\[(\theta_2|_H, \theta_3|_H) = 0. \]
In addition, $\theta_1|_H - \theta_2|_H$ is either zero or equal to a character of H.

Proof. Since H is abelian, it must be a proper subgroup of G. As we argued earlier, for every irreducible constituent λ of θ_3, $\text{Ker} \lambda \cap \mathbb{Z}(G)$ is non-trivial. Thus, the same holds for $\text{Ind}^G_H(\lambda|_H)$. As any irreducible constituent χ of θ_2 is faithful, one has
\[(\chi, \text{Ind}^G_H(\lambda|_H)) = 0. \]
Now Frobenius reciprocity tells us that $(\chi|_H, \lambda|_H) = 0$, and so $(\theta_2|_H, \theta_3|_H) = 0$.

By an analogous argument as before, the lemma follows.

Lemma 3.7. If $\theta_1|_N = \theta_2|_N$, then $\theta_1 = \theta_2$. In other words, if the minimal counterexample $G = G_{mc}$ exists, then $\theta_1|_N \neq \theta_2|_N$.

Proof. Assuming that $\theta_1|_N = \theta_2|_N$, one has $\theta_1(1) = \theta_2(1)$, which combining with Lemma 3.6 asserts that $\theta_1|_H = \theta_2|_H$ for any subgroup generated H by $\mathbb{Z}(G)$ and an element $x \in G\setminus N$. In particular,
\[\theta_1(x) = \theta_2(x) \]
for all $x \in G\setminus N$. Now as $\theta_1|_N = \theta_2|_N$, we then derive $\theta_1 = \theta_2$.

4. Applications

Proof of Theorem 1.3. First of all, we let P be the property that groups are solvable. For each G satisfying the property P, we set r_G to be equal to $p_2 - 2$, where p_2 denotes the second smallest prime divisor of $|G|$.

If the theorem was false, then we take G as a minimal counterexample. Under the same notation as in the previous section, we may assume that $\theta_1|_N - \theta_2|_N$ is a character ϕ of N. Then Lemma 3.5 asserts that there is a faithful irreducible character appearing in $\theta_1 - \theta_2$ such that
\[\psi(1) \leq p_2 - 2. \]
Since G is solvable, a theorem of Ito (cf. [5, pp. 128]) tells us that if G has a faithful irreducible character of degree less than $q - 1$, then any Sylow q-group G is abelian and normal. As ψ is faithful, G admits an abelian normal subgroup A such that G/A is of order $p_1^{n_1}$. However, by a result of Huppert (cf. [9, Theorem 6.23]), it would force G to be an M-group, a contradiction. Therefore, $\theta_1|_N = \theta_2|_N$. However, now Lemma 3.7 would lead another conduction. In other words, such a minimal counterexample cannot exist, and hence the theorem follows.

By the celebrated theorem of Feit and Thompson, all groups of odd order are solvable. We then immediately obtain:
Corollary 4.1. Assume that K/k is a Galois extension of number fields of odd degree. If $\text{ord}_{s=s_0}(\zeta_K(s)/\zeta_k(s)) \leq 3$, then every Artin L-function $L(s, \chi, K/k)$ is holomorphic at $s = s_0$.

We note that if G is of even order, the above theorem can be derived by apply M. R. Murty-Raghuram’s inequality. On the other hand, one can see that the proof relies on the “Sylow structure” of G. In light of this observation, we give some variants below.

Theorem 4.2. Let K/k be a solvable Galois extension of number fields with Galois group G. Assume that either

1: $|G| = q^p p_1^{n_1} \cdots p_k^{n_k}$ where $q < p < p_1 < \cdots < p_k$ are distinct primes, $q \mid (p - 1)$ and $\ell \leq 1$; or

2: $|G| = q^p p_1^{n_1} \cdots p_k^{n_k}$ where $q < p < p_1 < \cdots < p_k$ are distinct primes, $q^2 \mid (p - 1)$ and $\ell \leq 2$.

Suppose, further, that $\text{ord}_{s=s_0}(\zeta_K(s)/\zeta_k(s)) \leq p_1 - 2$, then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$ for all irreducible characters χ of G.

Proof. This time we may let \mathcal{P} be the property that either

1: For fixed primes $q < p$ such that $q \mid (p - 1)$, G is a solvable group of order $q^p p_1^{n_1} \cdots p_k^{n_k}$ where $p < p_1 < \cdots < p_k$ are distinct primes and $\ell \leq 1$; or

2: For fixed primes $q < p$ such that $q^2 \mid (p - 1)$, G is a solvable group of order $q^p p_1^{n_1} \cdots p_k^{n_k}$ where $p < p_1 < \cdots < p_k$ are distinct primes and $\ell \leq 2$.

It is clear that these properties subgroup-closed and quotient-closed. We then set $r_G = p_1 - 2$.

