Discrete Random Variables

We are often interested in the probabilistic description of how two or more random variables behave together. We will consider the case of two random variables.

Definition Suppose X and Y are two discrete r.v.’s defined on the same sample space, having possible values in the sets \mathcal{X} and \mathcal{Y}, respectively. The joint probability mass function (pmf) of X and Y is defined by

$$p(x, y) = P(X = x, Y = y)$$

Remark: $P(X = x, Y = y)$ is a simplified notation for the probability

$$P(X = x \text{ and } Y = y) = P(\{X = x\} \cap \{Y = y\})$$

Given the joint pmf, we can recover the individual pmf’s of X and Y:

$$p_X(x) = P(X = x) = P(X = x \text{ and } Y \in \mathcal{Y}) = \sum_{y \in \mathcal{Y}} P(X = x, Y = y) = \sum_{y \in \mathcal{Y}} p(x, y)$$

Thus

$$p_X(x) = \sum_{y \in \mathcal{Y}} p(x, y)$$

Similarly,

$$p_Y(y) = \sum_{x \in \mathcal{X}} p(x, y)$$

The pmf’s $p_X(x)$ and $p_Y(y)$ are called the marginal pmf’s of X and Y.

Properties of the joint pmf

1. $p(x, y) \geq 0$ for all x and y.
2. $p(x, y) = 0$ if $x \notin \mathcal{X}$ or $y \notin \mathcal{Y}$.
3. $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) = 1$

Proof: Follows the same lines as the proof of $\sum_{x \in \mathcal{X}} P(X = x) = 1$

4) For any $A \subset \mathbb{R}^2$,

$$P((X, Y) \in A) = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}; (x, y) \in A} p(x, y)$$

Proof: Follows the same lines as the proof of $P(X \in B) = \sum_{x \in \mathcal{X} : x \in B} P(X = x)$
Example. Five cards are drawn from a standard deck of 52 cards without replacement. Let X be the number of spades drawn and Y the number of clubs drawn. Find the joint pmf of X and Y.

Solution: We have $X = Y = \{0, 1, 2, 3, 4, 5\}$. If $x + y > 5$, then $P(X = x, Y = y) = 0$. Otherwise

$$P(X = x, Y = y) = \frac{\binom{13}{x} \binom{13}{y} \binom{26}{5-x-y}}{\binom{52}{5}}$$

Thus

$$p(x, y) = \begin{cases} \frac{\binom{13}{x} \binom{13}{y} \binom{26}{5-x-y}}{\binom{52}{5}} & \text{if } 0 \leq x, y \leq 5, \ x + y \leq 5 \\ 0 & \text{otherwise} \end{cases}$$

We obtain

<table>
<thead>
<tr>
<th>$y \backslash x$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>$p_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$p_X(x) = 0.5 \quad 0.35 \quad 0.15$

(This is why $p_X(x)$ and $p_Y(y)$ are called the marginal pmf’s.)

$$P(X + Y \leq 2) = \sum_{x+y \leq 2} p(x, y)$$

$$= p(0, 0) + p(0, 1) + p(1, 0) + p(1, 1) + p(0, 2) + p(2, 0)$$

$$= 0.1 + 0.3 + 0.05 + 0.2 + 0.1 + 0.05$$

$$= 0.8$$

Example. The joint pmf $p(x, y)$ of X and Y are given in the table below. Find the marginal pmf’s and $P(X + Y \leq 2)$.

<table>
<thead>
<tr>
<th>$y \backslash x$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>$p_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

$p_Y(0) = 0.2, \quad p_Y(1) = 0.6, \quad p_Y(2) = 0.2$

Solution:

$$p_X(0) = 0.1 + 0.3 + 0.1 = 0.5$$

$$p_X(1) = 0.05 + 0.2 + 0.1 = 0.35$$

$$p_X(2) = 0.05 + 0.1 + 0 = 0.15$$

Similarly,

$$p_Y(0) = 0.2, \quad p_Y(1) = 0.6, \quad p_Y(2) = 0.2$$

Remark: The joint pmf $p(x, y)$ *uniquely* determines the marginal pmf’s through the relationship

$$p_X(x) = \sum_{y \in \mathcal{Y}} p(x, y), \quad p_Y(y) = \sum_{x \in \mathcal{X}} p(x, y)$$

However, the reverse is *not true*. For given $p_X(x)$ and $p_Y(y)$ there are (infinitely) many joint pmf’s whose marginals are $p_X(x)$ and $p_Y(y)$.

