MTHE 227 Problem Set 9
Due Thursday November 17 2016 at the beginning of class

1 (Cross-Product in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \)). For this problem, to help distinguish between the cross-products in 2- and 3-space, for vectors

\[
\mathbf{v}_1 = (x_1, y_1), \quad \mathbf{v}_2 = (x_2, y_2) \text{ in } \mathbb{R}^2 \quad \text{and} \quad \mathbf{w}_1 = (x_1, y_1, z_1), \quad \mathbf{w}_2 = (x_2, y_2, z_2) \text{ in } \mathbb{R}^3,
\]
write

\[
cross_2(\mathbf{v}_1, \mathbf{v}_2) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \quad \text{and} \quad cross_3(\mathbf{w}_1, \mathbf{w}_2) = \begin{vmatrix} e_x & e_y & e_z \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}.
\]

Embed \(\mathbb{R}^2_{(x,y)} \) into \(\mathbb{R}^3_{(x,y,z)} \) by the map \((x, y) \mapsto (x, y, 0) \) (the image being the plane \(z = 0 \)).

(a) Let \(\mathbf{v}_1, \mathbf{v}_2 \) be vectors in \(\mathbb{R}^2_{(x,y)} \) and \(\mathbf{w}_1, \mathbf{w}_2 \) their images under the embedding. Check that

\[
cross_2(\mathbf{v}_1, \mathbf{v}_2) = cross_3(\mathbf{w}_1, \mathbf{w}_2) \cdot e_z.
\]

(b) Let \(\mathbf{r} : t \mapsto (x(t), y(t), 0), \ t \in [a,b] \) be a parametrized path in \(\mathbb{R}^3_{(x,y,z)} \) (thought of as the image of a parametrized path in \(\mathbb{R}^2_{(x,y)} \) under the above embedding). Denote the velocity vector at time \(t \) by \(\mathbf{r}'(t) = (x'(t), y'(t), 0) \). Check that

\[
\mathbf{n}_+(t) := (y'(t), -x'(t), 0) = cross_3(\mathbf{r}', e_z) \quad \text{and} \quad \mathbf{n}_-(t) := (-y'(t), x'(t), 0) = cross_3(e_z, \mathbf{r}').
\]

Optional Problem (Harder). Embed \(\mathbb{R}^2_{(x,y)}, \mathbb{R}^2_{(y,z)} \) and \(\mathbb{R}^2_{(x,z)} \) into \(\mathbb{R}^3_{(x,y,z)} \) as the planes \(z = 0, \ x = 0 \) and \(y = 0 \), respectively. Let \(\pi_z : \mathbb{R}^3_{(x,y,z)} \rightarrow \mathbb{R}^2_{(x,y)} \) be the projection map \((x, y, z) \mapsto (x, y) \), and similarly define \(\pi_x \), the projection onto \(\mathbb{R}^2_{(y,z)} \), and \(\pi_y \), the projection onto \(\mathbb{R}^2_{(x,z)} \).

Let \(P \) be a parallelogram in \(\mathbb{R}^3 \), and denote its images under the above projections by \(P_x = \pi_x(P), \ P_y = \pi_y(P) \) and \(P_z = \pi_z(P) \). Show that

\[
\text{area}(P) = \sqrt{\text{area}(P_x)^2 + \text{area}(P_y)^2 + \text{area}(P_z)^2}.
\]

Conclude, by applying the Cauchy-Schwarz inequality or otherwise, that

\[
\text{area}(P) \geq \frac{1}{\sqrt{3}} (\text{area}(P_x) + \text{area}(P_y) + \text{area}(P_z)) = \sqrt{3} \cdot \text{Arithmetic Mean}(\text{area}(P_x), \text{area}(P_y), \text{area}(P_z)).
\]

Can you find a \(P \) for which equality holds?
2 (Triple Cross Product). Find three vectors \(u, v, w \) in \(\mathbb{R}^3 \) such that
\[
(u \times v) \times w \neq u \times (v \times w).
\]
(If you are stuck, there is a suggestion at the end of the problem set. But try to find the vectors yourself — there are many possibilities.)

