1. [Consider the function . . .]

We have

\[f(x) = \begin{cases}
 k(2x - x^2) & \text{if } 0 < x < 3/2 \\
 0 & \text{otherwise.}
\end{cases} \]

\(f(x) \) can be a probability density function (pdf) only if it is non-negative for all values of \(x \). Since \(2x - x^2 = x(2-x) \) is positive throughout \(0 < x < 2 \), it is certainly positive in the region \(0 < x < 3/2 \).

So, any choice of \(k \geq 0 \) would make \(f(x) \geq 0 \) for all \(x \).

To make \(f(x) \) a pdf, \(k \) would have to be chosen so that \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \). Thus, we must have

\[
1 = \int_{0}^{3/2} k(2x - x^2) \, dx = k \left[x^2 - \frac{x^3}{3} \right]_{x=0}^{x=3/2} = k \left(\frac{9}{8} \right).
\]

Hence, \(k = \frac{8}{9} \) would make \(f(x) \) a pdf.

2. [A random variable \(X \) has a pdf given by . . .]

\[f_X(x) = \begin{cases}
 \frac{2}{x^3} & \text{if } x > 1 \\
 0 & \text{otherwise.}
\end{cases} \]

(a) \(F_X(t) = P(X \leq t) = \int_{-\infty}^{t} f_X(x) \, dx. \)

For \(t \leq 1 \), since \(f_X(x) = 0 \) for all \(x \) in the range \((-\infty, t] \), we have \(F_X(t) = 0 \).

For \(t > 1 \), we find that

\[
F_X(t) = \int_{-\infty}^{t} f_X(x) \, dx = \int_{1}^{t} \frac{2}{x^3} \, dx = \left[-\frac{1}{x^2} \right]_{x=1}^{x=t} = 1 - \frac{1}{t^2}.
\]

Thus,

\[
F_X(t) = \begin{cases}
 0 & \text{if } t \leq 1 \\
 1 - \frac{1}{t^2} & \text{if } t \geq 1.
\end{cases}
\]

(b) By definition of conditional probability,

\[
P(X \geq 2 \mid X < 3) = \frac{P(X \geq 2 \text{ AND } X < 3)}{P(X < 3)} = \frac{P(2 \leq X < 3)}{P(X < 3)} = \frac{F_X(3) - F_X(2)}{F_X(3)}.
\]

It is important to note that in the last equality above, we have used the facts that \(P(X < 3) = P(X \leq 3) = F_X(3) \), and \(P(2 \leq X < 3) = P(2 < X \leq 3) = F_X(3) - F_X(2) \), both of which are true only because \(X \) is a continuous random variable.
Therefore, using the result of part (a), we have that

\[
P(X \geq 2 \mid X < 3) = \frac{(1 - 1/9) - (1 - 1/4)}{1 - 1/9} = \frac{5/36}{8/9} = \frac{5}{32}.
\]

(c) The mean of \(X \) is determined as follows:

\[
E[X] = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_{1}^{\infty} x \left(\frac{2}{x^3}\right) \, dx = 2 \left(\frac{\ln x}{x} \bigg|_{x=1}\right) = 2.
\]

To determine the variance, as usual, we use the formula \(\text{Var}(X) = E[X^2] - (E[X])^2 \). However, note that

\[
E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) \, dx = \int_{1}^{\infty} x^2 \left(\frac{2}{x^3}\right) \, dx = 2 \left(\ln x \bigg|_{x=1}\right) = \infty.
\]

Thus, \(E[X^2] \) does not exist, and therefore, \(\text{Var}(X) \) does not exist either.

3. [Ghahramani, 6.2, # 4]

We have that \(f(x) > 0 \) if \(x > 0 \) and \(f(x) = 0 \) if \(x \leq 0 \). Thus the set of possible values of \(X \) is \((0, \infty)\). The function \(h(x) = \log_2(x) \) is strictly increasing and maps \((0, \infty)\) onto the entire real line \(\mathbb{R} \). The inverse of \(h \) is \(g(y) = 2^y \) for \(y \in \mathbb{R} \). Thus we have \(g'(y) = (\ln 2)2^y \). Thus the formula

\[
f_Y(y) = f_X(g(y))|g'(y)|
\]

provides

\[
f_Y(y) = (3 \ln 2)2^y e^{-3(2^y)}
\]

for all \(y \in \mathbb{R} \).

4. [Let \(X \) be a random variable. . .]

Let \(h(x) = -x \) if \(x < 0 \) and \(h(x) = x^3 \) if \(x \geq 0 \). Then \(h(x) \) is strictly decreasing for \(x < 0 \) and strictly increasing for \(x \geq 0 \). Thus we cannot apply the method of transformations directly, so we’ll use the method of distribution functions.

Clearly, \(h(x) > 0 \) for all \(x \neq 0 \), so \(F_Y(y) = P(h(X) \leq y) = 0 \) if \(y \leq 0 \). For \(y > 0 \) we have that \(h(x) \leq y \) if and only if \(-y \leq x \leq y^{1/3} \) (sketching the graph of \(h(x) \) helps here). Thus

\[
F_Y(y) = P(h(X) \leq y) = P(-y \leq X \leq y^{1/3}) = F_X(y^{1/3}) - F_X(-y) \quad \text{for all } y > 0.
\]

Then, since \(f_X(x) = \frac{1}{2}e^{-|x|} \) for all \(x \), we obtain

\[
f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} \left(F_X(y^{1/3}) - F_X(-y) \right)
\]

\[
= f_X(y^{1/3}) \left(\frac{1}{3} y^{-2/3} \right) - f_X(-y)(-1)
\]

\[
= \frac{1}{6} e^{-|y|^{1/3}} y^{-2/3} + \frac{1}{2} e^{-|y|}.
\]
Thus $f_X(y)$ is given by

$$f_Y(y) = \begin{cases}
\frac{1}{6}e^{-|y|^{1/3}}y^{-2/3} + \frac{1}{2}e^{-|y|} & \text{if } y > 0 \\
0 & \text{otherwise.}
\end{cases}$$

5. [A vendor at a market . . .]

