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Abstract. In this article we study bases for projective monomial curves and
the relationship between the basis and the set of generators for the defining
ideal of the curve. We understand this relationship best for curves in P3 and
for curves defined by an arithmetic progression. We are able to prove that the
latter are set theoretic complete intersections.

1. Introduction

Let S = {a1, . . . , ap} with ai ∈ N , 0 < a1 < · · · < ap = d and gcd(a1, . . . , ap) =
1 . To S we associate two semigroups Γ ⊆ N and S ⊂ N2 (all our semigroups
are finitely generated and contain 0). The numerical semigroup Γ is gener-
ated by S , and S is generated by α0 = (d, 0), α1 = (d − a1, a1), · · · , αp−1 =
(d − ap−1, ap−1), αp = (0, d) . Let K be a field and s, t indeterminates over K.
We will identify the semigroup ring of S over K with the subalgebra K[S] =
K[sd, sd−a1ta1 , . . . , sd−ap−1tap−1 , td] ⊆ K[s, t]. The projective monomial curve asso-
ciated to S is the scheme C = Proj(K[S]) . Let R=K[X0, X1, . . . , Xp] , a poly-
nomial ring over K . The surjective K-algebra homomorphism ϕ : R → K[s, t]
defined by ϕ(Xi) = sd−aitai for i = 0, . . . , p (setting a0 = 0) corresponds to an
embedding C →֒ Pp of C as a curve of degree d. The objects of study in this
paper are the ideal Ker ϕ =: p , the basis of S (defined below), and the relation
between them. The ideal p is a homogeneous prime ideal in R , called the defin-
ing ideal of C, and R/p ∼= K[S] as K-algebra. To simplify terminology “curve”
will always mean a projective monomial curve, and we may refer to the set S ,
or the semigroup S, as the curve. Our methods work best if C is a curve in P3

(i.e. p = 3) or if C is an arithmetic progression curve, i.e. S is a finite set of
consecutive elements in an arithmetic progression.

By the basis of S (or C or S ) we mean the following.

Definition 1.1. Let T be the subsemigroup of S generated by {α0 = (d, 0), αp =
(0, d)} . The set B = {α ∈ S | α−α0 /∈ S, and α−αp /∈ S} is called the basis
of S over T (or simply the basis of S ).
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For α = (α1, α2) ∈ S , let tα = sα1tα2 . Then tB = {tα | α ∈ B} is a minimal
spanning set of K[S] as a module over K[T ] = K[sd, td] . Equivalently the canon-
ical image of tB forms a K-basis of K[S]/(sd, td)K[S]. Note that since {sd, td}
is a system of parameters in K[S] , K[S]/(sd, td)K[S] is a finite dimensional K-
vector space, so B is finite. Furthermore K[S] is Cohen-Macaulay if and only if
sd, td (or equivalently td, sd) is a regular sequence in K[S]. We now have

Theorem 1.2. [16, Theorem 1.1] The following are equivalent:

(i) The semigroup ring K[S] is Cohen-Macaulay.
(ii) K[S] is a free K[T ]-module with basis tB .
(iii) |B| = d .

Bases can be computed with Macaulay 2 [5] (as the K-basis of K[S]/(sd, td)K[S])
up to degree about 120, or up to degree about 1000 using a simple recursive al-
gorithm based on Definition 1.1 ([8]). The lattice methods of Section 2 permit
even more rapid calculation in P3, which we are still investigating. Our bases
are a special case of the more general notion of “Apery set”, which occurs in the
literature in many places, for example in [4].

The rings R and K[S] may be graded in several ways. The standard grading
(denoted simply deg) is defined by setting deg(Xi) = deg(ϕ(Xi)) = 1 (0 ≤ i ≤ p).
This is the grading used in the definition of Proj(S). The S (or N2) grading is
defined by setting degS(Xi) = degS(ϕ(Xi)) = αi = (d − ai, ai) ∈ S ⊂ N2 . We
will also need the s and t degrees, determined by degs(Xi) = degs(ϕ(Xi)) = d−ai

and degt(Xi) = degt(ϕ(Xi)) = ai. Trivially if f ∈ K[S], deg(f) = (degs(f) +
degt(f))/d. The homomorphism ϕ (and hence also the ideal p) is homogeneous in
all these gradings. For µ = (µ0, µ1, . . . , µp) ∈ Np+1 define Xµ := Xµ0

0 Xµ1

1 · · ·X
µp

p .
The ideal p has a minimal set G of generators consisting of pure binomials (i.e.
elements of the form Xµ − Xν , for example see [9, Theorem[7.3]). These gener-
ators are homogeneous in all the above mentioned gradings. The cardinality r of
G is uniquely determined, but the set G is not. We will say that f ∈ G is a type
one generator of p if f does not have X0 in one term and Xp in the other, and a
type two generator otherwise.

There are many papers on projective monomial curves, most notably [3] which
gives an algorithm for finding a minimal set of binomial generators for p. In Section
2 we describe both the basis and the ideal generators of projective monomial curves
in P3 in terms of lattices L and L ′. These sets can be visualized quite nicely by
plotting diagrams in either α1-α2 or α0-α2 coordinates. We also give an easy way
of recognizing the Cohen-Macaulay property in the first of these diagrams. These
diagrams give a conceptual combinatorial description of the generators of p, in
contrast with the algorithm of [3] (also expounded in [2, Section 3]). In Section
3, we use bases to determine explicitly the ideal generators for an arithmetic
progression projective monomial curve. We know nowhere in the literature where
ideal generators of a general projective arithmetic progression curve are found
explicitly. Finally we show in Section 4 that a projective curve defined by an
arithmetic progression is a set theoretic complete intersection.
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The following summarizes some of the notation used throughout this article:

Notation 1.3. Let N (respectively, N+, Z ) denote the set of natural num-
bers {0, 1, 2, , · · · } (respectively, non-zero natural numbers {1, 2, · · · } , integers
{0,±1,±2 , · · · } ). For any two integers a, b ∈ Z , we denote by [a, b] the interval
{i∈Z | a ≤ i≤ b} of integers. The cardinality of a set X is denoted by |X| . On
N2, ≤ will denote the coordinatewise partial order, i.e. (a1, b1) ≤ (a2, b2) if and
only if a1 ≤ a2 and b1 ≤ b2.

2. Curves in P3

Curves S in P3 have a number of special features, which permit more detailed
results than in higher dimension. First we introduce some notation that is more
convenient than the general notation. Write S = {a, b, d} with 0 < a < b < d and
gcd(a, b, d) = 1 so that α0 = (d, 0), α1 = (d−a, a), α2 = (d−b, b), and α3 = (0, d).
Define gcd(a, b) = c ≥ 1 and a′ = a/c, b′ = b/c, so that gcd(a′, b′) = 1.

Remark 2.1. First of all, any two of the αi are linearly independent over Q,
so that every element of S is a unique rational linear combination of two of the
others. In particular we have

(1) b′α1 − a′α2 = (b′ − a′)α0

(2) −(d − b)α1 + (d − a)α2 = (b − a)α3

(3) −(d − b)α0 + dα2 = bα3

In (1) the coefficients are relatively prime integers, but in (2) and (3) this may
not be the case. Furthermore every basis element is a unique integer linear com-
bination of α1 and α2. Secondly we have

Lemma 2.2. In any minimal binomial generating set G of p, there is at most one
generator in each S-degree.

Proof. This follows from [9, Theorem 9.2]. Let b ∈ S. In the language of this
Theorem, ∆b is a simplicial complex on {0, 1, 2, 3}with i corresponding to αi. The
Theorem implies that the number of elements of G in degree b is dim H̃0(∆b, K),
which is one less than the number of connected components of ∆b. However if
∆b has more than two connected components then it must have two singleton
components, say {i} and {j}. But this would imply that b = miαi = mjαj

for positive integers mi and mj , which is impossible since the αi are linearly
independent. �

There is an element of G in degree b if and only if ∆b is disconnected. If ∆b

is disconnected it is easy to give a minimal binomial generator of p in degree b.
Therefore a consequence of Lemma 2.2 is that in order to find a minimal set of
binomial generators of p it suffices to determine the S-degrees in which generators
occur. (In a particular degree there may be a choice of generators, leading to
different sets G , as we will see in Example 2.5).

