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1. Outline

• What is a projective monomial curve in P3?

• Description of the ideal generators.

• distribution of quotients.

• Finiteness of segments.

• Application to the number of generators.
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2. What is a projective monomial curve in P3?

S = {a, b, d} with a, b, d ∈ N , 0 < a < b < d and
gcd(a, b, d) = 1 .

α0 = (d, 0),α1 = (d− a, a),α2 = (d− b, b),α3 = (0, d)

S ⊂ N2 the semigroup generated by {α0,α1,α2.α3}.
K[S] = K[sd, sd−ata, sd−btb, td] ⊆ K[s, t].

R=K[X0, X1, X2, X3]

Define φ : R → K[s, t] by

φ(X0) = sd, φ(X1) = sd−ata, φ(X2) = sd−btb, φ(X3) = td.

kerφ =: p is a homogeneous prime ideal in R, and R/p =
K[S].

C = Proj(K[S]) ⊂ P3.

Problem: How many generators does p have?

c = gcd(a, b), a′ = a/c, b′ = b/c.

h be the smallest integer ≥ ⌈d/b′⌉ such that hb′ − d is
divisible by a′, ℓ = (hb′ − d)/a′.

d = hb′ − ℓa′ with h > 0, 0 ≤ ℓ < b′.
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3. Description of the generators of p.

Let M =

[
d d− a d− b 0

0 a b d

]
= (α0|α1|α2|α3)

M : Z4 → Z2.

Lij sublattice of Z2 generated by αi and αj, i ̸= j

L = L12 ∩ L03, L ′ = L02 ∩ L13.

Clearly L03 = {(x, y) ∈ Z2|x ≡ 0, y ≡ 0 mod d} and if
(x, y) ∈ L12, x ≡ 0 mod d, then also y ≡ 0 mod d. Thus
L = ker(π2 : L12 → Z/dZ) with π2 onto so (L12 : L ) = d.

Write ⟨x, y⟩ = xα1+yα2, x, y ∈ Z. Then ⟨b′,−a′⟩, ⟨−ℓ, h⟩ ∈
L and L is generated by {⟨b′,−a′⟩, ⟨−ℓ, h⟩}.
If ⟨a1, a2⟩ ∈ L , (a1, a2 ∈ Z) then there exist unique inte-

gers a0, a3 such that a1α1+a2α2 = a0α0+a3α3, equivalently
(−a0 + a1 + a2 − a3)

t ∈ ker(M). From this one sees that
π12 gives an isomorphism π12 : kerM → L . Elements of
ker(M) yield pure binomial elements of p in an obvious way.
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The ideal p has a minimal set of pure binomial generators
of two types.

(1) Xa1
1 X

a2
2 −Xa0

0 X
a3
3 , a1 ≥ 0, a2 ≥ 0, a1 + a2 > 0, a0 >

0, a3 > 0
(2) Xa0

0 X
a2
2 −Xa1

1 X
a3
3 , ai > 0, 0 ≤ i ≤ 3

These generators are homogeneous in two senses. E.g. for
the type one generator Xa1

1 X
a2
2 −Xa0

0 X
a3
3 we have a1+a2 =

a0 + a3 and a1α1 + a2α2 = a0α0 + a3α3.

We will describe only the type one generators in terms of
Hilbert bases. The type two can be described in a similar
manner.

Let HilbL (α0,α3) denote the Hilbert basis (minimal gen-
erators) of the semigroup L ∩ C(α0,α3) (in the α1-α2 co-
ordinate plane). Then we have

Theorem: K[S] is not Cohen-Macaulay if and only if HilbL (α0,α3)
contains an element in the interior of the first quadrant (i.e.
inC(α1,α2)). Let A be the left most element of HilbL (α0,α3)
inC(α0,α1) and B be the rightmost element of HilbL (α0,α3)
in C(α2,α3). Then in the non-Cohen-Macaulay case the
type one generators are represented by A,B together with the
elements of HilbL (α0,α3) in the interior of the first quad-
rant.

Some other facts are that K[S] is not Cohen-Macaulay if
and only if p has four or more generators if and only if p has
a type two generator.
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To see how this works we might look at a picture:
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Figure 1. 12-basis diagram of S = {14, 57, 61}

Here HilbL (α0,α3) contains seven elements, A = ⟨25,−4⟩,
B = ⟨−1, 27⟩ and there are two elements of L in the inte-
rior of the first quadrant, making 4 type one generators. Any
of these points is easily turned into a “physical” generator.
For example, ⟨−1, 27⟩ = −α1 + 27α2 = α0 + 25α3 so that
27α2−α0−α1−25α3 = 0 and X27