As mentioned in the hint, the key to this problem is that the vendor cannot sell more than the C pounds of mushrooms he has in stock. Thus, if the demand, X, exceeds his supply, C, then he sells all C pounds of his mushrooms, but no more, giving him a profit of C dollars. On the other hand, if $X \leq C$, then the profit he makes is $4X - 3C$ dollars. So, if we let Y denote the vendor’s daily profit, then we have

$$Y = \begin{cases}
4X - 3C & \text{if } X \leq C \\
C & \text{if } X > C
\end{cases}$$

Thus, $Y = h(X)$, where h is the function defined by

$$h(x) = \begin{cases}
4x - 3C & \text{if } x \leq C \\
C & \text{if } x > C
\end{cases}$$

(a) The vendor’s expected profit is

$$E[Y] = E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) \, dx = \frac{1}{40} \int_{0}^{40} h(x) \, dx$$

$$= \frac{1}{40} \left(\int_{0}^{C} (4x - 3C) \, dx + \int_{C}^{40} C \, dx \right)$$

$$= \frac{1}{40} \left(-C^2 + C(40 - C) \right)$$

$$= C - \frac{C^2}{20}.$$

(b) To maximize the function $g(C) = C - C^2/20$, we set $g'(C) = 0$ which yields $C = 10$ as the only solution. Since $g''(10) = -1/10 < 0$, we conclude that $g(C)$ reaches its maximum at $C = 10$.

6. [Ghahramani, 6.3, # 9]

Let X be the random variable representing the length of the side whose probability density function is given by

$$f_X(x) = \begin{cases}
x/6 & \text{if } 2 < x < 4 \\
0 & \text{otherwise.}
\end{cases}$$
Since the hypotenuse has length 9, the remaining side of the right triangle has length given by
\[L = \sqrt{81 - x^2}. \]
The expected value of \(L \) is
\[E[L] = E[\sqrt{81 - X^2}] = \int_{-\infty}^{\infty} \sqrt{81 - x^2} f_X(x) \, dx = \int_{2}^{4} \sqrt{81 - x^2} \frac{x}{6} \, dx \]
\[= \frac{1}{12} \int_{65}^{77} \sqrt{t} \, dt = \frac{1}{18} \left[\frac{t^{3/2}}{3/2} \right]_{65}^{77} \approx 8.4236, \]
where we evaluated the integral involved using the change of variable \(t = 81 - x^2 \).

Bonus question

We are given a continuous random variable \(X \) with distribution function \(F(x) \), and are asked to determine the density function for \(Y = F(X) \). Since a distribution function maps \(\mathbb{R} \) to \([0,1]\), \(Y \) can only assume values in \([0,1]\). So, it is immediately clear that \(F_Y(t) = P(Y \leq t) = 0 \) for all \(t < 0 \), and \(F_Y(t) = 1 \) for all \(t \geq 1 \). It only remains to determine \(F_Y(t) \) for \(t \in [0,1] \).

We will show first that \(F_Y(t) = t \) for all \(t \in (0,1) \). This is relatively easy to see if \(F \) is a continuous strictly increasing function, so that it has an inverse \(F^{-1} : (0,1) \to \mathbb{R} \). For in this case, we have
\[F_Y(t) = P(Y \leq t) = P(F(X) \leq t) = P(X \leq F^{-1}(t)) = F(F^{-1}(t)) = t, \]
where the penultimate equality simply uses the definition of the distribution function of \(X \).

However, it is not necessary to assume that \(F \) is invertible, as we now show. Fix an arbitrary \(t \in (0,1) \). Since \(F \) is the distribution function of a continuous r.v., it is a non-decreasing continuous function with \(\lim_{x \to -\infty} F(x) = 0 \) and \(\lim_{x \to \infty} F(x) = 1 \). It then follows by the intermediate value theorem from calculus that there exists an \(x \in \mathbb{R} \) such that \(F(x) = t \), and in fact, there must be a largest such \(x \in \mathbb{R} \). Let \(x_0 \) be the largest \(x \in \mathbb{R} \) such that \(F(x) = t \). The non-decreasing property of \(F \) ensures that \(F(x) \leq t \) if and only if \(x \leq x_0 \).

We are now ready to proceed. We have
\[F_Y(t) = P(Y \leq t) = P(F(X) \leq t) = P(X \leq x_0) = F(x_0) = t, \]
with the last equality being a consequence of the fact that \(x_0 \) is by definition a point that satisfies \(F(x_0) = t \).

Therefore, we have shown that \(F_Y(t) = t \) for any \(t \in (0,1) \). By right-continuity of \(F_Y \), we also must have \(F_Y(0) = \lim_{t \to 0^+} F_Y(t) = \lim_{t \to 0^+} t = 0 \).
Putting all the pieces together, we see that

\[F_Y(t) = \begin{cases}
0 & t < 0 \\
t & 0 \leq t \leq 1 \\
1 & t > 1.
\end{cases} \]

Therefore, the probability density function of \(Y \) is

\[f_Y(t) = \frac{d}{dt} F_Y(t) = \begin{cases}
1 & 0 \leq t \leq 1 \\
0 & \text{otherwise}.
\end{cases} \]

Thus, \(Y \) is uniformly distributed over \([0, 1]\).