We can relate the degrees of the type one generators of p to basis elements by fac-
toring out by (X0, X3). Namely K[S]/(sd, td)K[S] ∼= K[X0, ..., X3]/(p, X0, X3) ∼=



4 PING LI1, D. P. PATIL2, AND LESLIE G. ROBERTS3

K[X1, X2]/J1 for some ideal J1 in K[X1, X2]. No binomial in p can involve only
X1 and X2 so J1 is a monomial ideal. These isomorphisms identify the basis
elements of S with the monomials of K[X1, X2] not in J1.

As above let G be a minimal set of pure binomial generators of p. Any type two
generator in G (i.e. one that has X0 in one term and X3 in the other) maps to 0 in
K[X1, X2]. The type one generators in G are mapped injectively into K[X1, X2]
by Lemma 2.2. Let G be the images in K[X1, X2] of the type one generators.

Lemma 2.3. The ring homomorphism K[X0, . . . , X3] → K[X1, X2] sending X0

and X3 to 0 and Xi to Xi (i = 1, 2) maps the type one generators in G bijectively
onto G , which is a set of minimal generators of J1.

Proof. The bijection has already been noted. Clearly G generates J1, so it suffices
to prove that one element of G cannot be a multiple of another. Suppose on
the contrary that Xa1

1 Xa2

2 and Xb1
1 Xb2

2 are two distinct elements of G , and that
a1 ≥ b1, a2 ≥ b2 with at least one of these inequalities strict. We must have at least
one of b1 > 0, b2 > 0, say b1 > 0. Suppose that f and g are two pure binomials in
G which map respectively to Xa1

1 Xa2

2 , Xb1
1 Xb2

2 . Since b1 and a fortiori a1 is greater
than 0, the other term of both f and g must be divisible by X0. We then conclude
that f − Mg is divisible by X0, where M = Xa1−b1

1 Xa2−b2
2 . Since p is prime and

X0 /∈ p, (f − Mg)/X0 ∈ p, from which it follows that f is in the ideal generated
by G \{f}, contradicting the minimality of G as a set of generators of p. �

The type two generators in G (i.e. those that contain X0 in one term and X3 in
the other) must be of the form Xa0

0 Xa2

2 −Xa1

1 Xa3

3 with a0, a1, a2, a3 > 0 (in order for
the two monomials to have the same S-degree). These can be detected by factoring
out by (X1, X3), as follows. Namely K[X0, ..., X3]/(p, X1, X3) ∼= K[X0, X2]/J2

where J2 is an ideal in K[X0, X2]. No binomial in p can involve only X0 and X2

so J2 is a monomial ideal.

Lemma 2.4. For some minimal set G of pure binomial generators of p there is a
one-to-one correspondence between the elements of G not contained in
(X1, X3)K[X0, X1, X2, X3] and the minimal monomial generators of J2.

Proof. Start with some G . The elements of G not in (X1, X3) must either be of
type two or of the form Xa2

2 − Xa0

0 Xa1

1 Xa3

3 with a3 > 0 and a0 + a1 > 0. (This is
the only other way to not be in (X1, X3) and have both monomials of the same S-
degree.) If Xa0

0 Xa2

2 and Xb0
0 Xb2

2 are the images in K[X0, X2] of two such generators
it suffices to prove that neither divides the other. Suppose on the contrary that
Xa0

0 Xa2

2 is divisible by Xb0
0 Xb2

2 . That is, we have a0 ≥ b0, a2 ≥ b2 with at least
one inequality strict. Furthermore a2 > 0 and b2 > 0. Let f and g be elements
of G with one term respectively Xa0

0 Xa2

2 , Xb0
0 Xb2

2 . Then there is a monomial M
involving only X0 and X2 so that the X0-X2 term of f − Mg cancels. If b0 > 0
(and hence also a0 > 0) then both terms of f −Mg are divisible by X1 and, since
p is prime, we must have (f − Mg)/X1 ∈ p. From this it follows that f is in the
ideal generated by G \{f} contradicting the minimality of G . If a0 = 0 and b0 = 0
then both terms of f − Mg are divisible by X3, and since p is prime, we must
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have (f −Mg)/X3 ∈ p. From this it follows again that f is in the ideal generated
by G \{f}. We have not ruled out the possibility that b0 = 0 and a0 > 0. In this
case we might have f = Xa0

0 Xa2

2 −Xa1

1 , g = Xb2
2 −Xb0

0 Xb3
3 (other possibilities will

have both terms of f −Mg divisible by either X1 or X3 and the above argument
goes through). But if this happens then f −Mg = −Xa1

1 +Xa0+b0
0 Xa2−b2

2 Xb3
3 . We

have a1 > 0 and b3 > 0 so f − Mg ∈ (X1, X3). Now replace the pair of minimal
generators f, g by g, f − Mg, and we have a set G as stated in the Lemma. �

Example 2.5. The curve S = {3, 4, 12} has two sets of minimal generators
{X3

2 − X2
0X3, X

4
1 − X3

0X3} and {X3
2 − X2

0X3, X0X
3
2 − X4

1}, the second of which
shows that Lemma 2.4 does not hold for arbitrary G .

The minimal monomial generators of both J1 and J2 can both be described in
terms of lattices as we now show. The reader should refer to the diagrams below,
which illustrate the various definitions.

Definition 2.6. Let Lij be the free abelian subgroup of Z2 generated by αi and
αj (0 ≤ i < j ≤ 3). Define L = L12 ∩ L03 and L ′ = L02 ∩ L13. Also for i < j
define Cij = {riαi + rjαj | ri, rj ∈ R, ri ≥ 0, rj ≥ 0}, the real cone spanned by αi

and αj.

Since dimK(K[X1, X2]/J1) is finite, J1 contains monomials Xc1
1 and Xc2

2 as
minimal generators where, for example, c2 is the smallest positive integer such
that c2α2 = a0α0 + a1α1 + a3α3 with ai ≥ 0, a0 + a1 > 0 and a3 > 0. So the
element of G mapping to Xc2

2 is of the form Xc2
2 − Xa0

0 Xa1

1 Xa3

3 . Similarly the
element of G mapping to Xc1

1 is of the form Xc1
1 − Xa0

0 Xa2

2 Xa3

3 . All remaining
elements of G not vanishing in K[X1, X2] are of the form Xa1

1 Xa2

2 −Xa0

0 Xa3

3 with
ai > 0 for all i. Hence except for Xc1

1 and Xc2
2 the minimal generators of J1 all

have S-degree in C12 ∩ L .

It is convenient to represent elements of L12 in α1-α2 coordinates which will
be written in pointy brackets to distinguish from the original coordinates, which
we continue to write with ( )’s. Thus 〈a1, a2〉 = a1α1 + a2α2. Given any element
〈a1, a2〉 ∈ L \{〈0, 0〉} with a1, a2 ≥ 0, we can uniquely write 〈a1, a2〉 = a0α0 +
a3α3, necessarily with a0, a3 > 0. Then f = Xa1

1 Xa2

2 −Xa0

0 Xa3

3 is the unique pure
binomial element of p mapping to Xa1

1 Xa2

2 ∈ J1. This gives an order preserving
map from C12 ∩ (L \{〈0, 0〉}) = {〈a1, a2〉 ∈ L \{〈0, 0〉} | a1, a2 ≥ 0} to a subset
of the monomials in J1 sending 〈a1, a2〉 to Xa1

1 Xa2

2 (where we order C12 ∩ L

by the coordinatewise partial order on α1-α2 coordinates and the monomials by
divisibility). Let ML (1, 2) be the minimal elements of C12 ∩ (L \{〈0, 0〉}) (under
the partial order). By Lemma 2.3 and the above discussion the minimal generators
of J1 are {Xc1

1 , Xc2
2 } ∪ {Xa1

1 Xa2

2 | 〈a1, a2〉 ∈ ML (1, 2), a1 < c1, a2 < c2}.

Define BL (1, 2) to be the elements of L on the boundary of the convex hull of
C12 ∩ (L \{〈0, 0〉}).