2 −X0X1X
25
3 ∈ p, which

is a minimal binomial generator.
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One can find HilbL (α0,α3) by an easy continued fraction
calculation. Define a homomorphism ψ : Z2 → L12 by
ψ(x1, x2) = x1⟨b′,−a′⟩ + x2⟨−ℓ, h⟩ = ⟨x1b′ − x2ℓ,−x1a′ +
x2h⟩. This is a monomorphism and has image L . Further-
more ψ(1, 0) = ⟨b′,−a′⟩ = b′α1 − a′α2 = (b′ − a′)α0, and
ψ(c + ℓ − h, b′ − a′) = ⟨−(d − b), d − a⟩ = (b − a)α3.
Let L0 be the ray through (1, 0) (i.e. the positive horizontal
axis) and L3 be the ray through (c + ℓ − h, b′ − a′). Then
ψ(HilbZ2(L0, L3)) = HilbL (α0,α3). If L3 is in the interior
of the first quadrant (as is always the case if K[S] is not
Cohen-Macaulay) then HilbZ2(L0, L3) is the integer points
on the boundary of the convex hull of the non-zero integer
points in the first quadrant on or below L3. The vertices
of this convex hull correspond to the lower convergents of
the continued fraction expansion of the slope of L3 (together
with (1, 0)).

For the curveS = {14, 57, 61}, we have ℓ = 16, h = 5, and
L3 is the ray through (12, 43). From the continued fraction
43/12 = {3, 1, 1, 2, 2} with convergents {3} = 3, {3, 1, 1} =
7/2, {3, 1, 1, 2, 2} = 43/12 so we find that the vertices of
this convex hull are (1, 0), (1, 3), (2, 7), (12, 43). The quo-
tients correspond to integer points on the convex hull be-
tween the vertices. For example q4 = 2 so there is one inter-
mediate point between (2, 7) and (12, 43) namely (7, 25). Fi-
nally ψ(1, 0) = ⟨57,−14⟩, ψ(3, 1) = ⟨9,−1⟩, ψ(2, 7) = ⟨2, 7⟩
and ψ(12, 43) = ⟨−4, 47⟩ yielding the vertices in the diagam
(solid dots).
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4. The distribution of quotients, following
Knuth

Knuth Art of Computer Programming Volume 2 shows that
a quotient in a continued fraction has value a with probability
πa = log2((a + 1)2/((a + 1)2 − 1)). For a = 1, 2, 3, . . .
these values are 0.415, 0.170, 0.093 . . .. Using this formula
one checks

(1) Σπa = 1.
(2) The average quotient should be Σaπa but this sum di-

verges.
(3) Asymptotically the probability of a quotient lying in

the interval [10i−1 + 1, 10i] will decrease by a factor of
10 if i is increased by one.

(4) All continued fractions that occur in our discussion of
the ideal generators of curves of degree d involve only
integers less than d. Therefore we propose as a model
for curves of degree d that quotient a occurs with prob-
ability log2((a + 1)2/((a + 1)2 − 1)), 1 ≤ a ≤ d, and 0
if a > d.

(5) With this model the average quotient is now asymptot-
ically log2(d).
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5. finiteness of segments

Number the vertices of HilbL (α0,α3) consecutively as
v0, v1, · · · , vi = (xi, yi), · · · starting from the α0 ray, and
let αi, i ≥ 1 be the angle (at the origin) between vi−1 and
vi. Then we can prove the following:

(1) As long as vi and vi+1 are both in quadrants 4 or 1,
0 < xi+1 < xi/(qj + 1)

(2) As long as vi and vi+1 are both in quadrant 4, 0 <
|yi+1| < |yi|/(qj + 1), and as long as vi and vi+1 are
both in quadrant 1, yi+1 > (qk + 1)yi.

In the above, qj and qk are some quotient of the continued
fraction of the slope of L3 (and hence a positive integer).
From this we see that |vi| decreases exponentially in quadrant
4 and (by symmetry) increases exponentially in quadrant 2.
Within the first quadrant xi decreases exponentially and yi
increases exponentially, with the larger dominating. Thus we
expect an abrupt change from exponential decrease of |vi| to
exponential increase, the nature of which is independent of
d.

We have qjd = |vi−1||vi| sin(αi), from which it follows that
the αi grow exponentially and then abruptly switch to ex-
ponential decrease, at about twice the rate of the change in
|vi|. From this formula it is obvious that |vi| cannot be less
than

√
d for two consecutive values of i. One can also show

that on average the minimum value of |vi| has to decrease
almost to

√
d (otherwise the sum of the angles will not be

large enough to get through the first quadrant).
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To see how this works in practice we plot graphs of log10 of
the norms of the vertices and log10 of the angles of HilbL (α0,α3)
for a random curve of degree d = 1041 + 37.
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The norms start at about 1041, decrease roughly exponen-
tially to about 1020 ≈

√
1041, and switch abruptly to expo-

nential growth. Similarly the angles start at about 1/d =
10−41, increase exponentially to just over one radian, then
abruptly switch to exponential decrease. All “randomly cho-
sen” curves that we have examined behave in a similar man-
ner.

More crucial is how the angles behave as we go through the
first quadrant. Below are graphs of the logs of the angles, for
three “randomly chosen” curves of degrees 10200, 101600, 1010003

respectively. The red dots are angles whose subtending ver-
tices are in different quadrants, and the black are angles with
subtending vertices in the same quadrant.

