Chapter, section and problem numbers refer to the 3rd edition of the Ghahramani textbook.

Four of the following six problems will be chosen at random to be marked.

1. Section 7.1, # 7.

2. Suppose the lifetime of a light bulb produced in a certain factory is an exponentially distributed random variable. We know that 50% of these light bulbs die within one year.
 (a) Find the probability that a newly purchased light bulb will last more than 2 years?
 (b) If a light bulb has been working for a year, what is the probability that it will not survive another year.

3. Section 7.3 # 5.

4. Let \(X \) be a normally distributed random variable with mean 0 and variance 4.
 (a) Let \(Y = \lfloor |X| \rfloor \), where \(\lfloor a \rfloor \) is the integer part of \(a \) (i.e., the greatest integer less than or equal to \(a \)). Find \(P(Y = 0) \) and \(P(Y = 1) \).
 (b) What is the probability that the interval \((X - 1, X + 1)\) contains the value 0?

5. Section 7.2, # 16.

6. Section 7.2, # 27. (Use the normal approximation to the binomial distribution.)

Bonus question:

Let \(\{N(t), \ t \geq 0\} \) denote a Poisson process with rate \(\lambda > 0 \). For \(n \geq 1 \), define \(T_n \) to be the time of the occurrence of the \(n \)th event.

(a) Determine the distribution function, \(F(t) \), of the random variable \(T_n \).
 \(\textbf{[Hint: Express the event } "T_n > t" \text{ in terms of } N(t).\]}

(b) Show that the density function of \(T_n \) is given by

\[
f(t) = \begin{cases}
\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} & \text{if } t \geq 0 \\
0 & \text{otherwise.}
\end{cases}
\]

(Bonus questions do not have to be attempted, but bonus marks will be awarded for a correct solution.)