For example, compare this table and the previous example:

<table>
<thead>
<tr>
<th>$y \backslash x$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>$p_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.21</td>
<td>0.09</td>
<td>0.6</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$p_X(x) = 0.5 \quad 0.35 \quad 0.15$
Expected value

Note that from the joint pmf we can compute the marginal pmf’s and so the expected values of X and Y:

$$E(X) = \sum_{x \in X} xp_X(x) \text{ and } E(Y) = \sum_{y \in Y} yp_Y(y)$$

If $h : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a real function of two variables, $h(X, Y)$ is a discrete random variable.

Theorem 1

If X and Y are discrete r.v.’s with joint pmf $p(x, y)$ and $h(x, y)$ is a real function of two variables, then

$$E[h(X, Y)] = \sum_{x \in X} \sum_{y \in Y} h(x, y)p(x, y)$$

Proof: Follows the lines of the proof of $E[g(X)] = \sum_{x \in X} g(x)P(X = x)$.

Jointly Continuous Random Variables

Definition The random variables X and Y are said to be *jointly continuous* if there exists a nonnegative function $f(x, y)$ such that for any "reasonable" planar set $C \subset \mathbb{R}^2$,

$$P((X, Y) \in C) = \int \int_C f(x, y) \, dx \, dy$$

The function $f(x, y)$ is called the *joint probability density function* (joint pdf) of X and Y.

Corollary 2

If X and Y are discrete r.v.’s, then

$$E(X + Y) = E(X) + E(Y)$$

Proof: With $h(x, y) = x + y$ we have

$$E(X + Y) = \sum_{x \in X} \sum_{y \in Y} (x + y)p(x, y)$$

$$= \sum_{x \in X} \sum_{y \in Y} xp(x, y) + \sum_{x \in X} \sum_{y \in Y} yp(x, y)$$

$$= \sum_{x \in X} x \sum_{y \in Y} p(x, y) + \sum_{y \in Y} y \sum_{x \in X} p(x, y)$$

$$= \sum_{x \in X} xp_X(x) + \sum_{y \in Y} yp_Y(y)$$

$$= E(X) + E(Y) \quad \square$$

Properties of jointly continuous r.v.’s

1. $f(x, y) \geq 0$ (by definition).
2.

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

Proof:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{\mathbb{R}^2} f(x, y) \, dx \, dy$$

$$= P((X, Y) \in \mathbb{R}^2)$$

$$= 1 \quad \square$$
3. For any $a \leq b$ and $c \leq d$,

$$ P(a \leq X \leq b, c \leq Y \leq d) = \int_c^d \int_a^b f(x, y) \, dx \, dy $$

Proof: Let $C = \{(x, y) : a \leq x \leq b, c \leq y \leq d\}$. Then

$$ P(a \leq X \leq b, c \leq Y \leq d) = P((X, Y) \in C) = \int_C f(x, y) \, dx \, dy = \int_c^d \int_a^b f(x, y) \, dx \, dy $$

Note: Letting $a = b = u$ and $c = d = v$, this shows that

$$ P(X = u, Y = v) = 0 $$

for all u and v.

Example: Let the joint pdf of X and Y be given by

$$ f(x, y) = \begin{cases}
 kxy & 0 \leq x, y \leq 1 \\
 0 & \text{otherwise}
\end{cases} $$

(a) Determine k.

Solution:

$$ 1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_0^1 \int_0^1 kxy \, dx \, dy = k \left(\int_0^1 x \, dx \right) \left(\int_0^1 y \, dy \right) = k \left(\frac{1}{2} \right)^2 = k \frac{1}{4} $$

Thus $k = 4$.

Similarly to the discrete case, the marginal pdf’s can be obtained from the joint pdf:

$$ f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy \quad \text{and} \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx $$

Proof sketch:

$$ P(a \leq X \leq b) = P(a \leq X \leq b, -\infty < Y < \infty) = \int_{-\infty}^{\infty} \int_a^b f(x, y) \, dx \, dy = \int_a^b \left(\int_{-\infty}^{\infty} f(x, y) \, dy \right) \, dx $$

Thus the function $g(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$ satisfies

$$ P(a \leq X \leq b) = \int_a^b g(x) \, dx $$

for all $a < b$, and so it must equal to the pdf f_X of X.