Theorem 2.7. Let S = {a, b, d} be a projective monomial curve in P3, with nota-
tion as above. Then the S-degrees of the type one generators of p are {〈c1, 0〉, 〈0, c2〉}∪
{〈a1, a2〉 ∈ BL (1, 2) | a1 < c1, a2 < c2} where c2 is the smallest positive integer
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such that there exists a point 〈−a′

1, c2〉 ∈ C23 ∩ L and c1 is the smallest positive
integer such that there is a point 〈c1,−a′

2〉 ∈ C01 ∩ L .

Proof. In view of the above discussion, we need only show that ML (1, 2) =
BL (1, 2). The boundary of the convex hull of C12 ∩ (L \{〈0, 0〉}) forms a de-
creasing arc of line segments from a point 〈0, a2〉 with a2 ≥ c2 to a point 〈a1, 0〉
with a1 ≥ c1. From this it follows that BL (1, 2) ⊆ ML (1, 2).

If there is a point P = 〈a1, a2〉 ∈ ML (1, 2)\BL (1, 2), then P lies “between”
two consecutive vertices B = 〈b1, b2〉 and B

′ = 〈b′1, b
′

2〉, of the boundary of the
convex hull of C12 ∩ (L \{〈0, 0〉}), i.e., b1 < a1 < b′1 and b′2 < a2 < b2. Then
B + B

′ − P = 〈b1 + b2 − a1, b2 + b′2 − a2〉 ∈ L which lies in the interior of the first
quadrant of α1-α2 plane, below the line segment BB′. Contradiction. �

Definition 2.8. The points 〈−a′

1, c2〉 ∈ C23 ∩ L and 〈c1,−a′

2〉 ∈ C01 ∩ L in the
above Theorem will be referred to respectively as the left and right truncation
points of (the basis diagram of) S . (Necessarily a′

1 ≥ 0, a′

2 ≥ 0. There may be a
choice of a′

1 or a′

2, in which case take the smallest.)

We represent elements of L02 in α0-α2 coordinates which will be written in
double brackets. Thus Ja0, a2K = a0α0 +a2α2. Also Ja0, a2K is the S-degree of the
monomial Xa0

0 Xa2

2 .

Let G be a set of pure binomial generators of p as in Lemma 2.4. Note that
dimK(K[X0, X2]/J2) is infinite because J2 contains no power of X0. However J2

contains a monomial Xc2
2 as minimal generator, where c2 is the same as occurred in

J1. The monomial Xc2
2 is the image of a binomial of the form Xc2

2 −Xa0

0 Xa1

1 Xa3

3 ∈
G , where a3 > 0 and a0 + a1 > 0. All other elements of G not vanishing in
K[X0, X2] are of the form Xa0

0 Xa2

2 − Xa1

1 Xa3

3 where a0, a1, a2 > 0 and a3 ≥ 0.
Hence (except for Xc2

2 ) the minimal monomial generators of J2 all have S-degree
in C12 ∩ L ′. Furthermore every element Ja0, a2K ∈ C12 ∩ (L ′\{〈0, 0〉}) is the
S-degree of a binomial of the form Xa0

0 Xa2

2 − Xa1

1 Xa3

3 (uniquely except possibly
for J0, c2K).

We now have an order preserving map from C12 ∩ (L ′\{J0, 0K}) to a subset
of the monomials in J2 sending Ja0, a2K to Xa0

0 Xa2

2 (where we order C12 ∩ L ′

by the coordinatewise partial order on α0-α2 coordinates and the monomials by
divisibility). Let ML ′(1, 2) be the minimal elements of C12∩ (L ′\{J0, 0K}) (under
the partial order). By Lemma 2.4 and the above discussion the minimal generators
of J2 are {Xc2

2 } ∪ {Xa0

0 Xa2

2 | Ja0, a2K ∈ ML ′(1, 2), a2 < c2}.

In the α0-α2 plane the boundary of the convex hull of C12∩(L ′\{J0, 0K}) forms
an arc of line segments from a point A = J0, a2K with a2 ≥ c2 on the α2 ray to a
point B on the α1 ray. (To better understand this construction, refer to Example
2.13 and Figure 1 below.) Since the α1 ray has a positive slope, this arc will have
a minimum point M which could be either A or B, but in general the arc decreases
strictly from A to M, may stay at the same height for a while, then increases strictly
to B. Similarly to the type one case, define BL ′(1, 2) to be the elements of L ′ on
the boundary of the convex hull of C12 ∩ (L ′\{J0, 0K}). As in the type one case
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we have ML ′(1, 2) ⊆ BS ′(1, 2). However ML ′(1, 2) is only the points of BL ′(1, 2)
to the left of M (including M). We now have

Theorem 2.9. Let S = {a, b, d} be a projective monomial curve in P3, with no-
tation as above. Then the S-degrees of the type two generators of p are {Ja1, a2K ∈
ML ′(1, 2) | a2 < c2}\{B} where c2 is the smallest positive integer such that there
exists a point J−a′

1, c2K ∈ C23 ∩ L
′.

Definition 2.10. The point J−a′

1, c2K will be referred to as the left truncation
point of (the 02-basis diagram of) S .

We have that J0, c2K is the degree of a minimal generator of J2, but J0, c2K =
〈0, c2〉, which is the degree of a type one generator, hence is excluded in Theorem
2.9. The point B might not be in ML ′(1, 2) (it can lie strictly to the right of
M), but if it is, we exclude it in Theorem 2.9 because it is also the degree of a
type one generator. There is no right truncation point in the sense of the previous
definitions, but M serves the same function of preventing some elements of BL ′(1, 2)
from being the degrees of type two generators.

In order to give generators of the lattices L and L ′, we introduce the following
notation. There exist integers h > 0 and ℓ ≥ 0 such that d = hb′−ℓa′. For sake of
definiteness, we take h to be the smallest integer greater than or equal to ⌈d/b′⌉
such that hb′ − d is divisible by a′.

Recall that L = L12∩L03. Elements of L03 are easily recognized in the original
coordinates by having both coordinates divisible by d. In fact, since sum of the
coordinates of an element of S is divisible by d, it suffices to check the second
coordinate. Therefore, noting that gcd(d, c) = 1, we have a surjection from L12

to Z/dZ sending 〈a1, a2〉 = a1α1 + a2α2 = a1(d− a, a) + a2(d− b, b) to a1a
′ + a2b

′

mod d with kernel L. Therefore L is of index d in L12.

Lemma 2.11. The lattice L is generated by 〈b′,−a′〉 and 〈−ℓ, h〉.

Proof. Clearly 〈b′,−a′〉 and 〈−ℓ, h〉 are in L and det

(

b′ −ℓ
−a′ h

)

= d, so they

generate L . �

Generators of the lattice L
′ are given as follows.

Lemma 2.12. The lattice L ′ (in α0-α2 coordinates) is generated by Jb′ − a′, a′K
and Jℓ − h + c, hK. The index of L ′ in L02 is d − a.

Proof. First of all Jb′ − a′, a′K = b′α1 by Remark 2.1-(1) and Jℓ − h + c, hK =
ℓα1 + cα3 by a simple calculation, so Jb′ − a′, a′K and Jℓ − h + c, hK are in L ′.

Suppose that Jλ0,−λ2K ∈ L ′. Then there exist integers λ1 and λ3 such that

(1) λ0α0 − λ2α2 = λ1α1 + λ3α3

Therefore λ1α1 + λ2α2 ∈ L12 ∩L03 = L . By Lemma 2.11, there exist e1, e2 ∈ Z

such that λ1α1+λ2α2 = e1〈b
′,−a′〉+e2〈−ℓ, h〉 = (e1b

′−e2ℓ)α1+(−e1a
′+e2h)α2.