As expected there is no obvious scaling with d.
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The element ⟨b′,−a′⟩ of HilbL (α0,α3) on the α0 ray is
pretty much randomly distributed over the half fourth quad-
rant above y = −x. Given the exponential growth of the
αi, the last angle in quadrant 4 will usually be close to the
initial starting angle tan−1(a/b). The situation is similar if
we start on the α3 ray, so averaged over all curves of degree d
we expect a very small number of vertices of HilbL (α0,α3)
in the second quadrant. This is illustrated by the graphs
above, and some experimental data. In a sample of about
60000 randomly chosen curves of degrees varying from 1010

to 1040 we obtained that 0.62, 0.34, 0.03, 0.003, 0.00015 of the
curves have m = 0, 1, 2, 3, 4 vertices respectively in the inte-
rior of C(L1, L2). (The Cohen-Macaulay curves contribute
about half of the m = 0 cases.) No curve in our samples
had m > 4. For the same samples the segments contributing
type one generators are distributed as in the following table

Table 1

-1 0 1 2 3 4

Average 0.3064 0.3203 0.3331 0.0376 0.0026 0.0001

In this table −1 means Cohen-Macaulay, i.e. no elements
of L in the interior of the first quadrant. This means that
one segment of HilbL (α0,α3) crosses the first quadrant and
has no subdivision point in the interior. If there is only one
element of L in the interior of the first quadrant this is
counted as 0 segments. Either one segment of HilbL (α0,α3)
crosses the first quadrant and has only one subdivision point
in the interior, or there is one vertex in the interior of the first
quadrant and the two subtending segments have no other
vertex in the interior.
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One might wonder how well Knuth’s quotient distribution
fits the ideal generator quotients. This is addressed in the
following tables. The K row is Knuth’s distirbution, and the
Avg row is the 60000 curves sample mentioned above. This
means for example that Knuth predicts that .8745 of the
quotients have value from 1 to 10, and that for that sample
.8737 of the quotients have value from 1 to 10. The 106 row
is from a sample of 106 curves of degree 106.

Table 2

1 to 10 11 to 100 101 to 1000 103 + 1 to 104 104 + 1 to 105

K 0.8745 0.1113 0.01277 1.296× 10−3 1.298× 10−4

d = 106 0.8759 0.1102 0.01256 1.232× 10−3 1.045× 10−4

Avg 0.8737 0.1116 0.0132 1.296× 10−3 .8×10−4

Table 3

1 2 3 4 5 6 7

K 0.4150 0.1699 0.0931 0.0589 0.0406 0.0297 0.0227

Avg 0.4120 0.1714 0.0915 0.0607 0.0414 0.0306 0.0229

Since m ≥ 2 only about .03 of the time most of the quo-
tients tabulated in Tables 2 and 3 come from parts of seg-
ments of arcL (α0,α3). These quotients follow Knuth’s dis-
tribution closely. However the distribution of quotients from
segments of HilbL (α0,α3) that lie entirely in the first quad-
rant is quite different from Knuth, for example, about 0.72
of such quotients in our six large samples have value 1.
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6. Application to generators

We have observed an average of about .3 type one generator
segments per curve, and type two generators will double this.
Knuth’s quotient distribution is observed to approximately
hold for such segments, so we expect the average number of
ideal generators of all curves of degree d to behave somewhat
like Knuth’s distribution when there are many generators.
For example, we expect that the fraction of all curves with
number of generators in the interval [10i, 10i+1] to be about
.1 of the fraction with number of generators in the interval
[10i−1, 10i], so that each bin will contribute about the same
amount to the average number of generators (up to d) and
that the average number of generators should grow propor-
tional to log10 d (the number of bins). However we need very
large sample sizes to have a chance of having representatives
in the larger bins, and hence to obtain a reasonable average.

We illustrate this by plotting the average number of gener-
ators as a function of i = log10 d for all curves of degrees 10
and 100 and samples with 10i curves of degree 10i, 3 ≤ i ≤ 7.
The graph is approximately a straight line, as expected.
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For our sample of 60000 curves the fraction of all curves
with i generators 3 ≤ i ≤ 12 is given by the following table.
(None of the curves had 2 generators). There was no obvious
dependence on d.

Table 4

d 3 4 5 6 7 8 9 10 11 12

AVG 0.3064 0.1171 0.1050 0.0874 0.0690 0.0541 0.0404 0.0316 0.0240 0.0193

We do not see how to predict the above values. When
the data is binned the distribution behaves somewhat as ex-
pected. For the 107 curves of degree 107 even the largest
possible bin is well represented, although with some short-
fall. For the 60000 curves the largest two bins in the table are
not represented at all, presumably because the sample size
is not large enough. After all, that .0001 comes from only
6 curves. We would need a sample size of about 1040 to get
reasonable values for the largest bins.

Table 5

d 2 to 10 11 to 100 101 to 1000 1001 to 104 104 + 1 to 105 105 + 1 to 106 106 + 1 to 107

107 0.8134 0.1742 0.0111 1.061× 10−3 1.029× 10−4 0.86× 10−5 0.8× 10−6

AVG 0.8109 0.1761 0.0117 0.0012 0.0001 0 0
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