(b) Find the marginal pdf’s.

Solution: For $0 \leq x \leq 1$,

$$ f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_0^1 4xy \, dy = \frac{2}{x} $$

Note that $f(x, y) = 0$ if $x \notin [0, 1]$, so $f_X(x) = 0$ if $x \notin [0, 1]$. Thus

$$ f_X(x) = \begin{cases}
 2x & 0 \leq x \leq 1 \\
 0 & \text{otherwise}
\end{cases} $$

By symmetry

$$ f_Y(y) = \begin{cases}
 2y & 0 \leq y \leq 1 \\
 0 & \text{otherwise}
\end{cases} $$
(c) Find \(P(X + Y \leq 1) \).

Solution: Note that \(P(X + Y \leq 1) = P((X, Y) \in C) \), where
\[
C = \{(x, y) : x + y \leq 1\}
\]
Thus
\[
P(X + Y \leq 1) = \iint_C f(x, y) \, dx \, dy = \iint_{x+y \leq 1} f(x, y) \, dx \, dy
\]
\[
= \int_0^1 \int_0^{1-y} 4xy \, dx \, dy
\]
\[
= \int_0^1 2y(1-y)^2 \, dy
\]
\[
= 2 \int_0^1 (y - 2y^2 + y^3) \, dy = 2 \left[\frac{y^2}{2} - \frac{2y^3}{3} + \frac{y^4}{4} \right]_0^1
\]
\[
= 2 \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) = \frac{1}{6}
\]

(b) Find the marginal pdf’s \(f_X(x) \) and \(f_Y(y) \).

Solution: For \(x \in [0, 1] \),
\[
f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_x^1 10xy^2 \, dy = \frac{10}{3}x(1 - x^3)
\]
Thus
\[
f_X(x) = \begin{cases} \frac{10}{3}x(1 - x^3) & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]
Similarly, for \(y \in [0, 1] \),
\[
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \int_0^y 10xy^2 \, dx = 5y^4
\]
hence
\[
f_Y(y) = \begin{cases} 5y^4 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]

Example: Suppose the joint pdf of \(X \) and \(Y \) is given by
\[
f(x, y) = \begin{cases} 10xy^2 & 0 \leq x \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]
(a) Find \(P(Y \leq 2X) \).

Solution: Note that \(f(x, y) = 0 \) outside the region
\[
A = \{(x, y) : 0 \leq x \leq y \leq 1\}.
\]
Letting \(C = \{(x, y) : y \leq 2x \} \), we have
\[
P(Y \leq 2X) = \iint_C f(x, y) \, dx \, dy = \iint_{C \cap A} 10xy^2 \, dx \, dy
\]
\[
= \int_0^1 \int_0^{y/2} 10xy^2 \, dx \, dy
\]
\[
= 5 \int_0^1 y^2 \left(y^2 - \frac{y^2}{4} \right) \, dy
\]
\[
= \frac{15}{4} \int_0^1 y^4 \, dy = \frac{3}{4}
\]

Geometric Probability

Suppose a point is drawn randomly from a bounded planar region \(B \subset \mathbb{R}^2 \). The mathematical model is a pair of random variables \((X, Y) \) with joint pdf given by
\[
f(x, y) = \begin{cases} c & \text{if } (x, y) \in B \\ 0 & \text{otherwise} \end{cases}
\]
where \(c > 0 \) is a constant.