Comparing α1-α2 coordinates we have λ1 = e1b
′ − e2ℓ and λ2 = −e1a

′ + e2h.
Substituting that into Equation 1, we obtain λ0α0 = (e1b

′ − e2ℓ)α1 + (−e1a
′ +
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e2h)α2+λ3α3. Comparing the first coordinates (in the original coordinate system)
and dividing by d, we have λ0 = e1(b

′ − a′) − e2(ℓ − h + c). Substituting into
Jλ0,−λ2K we get Jλ0,−λ2K = Je1(b

′ − a′) − e2(ℓ − h + c), e1a
′ − e2hK = e1Jb

′ −
a′, a′K− e2Jℓ− h + c, hK, so Jb′ − a′, a′K and Jℓ−h + c, hK generate L ′. The matrix
with first row (b′ − a′, a′) and second row (ℓ − h + c, h) has determinent d − a,
from which the last assertion follows. �

Example 2.13. It is convenient to plot the basis and the lattice L in α1-α2

coordinates which we call the basis diagram, illustrated in the left graph of Figure
1 for the curve S = {6, 11, 13}. Similarly we can plot S-degrees of monomials not
in J2 and the lattice L ′ in α0-α2 coordinates which we call 02-basis diagram. The
right graph of Figure 1 illustrates the 02-basis diagram also for S = {6, 11, 13}.

-2 -1 1 2 3 4

-1

1

2

3

4

5

6

7

-2 2 4 6

2

4

6

8

Figure 1

For S = {6, 11, 13}, we have a′ = a = 6, b′ = b = 11, c = 1, ℓ = 7 and h = 5.
By Lemma 2.11, L is generated by 〈b′,−a′〉 = 〈11,−6〉 and 〈−ℓ, h〉 = 〈−7, 5〉.
By elementary operations on these generators, we obtain a set {〈1, 3〉, 〈4,−1〉} of
more convenient generators. In the basis diagram, the diagonal lines indicate the
directions of α0 and α3, given by Remark 2.1. These half lines we call the α0 and
α3 rays respectively. For example, 2.1-(2) says that (b−a)α3 = 〈−(d−b), d−a〉 =
〈−2, 7〉 which is the first element of L on the α3 ray, and is plotted in the
diagram. In the basis diagram, C01 is the cone between the α0 ray and the
horizontal axis (α1 ray) and C23 is the cone between the vertical axis (α2 ray)
and the α3 ray. It is clear from the generators of L that the right truncation
(Definition 2.8) point is 〈4,−1〉 and the left truncation point is 〈−2, 7〉. The first
non-zero elements of L on the axes are 〈13, 0〉 and 〈0, 13〉 (not plotted) so that
ML (1, 2) = {〈13, 0〉, 〈1, 3〉, 〈0, 13〉}.

By Lemma 2.3 and Theorem 2.7 the minimal generators of J1 and the type one
generators of p are in degrees 〈0, 7〉, 〈1, 3〉, 〈4, 0〉, so that J1 is minimally generated
by X7

2 , X1X
3
2 , X

4
1 . These lift easily to type one generators {X7

2 − X2
1X

5
3 , X1X

3
2 −

X0X
3
3 , X

4
1 − X2X

2
0X3} of p. The α1-α2 coordinates of monomials not in J1 (the
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basis elements) are plotted as solid dots. We observe that |B| = 16 > d = 13
so that S is not Cohen-Macaulay by Theorem 1.2. In the basis diagram 〈1, 3〉
and the truncation points 〈−2, 7〉, 〈4,−1〉 are plotted as large open circles, and
an additional lattice point 〈2, 6〉 is plotted as a small open circle, so as to better
illustrate the pattern of L .

The 02-basis diagram is constructed in a similar manner. This time the α0

ray is the horizontal axis and the α2 ray is the vertical axis. Remark 2.1 gives
points J5, 6K on α1 ray and J−2, 13K on the α3-ray. (The latter point is outside the
diagram, but its direction is plotted.) Lemma 2.12 gives generators of L ′. Using
these, some elements of L ′ are plotted as open circles. The left truncation point
J0, 7K lies on the α2 axis. In the 02-basis diagram the cone C12 is no longer the
entire first quadrant because the α1-ray now has positive slope. The arc referred
to in the discussion before Theorem 2.9 consists of the line segment from J0, 7K on
the α2-ray to M = J1, 4K followed by the line segment from M to B = J5, 6K on the
α1-ray. There is an intermediate element J3, 5K of L ′ on the latter segment. From
the diagram we see that ML ′(1, 2) = {J0, 7K, J1, 4K} (plotted as large open circles)
and that BL ′(1, 2) = {J0, 7K, J1, 4K,J3, 5K, J5, 6K} (with BL ′(1, 2)\ML ′(1, 2) plotted
as medium sized open circles). One additional element J2, 8K of L ′ is plotted as
a small open circle. By Lemma 2.4 and Theorem 2.9 the ideal J2 is minimally
generated by X7

2 , X0X
4
2 , and there is one type two generator X0X

4
2 − X3

1X2
3 of p

in degree J1, 4K, giving a four element minimal set of generators for p. The solid
dots in the diagram are the α0-α2 coordinates of monomials not in J2 (with the
bottom four rows extending indefinitely to the right).

The basis diagrams can be worked out explicitly for several infinite classes of
examples. We describe two of these.

Example 2.14. Let d be even and gcd(a, d/2) = 1. Let S = {a, a+d/2, d}. Here
a′ = a, b′ = b = a + d/2, ℓ = h = 2. By Lemma 2.11 the lattice L is generated
by 〈b,−a〉 and 〈−ℓ, h〉 = 〈−2, 2〉, and (in the basis diagram) looks like bands,
the i-th band being {i〈b,−a〉 + j〈−2, 2〉 | j ∈ Z}. If i ≤ 0, by Remark 2.1, the
intersection of the i-th band with C03 is at most 〈0, 0〉. On the band i = 1 the first
elements of L outside the interior of C12 are, on the right and left respectively,
A = 〈b − 2⌊a/2⌋,−a + 2⌊a/2⌋〉 and B = 〈b − 2⌈b/2⌉, 2⌈b/2⌉ − a〉. The points A
and B are in C03 because (b− a)α0 and (b− a)α3 as given in Remark 2.1-(1) (2)
are on the band i = 1. If i > 1 the corresponding points on the i-th band are
further from the origin, so A and B are the truncation points. Now it follows from
Theorem 2.7 that the S-degrees of type one generators consist of 〈b − 2⌊a/2⌋, 0〉,
〈0, 2⌈b/2⌉− a〉, and the elements of L on the first band in the interior of the first
quadrant. The first band consists of points on the line {〈λ1, λ2〉 | λ1 + λ2 = d/2},
and we are taking every second integer point on this line in the first quadrant.
If d/2 is even then a and b are both odd and there are d/4 interior type one
generators, and if d/2 is odd, then one of a, b is even and the other is odd, and
there are (d − 2)/4. A simple calculation now shows that all these curves have
⌈((d/2) + 1)2/2⌉ basis elements. For these curves, a similar analysis of 02-basis
diagram shows there is only one type two generator J1, 2K.
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The curves of Example 2.14 are of special interest because if d is even they
appear to have the largest number of type one ideal generators and the largest
number of basis elements among curves in P3 of degree d.

Example 2.15. Now we consider S = {a, b, d} where b = d−a, and gcd(a, d) = 1
(equivalently gcd(a, b) = 1). Since b > a we have d > 2a. Here 〈1, 1〉 = α1 +α2 =
α0 + α3 ∈ L . Therefore there are three type one generators of p with S-degrees
〈1, 1〉 and the two points on the axes.