Optional Problem (Messy). Show the identity
\[
(u \times v) \times w = (u \cdot w)v - (v \cdot w)u
\]
by expanding out in coordinates, and conclude that
\[
u \times (v \times w) = (u \cdot w)v - (u \cdot v)w.
\]
Conclude that \((u \times v) \times w = u \times (v \times w)\) if and only if either: \(u \) and \(w \) are both perpendicular to \(v \), or \(u = \lambda w \) for some \(\lambda \in \mathbb{R} \).
Also, conclude that
\[
u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0 \quad \text{(the Jacobi identity)}.
\]

3 (Examples of Centroids of Curves). In lecture, we learned how to compute the coordinates of the center of mass of a curve \(C \) in \(\mathbb{R}^3 \). When \(C \) has uniform unit density (that is, \(\delta = 1 \)), the center of mass of \(C \) is also called the centroid. The coordinates of the centroid of \(C \) are then
\[
\frac{1}{\int_C ds} \left(\int_C x ds, \int_C y ds, \int_C z ds \right).
\]
A similar expression is true for a curve in \(\mathbb{R}^2 \), omitting the \(z \)-coordinate.

Find the centroids of the following curves in \(\mathbb{R}^2 \). You may use symmetry arguments to reduce the number of computations you need to do.

(a) The line segment parametrized by \(t \mapsto (t, mt) \), \(t \in [0, \frac{1}{m}] \), where \(m > 0 \) is the slope.

(b) The right semicircle \(t \mapsto (a \cos(t), a \sin(t)) \), \(t \in [-\frac{\pi}{2}, \frac{\pi}{2}] \) of radius \(a \) centered at the origin.

(c) The circle \(t \mapsto (b + a \cos(t), a \sin(t)) \), \(t \in [0, 2\pi] \) of radius \(a \) centered at \((b, 0)\), with \(b > a \) (feel free to write down the answer without computation if you see it).

(d) The piecewise curve \(C = C_1 + C_2 + C_3 \), where \(C_1 \) is the line segment from \((0, b)\) to \((a, b)\), \(C_2 \) the line segment from \((a, b)\) to \((a, -b)\), and \(C_3 \) the line segment from \((a, -b)\) to \((0, -b)\), where \(a > 0 \) and \(b > 0 \). The curve \(C \) is a \(a \times 2b \) rectangle, with the left side missing.

(e) Find the integral \(\int_C x ds \) for the parabola segment \(t \mapsto (t, t^2) \), \(t \in [0, 1] \).

Optional Problem (Harder). Find the coordinates of the centroid of the parabola segment in part (e). The standard approach to the integrals involved uses sinh-substitution (!).
4 (Surfaces of Revolution). A surface of revolution is the surface obtained by rotating a plane curve \(C \) about a line \(\ell \) (called the axis of rotation) that is coplanar with \(C \).

To obtain a surface according to the definition in lecture, we require that \(\ell \) does not intersect \(C \), except possibly at the endpoints of \(C \). To obtain a smooth surface (except for at most finitely many nonsmooth curves, which do not affect surface area), we require that there exists a parametrization \(t \mapsto r(t) = (x(t), z(t)), \ t \in [a,b] \) of \(C \) with \(r'(t) \neq 0 \) for all \(t \) (with at most finitely many exceptions).

Suppose that \(C \) lies in the \(xz \)-plane with \(x > 0 \), \(\ell \) is the \(z \)-axis, and fix a parametrization of \(C \) as above.

(a) Find the unit vector that is obtained by rotating \(e_x \) counterclockwise by \(\theta \) radians about the \(z \)-axis.

(b) Using the parametrization \(t \mapsto r(t) = (x(t), z(t)), \ t \in [a,b] \) of \(C \), parametrize the curve obtained by rotating \(C \) counterclockwise by \(\theta \) radians about the \(z \)-axis (it will lie in the plane spanned by \(e_z \) and the vector from part (a)). Your parametrization will involve the functions \(x(t) \) and \(z(t) \).

(c) Parametrize the surface of revolution of \(C \), taking one of the parameters to be the parameter \(t \) of \(C \), and the other parameter to be the angle \(\theta \). What do the \(t \)- and \(\theta \)-coordinate curves look like?

(d) Find the tangent vectors \(T_t(t,\theta) \) and \(T_\theta(t,\theta) \) at all points.

(e) Find the normal \(N(t,\theta) = T_t(t,\theta) \times T_\theta(t,\theta) \) and its magnitude \(\|N(t,\theta)\| \) at all points.

(f) Show that the surface area of the surface of revolution of \(C \) is equal to

\[
2\pi \int_a^b x(t) \sqrt{x'(t)^2 + z'(t)^2} \, dt = 2\pi \int_C x \, ds.
\]

(g) Conclude that the following theorem holds:

Theorem (Pappus). The surface area of the surface of revolution of a curve \(C \) is equal to the product

\[
\text{arclength}(C) \cdot \text{distance travelled by the centroid of } C.
\]

(h) For each of the curves in Problem 3, sketch its surface of revolution about the \(z \)-axis and find the surface area using Pappus’s theorem.

Possibility for 2: \(u = (1,0,0), \ v = (1,0,0) \) and \(w = (0,1,0) \)