The constant is determined by
\[
1 = \iint_{\mathbb{R}^2} f(x, y) \, dx \, dy = \iint_B c \, dx \, dy \quad \text{(since } f(x, y) = 0 \text{ outside } B)
\]
\[
= c \cdot \text{area}(B)
\]
so that \(c = \frac{1}{\text{area}(B)} \).
Let’s compute \(P((X, Y) \in A) \) for some \(A \subset \mathbb{R}^2 \):
\[
P((X, Y) \in A) = \int_A f(x, y) \, dx \, dy = \int_{A \cap B} \frac{1}{\text{area}(B)} \, dx \, dy = \frac{\text{area}(A \cap B)}{\text{area}(B)}
\]
Thus if \((X, Y)\) is a point randomly drawn from \(B\), then for all “reasonable” \(A \subset \mathbb{R}^2\),
\[
P((X, Y) \in A) = \frac{\text{area}(A \cap B)}{\text{area}(B)}
\]

Expected value

Just as in the discrete case, using the joint pdf we can compute the marginal pdf’s and thus the expected values of \(X\) and \(Y\):
\[
E(X) = \int_{-\infty}^{\infty} x f_X(x) \, dx \quad \text{and} \quad E(Y) = \int_{-\infty}^{\infty} y f_Y(y) \, dy
\]

The following theorem shows how to calculate the expected value of the r.v. \(h(X, Y)\).

Theorem 3

If \(X\) and \(Y\) are continuous r.v.’s with joint pdf \(f(x, y)\) and \(h(x, y)\) is a real function of two variables, then
\[
E[h(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f(x, y) \, dx \, dy
\]

Example: Let \((X, Y)\) be a point randomly drawn from the unit square \(B = \{(x, y) : 0 \leq x, y \leq 1\}\). Calculate \(P(|X - Y| \geq 1/2)\).

Solution: Note that \(\text{area}(B) = 1\). The probability can be calculated by integrating the pdf
\[
f(x, y) = \begin{cases}
1 & \text{if } 0 \leq x, y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]
over the region \(A = \{(x, y) : |x - y| \geq 1/2\}\).
However, since \(A \cap B\) is a union of two congruent isosceles right triangles of side length \(1/2\), we have
\[
P(|X - Y| \geq 1/2) = \frac{\text{area}(A \cap B)}{\text{area}(B)} = \frac{2 \cdot \frac{1}{2} \cdot \left(\frac{1}{2}\right)^2}{1} = \frac{1}{4}
\]

Corollary 4

If \(X\) and \(Y\) are jointly continuous r.v.’s, then
\[
E(X + Y) = E(X) + E(Y)
\]

Proof Similar to the discrete case, but the sums are replaced with integrals. Letting \(h(x, y) = x + y\) we have
\[
E(X + Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) f(x, y) \, dx \, dy
\]
\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) \, dx \, dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) \, dx \, dy
\]
\[
= \int_{-\infty}^{\infty} x \left(\int_{-\infty}^{\infty} f(x, y) \, dy \right) \, dx + \int_{-\infty}^{\infty} y \left(\int_{-\infty}^{\infty} f(x, y) \, dx \right) \, dy
\]
\[
= \int_{-\infty}^{\infty} x f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy
\]
\[
= E(X) + E(Y)
\]
Remark: The main theorem about the expected value of \(h(X, Y) \) can be used for both discrete and jointly continuous r.v.'s to show the following “linearity of expectation” property:

\[
E[\alpha g_1(X, Y) + \beta g_2(X, Y)] = \alpha E[g_1(X, Y)] + \beta E[g_2(X, Y)]
\]

for any two functions \(g_1, g_2 : \mathbb{R}^2 \to \mathbb{R} \).

Example: Let \(X \) and \(Y \) have joint pdf

\[
f(x, y) = \begin{cases}
10xy^2 & 0 \leq x \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}
\]

(a) Find \(E(X^2 + Y^2) \).

Solution: Using the linearity of expectation,

\[
E(X^2 + Y^2) = E(X^2) + E(Y^2)
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 f(x, y) \, dx \, dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^2 f(x, y) \, dx \, dy
\]

\[
= \int_{0}^{1} \int_{0}^{y} x^2 10xy^2 \, dx \, dy + \int_{0}^{1} \int_{0}^{y} y^2 10xy^2 \, dx \, dy
\]

\[
= \frac{5}{14} + \frac{5}{7} = \frac{15}{14}
\]

(b) Find \(E(X^2Y^2) \).