The lattice L ′ can be described as follows. Since α0−α2 = α1−α3, J1,−1K ∈
L ′ and by Remark 2.1-(2) J0, bK ∈ L ′. The subgroup of L02 generated by J1,−1K
and J0, bK has index b = d−a in L02, hence L ′ is generated by J1,−1K and J0, bK by
Lemma 2.12. By Remark 2.1-(1) Jb − a, aK = bα1. Thus BL ′(1, 2) = ML ′(1, 2) =
{J0, bK + iJ1,−1K = Ji, b − iK | 0 ≤ i ≤ b − a. It follows that the ideal J2 is
generated by X i

0X
b−i
2 for i = 0, 1, · · · , b− a, which yields the type two generators

X i
0X

b−i
2 − Xa+i

1 Xb−a−i
3 , i = 1, · · · , b − a − 1 of p.

Remark 2.16. The curves {1, d − 1, d} have the largest number of type two
generators, namely d − 3, and appear to have the largest total number of ideal
generators, namely d, among all monomial curves of degree d in P3. This is in
contrast to the affine monomial curve case. For any projective monomial curve
C given by S = {a1, . . . ap}, the intersection C0 := C ∩ A

p
K of C in the affine

space A
p
K := P

p
K \ {(0 : c1 : · · · : cp) | c1, . . . , cp ∈ K} is an affine monomial curve

Spec(K[Γ]) with defining ideal p0 = ker φ0, where φ0 : K[X1, . . . , Xp] → K[t] is
defined by φ0(Xi) = tai , 1 ≤ i ≤ p. If p is generated by fi(X0, . . . , Xp), 1 ≤ i ≤
s then p0 is generated by fi(1, X1, · · · , Xp). However p0, in general, has fewer
generators than p. In particular, if p = 3, p0 is always generated by at most three
elements by a result of Herzog [7] or [19, Theorem 10.3.10].

Remark 2.17. We have proved, using Theorem 1.2, that K[S] is Cohen-Macaulay
if and only if the truncation points generate L , equivalently, if and only if there
exist A ∈ C01 ∩ L and B ∈ C23 ∩ L such that L is generated by A and B. This
permits easier visual recogonition of Cohen-Macaulay property than counting |B|.
For instance, S = {6, 11, 13} of Example 2.13 is not Cohen-Macaulay because
〈1, 4〉 ∈ L is clearly not in the lattice generated by the truncation points. Fur-
thermore, we have 〈−ℓ, h〉 = (h− ℓ− c)α0 + cα3, so that 〈−ℓ, h〉 ∈ C23 ∩L if and
only if h− ℓ− c ≥ 0. If h− ℓ− c ≥ 0 then (taking A = 〈b′,−a′〉, B = 〈−ℓ, h〉) K[S]
is Cohen-Macaulay by Lemma 2.11. We may also choose a, b, ℓ, h and (so long
as hb′ − ℓa′ > b and gcd(a, b, hb′ − ℓa′) = 1) define S = {a, b, hb′ − ℓa′), thereby
constructing curves with specified L . Example 2.14 was found in this way.

3. Basis and ideal generators for an arithmetic progression

Throughout this section S = { a1, . . . , ap} will be an arithmetic progression with
common difference δ , so that ai = a1 +(i−1)δ, 1 ≤ i ≤ p. We assume that δ > 0
and gcd(a1, δ) = 1 . Let S ⊆ N2 be the semigroup generated by β = (ap, 0) and
αi = (ap−ai, ai) , i = 1, · · · , p . In this section we will use β instead of α0 because
it plays a different role in our discussions than the other αi, but we will continue
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to use ap and d interchangeably. Let T be the semigroup generated by β and
αp . In Theorem 3.4 below, we describe the basis B of S over T explicitly. To
do this we first introduce a unique way of representing basis elements (for which
S need not be an arithmetic progression).

Definition 3.1. Let S̃ be the semigroup generated by α1, . . . , αp−1. Then clearly

B ⊆ S̃ . For α ∈ S̃ , let E(α) := {(c1, . . . , cp−1) ∈ Np−1 | α =
∑p−1

i=1 ciαi} . Then

E(α) is a finite set for every α ∈ S̃ . Let � denote the lexicographic (left to right)
order on E(α) . Therefore for c = (c1, . . . , cp−1) , c′ = (c′1, . . . , c

′

p−1) ∈ E(α) ,
c ≺ c′ if c1 = c′1, . . . , ci = c′i and ci+1 < c′i+1 for some i ∈ [0, p − 2] . Then � is
a total order on E(α) and, since E(α) is a finite set, E(α) has a maximum with
respect to the order � which we denote by max E(α) . Let Bmax := {max E(α) |
α ∈ B} . Clearly the map B → Bmax defined by α 7→ max E(α) is a bijection.
The support Supp of a vector is the set of indices of its non-zero coordinates.

Since S is an arithmetic progression, S is Cohen-Macaulay by [10, Theorem 1.2
and Corollary 1.10], or [14, Theorem 2.2)]. Hence by Theorem 1.2

(3.1.a) |Bmax| = |B| = ap .

The following easy observation is used in the proofs of Lemma 3.2 and Lemma 3.3:

(3.1.b) If c ∈ Np−1 and c 6∈ Bmax then c+c′ 6∈ Bmax for every c′ ∈ Np−1.

Lemma 3.2. Let e1, . . . ep−1 denote the standard basis of Np−1.

(1) max E(αi) = ei for every i ∈ [1, p − 1] .

(2) ei + ej 6∈ Bmax for every i, j ∈ [2, p − 1] .

(3) If α ∈ B and max E(α) = c = (c1, . . . , cp−1) , then |Supp(c)∩ [2, p− 1]| ≤ 1
and if i ∈ Supp(c) ∩ [2, p − 1] , then ci = 1 .

(4) If α ∈ S and α = c1α1 + αi + cpαp , 1 ≤ i ≤ p − 1 and c1 ≥ 0, cp ≥ 0 then
i, c1 and cp are uniquely determined. Moreover, if α ∈ B then cp = 0 and
max E(α) = c1e1 + ei .

(5) If α ∈ S and α = c0β + αi + cpαp , 1 ≤ i ≤ p and c0 ≥ 0, cp ≥ 0 then i, c0

and cp are uniquely determined.

Proof. (1) Since ai < ap , we have αi ∈ B , E(αi) = {ei} and hence max E(αi) =
ei for every i = 1, . . . , p − 1 .

(2) Since a1, . . . , ap is an arithmetic progression, we have

(3.2.a) αi + αj =

{

α1 + αi+j−1, if i + j ≤ p + 1,

αi+j−p + αp, if i + j ≥ p + 1.

Therefore, if i+ j > p , then αi +αj 6∈ B and hence ei +ej 6∈ Bmax. If i+ j ≤ p ,
then ei + ej , e1 + ei+j−1 ∈ E(αi + αj) and ei + ej ≺ e1 + ei+j−1 . Therefore
ei + ej 6= max E(αi + αj) , i .e. ei + ej 6∈ Bmax.

(3) Immediate from (2) by using 3.1.b. (4) Suppose that α = (α1, α2) . The first

coordinate of the equation α = c1α1 + αi + cpαp is α1 = c1(d − a1) + (d − ai)
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and d − a1 ≥ d − ai from which it follows that d − ai ≡ α1 mod (d − a1) .
This determines i . The uniqueness of c1 and cp now follows from the linear
independence of α1 and αp . If α ∈ B then cp = 0 by definition of B and the
assertion about max E(α) is clear. The proof of (5) is similar, taking congruence
classes mod d . �

Lemma 3.3. Let q ∈ N and r ∈ [1, p−1] be defined by the (Euclidean algorithm)
equation a1 = q(p − 1) + r with r ∈ [1, p − 1] . Then :

(1) ar+1 + qap = (q + δ + 1)a1 ≡ 0 ( mod a1) and (q + δ)a1 + ai = qap + ar+i

for every 1 ≤ i ≤ p − r . Moreover, (q + δ + 1)α1 = δβ + αr+1 + qαp .
In particular, (q + δ + 1)α1 6∈ B and hence (q + δ + 1)e1 6∈ Bmax .

(2) (q + δ)α1 + αi = δβ + αr+i + qαp for every i = 2, . . . p − r . In particular,
(q + δ)α1 + αi 6∈ B for every i ∈ [2, p − r] and hence (q + δ)e1 + ei 6∈ Bmax .

(3) Let B1 = {be1 | b ∈ [0, q + δ]} , B2 = {be1 + ei | b ∈ [0, q + δ − 1] and i ∈
[2, p− r]} , and B3 ={be1 + ej | b∈ [0, q + δ] and j∈ [p− r + 1, p− 1]} . Then
Bmax ⊆ B1 ∪ B2 ∪ B3 .