Now assume the claim was false and let G be a minimal counterexample. Under the same notation as before, we again suppose that $\theta_1|N - \theta_2|N$ is a character ϕ of N. Then Lemma 3.5 tells us that there exists an irreducible character ψ appearing in $\theta_1 - \theta_2$ such that

$$\psi(1) \leq p_1 - 2.$$

Now Ito’s theorem assures that all Sylow p_j-subgroups of G are abelian and normal.

Thus, G admits an abelian normal subgroup A of index $q^p p^n$ (with $\ell \leq 1$ and $q \mid (p - 1)$) or $q^2 p^n$ (with $\ell \leq 2$ and $q^2 \mid (p - 1)$), which means that G/A is necessarily supersolvable (cf. [20]). Now G is an M-group (a la Huppert), a contradiction. Therefore, $\theta_1|N = \theta_2|N$, which together with Lemma 3.7 leads the final contradiction. \hfill \Box

Corollary 4.3. Let K/k be a Galois extension of number fields with Galois group G. If $4 \nmid |G|$ and $\text{ord}_{s=s_0}(\zeta_K(s)/\zeta_k(s)) \leq 3$, then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$ for all irreducible characters χ of G.

Proof. We recall that a theorem of Cayley and Burnside asserts that if a Sylow 2-subgroup P of G is cyclic, then G has a normal 2-complement, i.e., there exists a normal subgroup N of G such that G is the semidirect product of N and P. From this result and the Feit-Thompson theorem, if G admits a cyclic Sylow 2-subgroup, then G is solvable. In particular, if $4 \nmid |G|$, then G is solvable. This fact together with the first part of the above theorem finishes the proof. \hfill \Box
Theorem 4.4. Let K/k be a solvable Galois extension of number fields with Galois group G. Suppose that $\left| G \right| = q_1^{m_1} \cdots q_l^{m_l} p_1^{n_1} \cdots p_k^{n_k}$, where $q_1 < \cdots < q_l < p_1 < \cdots < p_k$ are distinct primes and all Sylow q_i-subgroups are abelian for all i. If $\text{ord}_{s=s_0}(\zeta_K(s)/\zeta_k(s)) \leq p_1 - 1$, then all Artin L-functions $L(s, \chi, K/k)$ are holomorphic at $s = s_0$ for all irreducible characters χ of G.

Proof. Choose P to be the property that $|G| = q_1^{m_1} \cdots q_l^{m_l} p_1^{n_1} \cdots p_k^{n_k}$, where $q_1 < \cdots < q_l < p_1 < \cdots < p_k$ are distinct primes and all Sylow q_i-subgroups are cyclic for all i. We then pick $r_G = p_l - 1$.

Now suppose that there was a minimal counterexample G. As before, Lemma 3.7 forces that $\theta_1 \mid N - \theta_2 \mid N$ had to be a character ϕ of N, and by Lemma 3.5, there was a faithful irreducible character ψ with $\psi(1) \leq p_1 - 1$. Now every Sylow p_j-subgroups P of G must be abelian since $\psi \mid P$ is faithful and of degree less than p_j. Therefore, all Sylow subgroups of G are abelian. Now Huppert’s theorem implies that G is an M-group, a contradiction. □

To end this note, we will utilise our lemmata proved in the previous section and the result of Foote and Wales, Proposition 2.4, to derive Theorem 1.4.

Proof of Theorem 1.4. Let P only require the solvability of G and $r_G = 2$. Suppose that the theorem was invalid. Then we may pick a minimal minimal counterexample G (say). Clearly, $\theta := \Theta - n_{1G} 1_G$ is a virtual character with $\theta(1) \leq 2$. Furthermore, Lemmata 3.1-3.3 assert that θ satisfies all conditions required in Proposition 2.4. (We note that for any subgroup H of G, the Uchida-van der Waall theorem tells us that

$$n_{1H} - n_{1G} = \text{ord}_{s=s_0} L(s, 1_H, K/K^H) - \text{ord}_{s=s_0} L(s, 1_G, K/k) = \text{ord}_{s=s_0} \frac{\zeta_{K^H}(s)}{\zeta_k(s)}$$

is non-negative. A moment’s reflection shows that $\theta \mid H = \Theta_H - n_{1G} 1_H$ is still a character.) Thus, as G is solvable, Proposition 2.4 implies that G is a semi-direct product of a quaternion group of order 8 by a cyclic group of order 3. However, the theory of relative M-groups (see, for example, [9, Chapter 6]) tells us that every irreducible character of G is induced from a character of degree at most two. Now together with the induction-invariance property of Artin L-functions, Artin reciprocity and the Langlands-Tunnell theorem assure that all Artin L-functions (of G) are holomorphic at $s = s_0 \neq 1$, a contradiction. □

ACKNOWLEDGMENT

The author would like to thank Professor Ram Murty for making many helpful remarks on previous versions of this manuscript.
REFERENCES

DEPARTMENT OF MATHEMATICS, QUEEN’S UNIVERSITY, KINGSTON, ONTARIO K7L 3N6, CANADA.
E-mail address: pjwong@mast.queensu.ca