Proof. (1) By definitions of q and r , we have

(3.3.a) ar+1 + qap = (q + 1)a1 + (q(p − 1) + r)δ = (q + δ + 1)a1

and hence by adding ai on both sides of (3.3.a), using the equality ar+1 + ai =
a1 + ar+i and then cancelling a1 on both sides we get (q + δ)a1 + ai = qap + ar+i

for every 1 ≤ i ≤ p − r . Further, from (3.3.a) we have

(3.3.b) δap + (ap − ar+1) = (q + δ + 1)ap − (ar+1 + qap) = (q + δ + 1)(ap − a1)

Therefore using (3.3.a) for the second coordinate and (3.3.b) for the first coordi-
nate we get the equality δβ + αr+1 + qαp =(q + δ + 1)α1 .

(2) For i ∈ [2, p − r] , we have r + i ≤ p and αr+1 + αi = α1 + αr+i by
(3.2.a). Using this equality and by adding αi to the equation δβ+αr+1 + qαp =
(q + δ + 1)α1 and then canceling α1 , we get the required equality.

(3) Immediate from (1) and (2) by using (3.1.b). �

Theorem 3.4. Bmax =B1 ∪B2 ∪B3, where the sets B1, B2 and B3 are as in the
Lemma 3.3-(3).

Proof. The sets B1 , B2 and B3 are mutually disjoint and Bmax ⊆ B′ := B1∪B2∪
B3 by Lemma 3.3-(3) and |B′| = (q+δ+1)+(p−r−1)(q+δ)+(r−1)(q+δ+1) =
q(p − 1) + r + (p − 1)δ = a1 + (p − 1)δ = ap = |Bmax| by (3.1.a). Therefore we
must have the equality Bmax = B′. �

The following examples may help the reader visualize Theorem 3.4.

Examples 3.5. (1) Let S = {1, 4, 7, 10}. Here a1 = 1, p = 4, (d =) a4 =
10, δ = 3, q = 0, r = 1. We have β = (10, 0), α1 = (9, 1), α2 = (6, 4), α3 =
(3, 7) and α4 = (0, 10).
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(2) Let S = {3, 5, 7, 9, 11}. Here a1 = 3, p = 5, (d =) a5 = 11, δ = 2, q = 0, r =
3. We have β = (11, 0), α1 = (8, 3), α2 = (6, 5), α3 = (4, 7), α4 = (2, 9) and
α5 = (0, 11).

In Figure 2, we plot (in the original coordinates) the bases of Example 3.5, (1)
on the left and (2) on the right. In each case the S-degrees of the basis elements
are plotted as small dots, and the S-degrees of the ideal generators Fi (defined
below) are large dots. (The degrees of the Fi are distinct from those of the basis
elements.) The quadratic generators ξij are omitted.

3 6 9 12 15 18 21 24 27 30 33 36

1

4

7

10

4 8 12 16 20 24

3

7

11

15

Figure 2

The basis B consists of points in p− 1 diagonal lines, numbered i = 1 . . . p− 1,
each of slope α1. In the bottom line, (i = 1, corresponding to B1), are the basis
elements {iα1 | 0 ≤ i ≤ q + δ}. Corresponding to B2 (possibly empty) are
basis elements {iα1 + (j − 1)(−δ, δ)}, 1 ≤ i ≤ q + δ, in lines j, 2 ≤ j ≤ p − r.
Corresponding to B3 (possibly empty) are basis elements {iα1 + (j − 1)(−δ, δ)},
1 ≤ i ≤ q + δ +1, in lines j, p−r+1 ≤ j ≤ p−1. Basis elements corresponding to
B1 and B2 end in degree q + δ and those corresponding to B3 extend one higher,
to degree q+δ+1. There are p−r Fi’s, 1 ≤ i ≤ p−r, all of degree q+δ+1. Their
plots extend by one the basis elements in lines i, 1 ≤ i ≤ p − r corresponding to
B1 ∪ B2. (If B3 = ∅ this will be every line, as in the left diagram.)

Notation 3.6. We continue using the notation introduced in Section 1, except
we use the indeterminate W instead of X0 . This is to emphasize the fact
that the second coordinate 0 of β is not part of the arithmetic progression (ex-
cept for the case S = {1, 2, . . . , p}). Therefore R = K[W, X1, . . . , Xp] , and if
µ = (µ0, µ1, . . . , µp) then Xµ = W µ0Xµ1

1 . . .X
µp

p . We define deg(µ) =
∑

i µi

(so that deg(µ) = deg(Xµ)) and similarly degt(µ) =
∑

i µiai. Further, let A =
K[X1, . . . , Xp] and let η : A → K[U, V ] be the K-algebra homomorphism defined
by Xi 7→ Up−iV i−1 , i = 1, . . . , p and let J := Ker η . Then J is a homogeneous
prime ideal in A and the natural map K[X1, Xp] −→ A/J is injective.

Lemma 3.7. (1) A homogeneous (in the standard grading) binomial Xµ − Xν

(in A ) belongs to J if and only if
∑p

i=1 iµi =
∑p

i=1 iνi . In particular,

Xp−1
i − Xp−i

1 X i−1
p ∈ J for every i = 1, . . . , p
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(2) The ideal J is generated by 2 × 2 minors of the 2 × (p − 1) matrix

(3.7.a)

(

X1 X2 · · · Xp−1

X2 X3 · · · Xp

)

.

Moreover, J is generated minimally by the set {ξij | 2 ≤ i ≤ j ≤ p − 1} ,
where

ξij :=

{

XiXj − X1Xi+j−1, if i + j ≤ p,

XiXj − Xi+j−pXp, if i + j > p.

(3) Let x2, . . . , xp−1 denote the images of X2, . . . , Xp−1 in A/J . Then A/J is
a free K[X1, Xp]-module with basis 1, x2, . . . , xp−1 .

(4) JR ⊆ p and A∩ p = J . In particular, the projective curve C is embedded in
the projective surface Proj(R/JR) .

Proof. (1) is easy to check. For (2) note that the ξij are sums of minors of the
matrix, and the minors are in J . Therefore it is enough to prove that every
binomial Xµ − Xν which belongs to J also belongs to the ideal generated by
{ξij | 1 ≤ i ≤ j ≤ p − 1} . We work with the S-grading restricted to A. If
Xµ − Xν ∈ J then, since J ⊆ p, Xµ and Xν have the same S-degree α. Using
the relations (3.2.a) we obtain either uniquely determined c1 ≥ 0 , cp ≥ 0 such
that α = c1α1 + cpαp or uniquely determined c1 ≥ 0, cp ≥ 0 and i, 2 ≤ i ≤ p− 1
such that α = c1α1 + αi + cpαp. In the first case we obtain that Xµ − Xc1

1 X
cp
p

and Xν −Xc1
1 X

cp
p belong to the ideal generated by {ξij | 1 ≤ i ≤ j ≤ p− 1} and

in the second case that Xµ −Xc1
1 XiX

cp
p and Xν −Xc1

1 XiX
cp
p belong to the ideal

generated by {ξij | 1 ≤ i ≤ j ≤ p − 1} . In both cases we obtain that Xµ − Xν

also belongs to the the ideal generated by {ξij | 1 ≤ i ≤ j ≤ p − 1} , as required.
The set {ξij | 2 ≤ i ≤ j ≤ p − 1} generates J minimally because modulo the
ideal generated by X1 and Xp , the images of the ξij , 2 ≤ i ≤ j ≤ p − 1 are
K-linearly independent monomials in X2, . . . , Xp−1 of degree 2 . We remark that
it is well known that the minors of the matrix (3.7.a) generate J , for example see
[6, (I) of § 2].

(3) The ring A/J is the homogeneous coordinate ring of the degree p−1 curve cor-
responding to S = {1, 2, . . . p−1}, which is an arithmetic progression. Therefore
A/J is Cohen-Macaulay, hence a free module over K[X1, Xp].

(4) Note that if we identify K[U, V ] with the K-subalgebra K[sδ, tδ] of K[s, t]
by putting U = sδ and V = tδ , then for any homogeneous polynomial F ∈ A ,
we have ϕ(F ) = η(F ) · ta1·deg(F ) . Now, since t is a non-zero divisor in K[s, t] ,
the assertions are immediate. �

Definition 3.8. Let q ∈ N and r ∈ [1, p − 1] be defined as in Lemma 3.3 by

the equation a1 = q(p−1) + r . We define Fi := Xq+δ
1 Xi − W δXr+iX

q
p , i =

1, . . . , p − r .

It is straightforward to check, similarly to Lemma 3.3-(1), that (q+δ)α1 +αi =
δβ + αr+i + αp. Therefore Fi ∈ p for every i ∈ [1, p − r]. Note that all Fi are
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homogeneous of the same degree q + δ + 1, which is greater than or equal to 2
with equality if and only if q = 0 and δ = 1.

Lemma 3.9. For every (p + 1)-tuple µ ∈ Np+1 , there exists a (p + 1)-tuple
µ̃ ∈ Np+1 with |Supp(µ̃) ∩ [2, p − 1]| ≤ 1 and µ̃i = 1 if i ∈ Supp(µ̃) ∩ [2, p − 1]
such that Xµ − X µ̃ ∈ JR .

Proof. Easily follows from Lemma 3.7-(3). �

Lemma 3.10. Suppose that p contains a binomial Xµ − Xν of degree 2. Then
Xµ − Xν ∈ (J, F1, . . . , Fp−r) .

Proof. If 0 6∈ Supp(µ) ∪ Supp(ν) , then clearly Xµ − Xν ∈ J by Lemma 3.7-(4).
We may therefore assume that 0 ∈ Supp(ν) and 0 6∈ Supp(µ) . We now have
Xν = WXi and Xµ = XjXk for some i, j, k ∈ [1, p] with i 6∈ {j, k} . Further,
we have ai = degt(ν) = degt(µ) = aj + ak and so (i − 1)δ = a1 + (j + k − 2)δ ,
i. e., a1 = (i + 1 − j − k)δ . Since gcd(a1, δ) = 1 , we must have δ = 1 and
hence i = (j + k − 1) + a1. Thus p ≥ i = (j + k − 1) + a1 ≥ j + k . Therefore
a1 ≤ p − 1 so q = 0 and a1 = r (remember that q ∈ N and r ∈ [1, p] are
defined by the equation a1 = q(p− 1) + r ). Now, p− r = p− a1 ≥ j + k − 1 and
Fj+k−1 = X1Xj+k−1−WXi . Therefore Xµ−Xν = Fj+k−1+(XjXk−X1Xj+k−1) ∈
(J, F1, . . . , Fp−r) . �

Lemma 3.11. Let µ, ν ∈ Np+1 be two (p+1)-tuples with the following properties

(i) Supp(µ) ∩ Supp(ν) = ∅ .

(ii) 0 ∈ Supp(ν) .

(iii) |Supp(µ) ∩ [2, p − 1]| ≤ 1 and µi = 1 if i ∈ Supp(µ) ∩ [2, p − 1] .

(iv) |Supp(ν) ∩ [2, p − 1]| ≤ 1 and νi = 1 if i ∈ Supp(ν) ∩ [2, p − 1] .

(v) 2 ≤ deg(µ) = deg(ν) and degt(µ) = degt(ν) .

Then :

(1) p 6∈ Supp(µ) , 1 ∈ Supp(µ) and 1 6∈ Supp(ν) .

(2)
∑p

k=1 µkek 6∈ Bmax and hence by Theorem 3.4 we have

µ1 ≥











q + δ + 1, if Supp(µ) = {1},

q + δ, if Supp(µ) = {1, i} with i∈ [2, p − r],

q + δ + 1, if Supp(µ) = {1, i} with i∈ [p − r + 1, p − 1].

Proof. By assumptions (i) and (ii) 0 6∈ Supp(µ) . Further by assumptions (iii)
and (iv) we have Supp(µ) ⊆ {1, i, p} and {0} ⊆ Supp(ν) ⊆ {0, 1, j, p} with
i, j ∈ [2, p − 1] , i 6= j and µi ≤ 1 and νj ≤ 1 . Furthermore, by assumption (v)
we have the following two equations :

(3.11.a) µ1 + µi + µp = deg(µ) = deg(ν) = ν0 + ν1 + νj + νp

(3.11.b) µ1a1 + µiai + µpap = degt(µ) = degt(ν) = ν1a1 + νjaj + νpap
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(1) Suppose on the contrary that p ∈ Supp(µ) , i. e. µp > 0 . Then by (i)
p 6∈ Supp(ν) , i. e. νp = 0 . Substituting the expressions ai = a1 + (i − 1)δ into
equation (3.11.b), collecting the coefficients of a1 and δ, and applying equation
(3.11.a) we obtain the equation ν0a1+((i−1)µi+(p−1)µp)δ = (j−1)νjδ ≤ (j−1)δ .
We now have (p − 1)δ < ν0a1 + ((i − 1)µi + (p − 1)µp)δ = (j − 1)νjδ ≤ (j − 1)δ
which is absurd, since j < p . Therefore p 6∈ Supp(µ) , i. e. µp = 0 . Now,
since µ1 + µi = deg(µ) ≥ 2 and µi ≤ 1 , µ1 > 0 , i. e., 1 ∈ Supp(µ) and hence
1 6∈ Supp(ν) .

(2) By (v), we have
∑p

k=1 µkαk = ν0β + νjαj + νpαp . By (ii), ν0 > 0, hence
∑p

k=1 µkek 6∈ Bmax . �

Theorem 3.12. The ideal p is generated by J and F1, . . . , Fp−r .

Proof. Suppose not. Then there is a homogeneous pure binomial F ∈ p\mp which
is not in the ideal generated by J and the Fi. Write F = Xµ − Xν . Clearly
deg(F ) > 1. If deg F = 2 then F ∈ (J, F1, . . . , Fp−r) by Lemma 3.10. So we may
assume that deg(F ) ≥ 3. By Lemma 3.9 (and using that deg(F ) ≥ 3) we may
assume, after modifying F by an element of mJ , that |Supp(µ) ∩ [2, p − 1]| ≤ 1
and µi = 1 if i ∈ Supp(µ) ∩ [2, p − 1] and also that |Supp(ν) ∩ [2, p − 1]| ≤ 1
and νj = 1 if j ∈ Supp(ν) ∩ [2, p − 1] . Since p is a prime ideal and F is
a minimal generator, we have that Supp(µ) ∩ Supp(ν) = ∅ . Lemma 3.11 now
applies, showing that we cannot have W as a factor of one of the monomials in F
and Xp as a factor of the other. So suppose that Xµ contains neither W nor Xp as
a factor. That is, Xµ = Xµ1

1 Xµi

i where µ1 > 0, i ∈ [2, p − 1] with µi ∈ {0, 1}. We
must now have Xν of the form W ν0X

νj

j X
νp

p with j ∈ [2, p − 1], j 6= i, νj ∈ {0, 1}.
On comparing the s-degrees of Xµ and Xν we see that we must have ν0 > 0.
Therefore µ1α1 +µiαi /∈ B. By Lemma 3.11-(2) we must have one of the following
cases, (i) µi = 0 and µ1 ≥ q + δ + 1 (ii) µi = 1, i ∈ [2, p − r] and µ1 ≥ q + δ or
(iii) µ1 = 1, i ∈ [p − r + 1, p − 1] and µ1 ≥ q + δ + 1. In case (i) or (iii) Xµ is a

multiple of the first monomial Xq+δ+1
1 in F1. In case (ii) Xµ is a multiple of the

first monomial Xq+δ
1 Xi in Fi. Subtracting the corresponding multiple of Fi from

F we obtain a non-zero binomial in p\mp with factor W , which is a contradiction.
(Note that if the multiple is 1 we would have F = Fi by Lemma 3.2-(5)). �

Remark 3.13. A minimal set of generators for J (e.g. ξij, 2 ≤ i ≤ j ≤ p − 1
by Lemma 3.7-(2)) and F1, . . . Fp−r form a minimal set of generators for p. To
see this it suffices to observe that if we set W = 0 and apply η the images of the
Fi are of the same degree and linearly independent over K. It follows that the
minimal number of generators of p is

(

p−1
2

)

+ p − r ≤
(

p

2

)

.

Remark 3.14. As in Remark 2.16, the affine monomial curve C0 in the arithmetic
progression case may have fewer generators than the projective curve C. For
example, consider S = {1, 4, 7, 10}. By Theorem 3.12, p is generated minimally
by six elements ξ22, ξ23, ξ33, F1, F2, and F3, whereas p0 is clearly generated by three
elements X2 − X4

1 , X3 − X7
1 and X4 − X10

1 . If S = {a1, a2, · · · , ap} is an almost
arithmetic progression (more general than arithmetic progression) then there is
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some affine literature, for example, [15], [13], [17], [1], from which generators of
p0 may also be obtained, provided that a1, a2, . . . , ap minimally generate Γ. Our
Theorem 3.12 does not require that a1, a2, . . . , ap generate Γ minimally. This is
important in the projective case because extending the length of the arithmetic
progression while leaving Γ the same always gives a different ring K[S] and usually
a different scheme Proj(K[S]). Such an extension of the progression leaves the
affine coordinate ring K[Γ] the same but with a different embedding in affine
space which will have different ideal generators which can be obtained from our
projective results.

4. Set-theoretic Complete Intersection

In this section we shall prove that the projective monomial curve C in Pp defined
parametrically by W = X0 = sap, X1 = sap−a1ta1 , . . . , Xp = tap is a set-theoretic
complete intersection if the positive integers a1, . . . , ap are in arithmetic progres-
sion. For p ≥ 4 , in general, it is unknown whether or not C is a set-theoretic
complete intersection. More precisely, we prove the following :

Theorem 4.1. There exists homogeneous polynomials G1, . . . , Gp−1 ∈ p such

that p =
√

(G1, . . . , Gp−1) .

Proof. Follows from Lemma 4.3-(5) and Lemma 4.2-(2) below. �

Lemma 4.2. With the same notation as in Notation 3.6 and Lemma 3.7, we have

(1) The ring R/JR is a free K[X1, Xp]-module under the natural injection
K[X1, Xp] → A/J → (A/J)[W ] = R/JR .

(2) There exists p − 2 homogeneous polynomials G1, . . . , Gp−2 ∈ A such that

J =
√

(G1, . . . , Gp−2) .

Proof. (1) The ring A/J is a free K[X1, Xp]-module by Lemma 3.7-(3). Hence
R/J = (A/J)[W ] is also a free K[X1, Xp]-module.

(2) By Lemma 3.7-(2) the ideal J is generated by the two by two minors of the
matrix in (3.7.a). The assertion now follows from [18, Corollary 1.2] because the
matrix has the property that aij = akl whenever i + j = k + l. �

Lemma 4.3. With the same notation as in Notation 3.6, Lemma 3.7 and Defini-
tion 3.8, we have

(1) Xp−i+1Fi − XpF1 ∈ JR for every i = 1, . . . , p − r .

(2)
(
∏p−1

i=r+2 Xi

)

· p ⊆ (J, F1, Fp−r) .

(3) Let q be a prime ideal in R with (J, F1, Fp−r) ⊆ q and Xi ∈ q for some
2 ≤ i ≤ p − 1 . Then p ⊆ q .

(4)
√

(J, F1, Fp−r) = p .

(5) There exists a polynomial G ∈ p such that
√

(J, G) = p .
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Proof. (1) By the definition of the Fi we have Xp−i+1Fi−XpF1 = Xq+δ
1 (Xp−i+1Xi−

XpX1) − W δXq
p(Xp−i+1Xr+i − XpXr+1) ∈ JR. (2) is immediate from (1).

(3) It follows from Lemma 3.7-(1) that X2
i−1 − XiXi−2 ∈ J for i ≥ 3 and

X2
i+1 −XiXi+2 ∈ J for i ≤ p− 2 . Therefore, since J ⊆ q and q is a prime ideal,

Xi−1 ∈ q for i ≥ 3 and Xi+1 ∈ q for i ≤ p−2 . Continuing the above argument it
follows that X2, . . . , Xp−1 ∈ q and hence Fi = Xq+δ

1 Xi−W δXr+iX
q
p ∈ q for every

2 ≤ i ≤ p− r− 1 . Therefore by Theorem 3.12 we have p = (J, F1, . . . , Fp−r) ⊆ q .

(4) If r = p − 1 , then (J, F1) = p and if r = p − 2 , then (J, F1, F2) = p .
Therefore if r ≥ p− 2 , then there is nothing to prove. We may therefore assume
that r ≤ p − 3 . It is enough to prove that p is the only minimal prime ideal of
(J, F1, Fp−r) . Let q be a prime ideal in R with (J, F1, Fp−r) ⊆ q . By (2) either
p ⊆ q or Xi ∈ q for some r + 2 ≤ i ≤ p − 1 and hence p ⊆ q by (3).

(5) For a polynomial G ∈ R , let g denote the image of G in R/JR . Further,
let x1, . . . , xp denote the images of X1, . . . , Xp in R/JR , respectively. Then,
since Xr+1Fp−r − XpF1 ∈ JR by (1), we have xr+1fp−r = xpf1 . Moreover,

by taking the (p − 1)-th power on both sides and using Xp−1
r+1 − Xp−r−1

1 Xr
p ∈

J (see Lemma 3.7-(1)), we get xp−r−1
1 xr

pf
p−1
p−r = xp−1

p f p−1
1 . Since R/JR is a

free module over K[X1, Xp] by Lemma 4.2-(1), we can cancel xr
p on both sides

and get xp−r−1
1 f p−1

p−r = xp−r−1
p f p−1

1 . Now, since R/JR is a free module over
a UFD K[X1, Xp] and gcd(X1, Xp) = 1 , there exists g ∈ R/JR such that

f p−1
p−r = xp−r−1

p g and xp−r−1
1 g = f p−1

1 . Let G ∈ R be an arbitrary lift of g .

Then F p−1
p−r − Xp−r−1

p G and Xp−r−1
1 G − F p−1

1 ∈ J ⊆ p . Therefore F1, Fp−r ∈
√

(J, G)R and G ∈ p , since p is a prime ideal and X1, Xp 6∈ p . This proves

that
√

(J, F1, Fp−r) ⊆
√

(J, G)R ⊆ p . But p =
√

(J, F1, Fp−r) by (4) and hence
√

(J, G)R = p . �

Remark 4.4. As in the ideal generation case (Remarks 2.16 and 3.14) there is
some affine literature on set-theoretic complete intersection curves (for example
[12],[11]). If C is a set theoretic complete intersection it is easily seen that C0 is
also. However we see no obvious reason for the converse to hold.
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[6] W. Gröbner. Über Veronesesche varietäten und deren projektionen. Arch. Math., XVI:257–
264, 1965.



BASES AND IDEAL GENERATORS FOR PROJECTIVE MONOMIAL CURVES 19

[7] J.Herzog. Generators and relations of abelian semigroups and semigroup rings. Manuscripta
Math, 3:153–193, 1970.

[8] Ping Li. Seminormality and the Cohen-Macaulay Property. PhD thesis, Queen’s University,
2005.

[9] E. Miller and B. Strumfels. Computational Commutative Algebra. Graduate Texts in Math-
ematics 227. Springer-Verlag, 2005.

[10] S. Molinelli and G. Tamone. On the Hilbert function of certain rings of monomial curves.
JPAA, 101:191–206, 1995.

[11] D. P. Patil. Certain monomial curves are set-theoretic complete intersections. Commutative
Algebra (Trieste 1992), pages 195–203. World Sci. Publ., River Edge, NJ, 1994.

[12] D. P. Patil. Certain monomial curves are set-theoretic complete intersections. Manuscripta
Math., 68(4):399–404, 1990.

[13] D. P. Patil. Minimal sets of generators for the relation ideals of certain monomial curves.
Manuscripta Math., 80(3):239–248, 1993.

[14] D. P. Patil and L. G. Roberts. Hilbert functions of monomial curves. Journal of Pure and
Applied Algebra, 183(1-3):275–292, 2003.

[15] D. P. Patil and Balwant Singh. Generators for the derivation modules and the relation
ideals of certain curves. Manuscripta Math., 90(3):327–335, 1990.

[16] Les Reid and Leslie G. Roberts. Non-Cohen-Macaulay projective monomial curves. Journal
of Algebra, 291:171–186, 2005.
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