Solution:

\[
E(X^2Y^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 y^2 f(x, y) \, dx \, dy
\]

\[
= \int_{0}^{1} \int_{0}^{y} x^2 y^2 10xy^2 \, dx \, dy
\]

\[
= 10 \int_{0}^{1} \int_{0}^{y} x^3 y^4 \, dx \, dy
\]

\[
= \frac{5}{18}
\]

Note that \(E(X^2)E(Y^2) = \frac{5}{14} \cdot \frac{5}{7} = \frac{25}{98} \), so that

\[
E(X^2Y^2) \neq E(X^2)E(Y^2)
\]

Independence of Random Variables

Definition Two random variables \(X \) and \(Y \) defined on the same probability space are independent if for all “reasonable” \(A, B \subset \mathbb{R} \), the events \(\{ X \in A \} \) and \(\{ Y \in B \} \) are independent, i.e.,

\[
P(X \in A, Y \in B) = P(X \in A)P(Y \in B)
\]

Let \(F(s, t) \) denote the joint distribution function of \(X \) and \(Y \):

\[
F(s, t) = P(X \leq s, Y \leq t)
\]

It can be shown using the axioms of probability that \(X \) and \(Y \) are independent if and only if

\[
F(s, t) = F_X(s)F_Y(t)
\]

i.e., the joint distribution function is the product of the marginal distribution functions.
The following theorem gives an easy to check characterization of independence for discrete random variables.

Theorem 5

Let X and Y be discrete r.v.’s with joint pmf $p(x, y)$. Then X and Y are independent if and only if

$$p(x, y) = p_X(x)p_Y(y)$$

i.e., the joint pmf is the product of the marginal pmf’s.

Proof If X and Y are independent, then $\{X = x\}$ and $\{Y = y\}$ are independent events, so $p(x, y) = p_X(x)p_Y(y)$ follows.

The proof that $p(x, y) = p_X(x)p_Y(y)$ for all x, y implies that X and Y are independent is left as an exercise.

Example: If X and Y have pmf given below, are they independent?

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.21</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

Solution: They are independent. Calculate the marginal pmf’s and check that $p(x, y) = p_X(x)p_Y(y)$ for all x and y:

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>$p_Y(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.21</td>
<td>0.09</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.07</td>
<td>0.03</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

$\sum p_X(x) = 0.5, \sum p_Y(y) = 0.2 = p(x, y)$

Example: The joint pmf of X and Y is given by

<table>
<thead>
<tr>
<th>y</th>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Are X and Y independent?

Solution: The marginal pmf’s are

$p_X(0) = 0.5, p_X(1) = 0.35, p_X(2) = 0.15$

and

$p_Y(0) = 0.2, p_Y(1) = 0.6, p_Y(2) = 0.2$

Clearly, X and Y are not independent since e.g.,

$p_X(2)p_Y(2) = 0.15 \cdot 0.2 = 0.03 \neq 0 = p(2, 2)$

Independence of continuous r.v.’s

The following characterizes the independence of jointly continuous random variables in term of their pdf’s:

Theorem 6

Let X and Y be jointly continuous r.v.’s with joint pdf $f(x, y)$. Then X and Y are independent if and only if

$$f(x, y) = f_X(x)f_Y(y)$$

i.e., the joint pdf is the product of the marginal pdf’s.
Example: Let \(\Omega \) be the planar region defined by

\[
\Omega = \{(x, y) : 0 \leq x + y \leq 1, \ 0 \leq x \leq 1, \ 0 \leq y \leq 1\}
\]

and the joint pdf of \(X \) and \(Y \) be given by

\[
f(x, y) = \begin{cases}
 6x & (x, y) \in \Omega \\
 0 & \text{otherwise}
\end{cases}
\]

Are \(X \) and \(Y \) independent?

Solution: Let’s calculate \(f_X(x) \) and \(f_Y(y) \):

\[
f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \begin{cases}
 \int_0^x 6x \, dy = 6x(1 - x) & 0 \leq x \leq 1 \\
 0 & \text{otherwise}
\end{cases}
\]

and

\[
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \begin{cases}
 \int_0^1 6x \, dx = 3(1 - y)^2 & 0 \leq y \leq 1 \\
 0 & \text{otherwise}
\end{cases}
\]

Clearly, \(f(x, y) \neq f_X(x)f_Y(y) \). For example,

\[
f_X(x)f_Y(y) > 0 \quad \text{for all } (x, y) \in (0, 1)^2 - \Omega
\]

but

\[
f(x, y) = 0 \quad \text{if } (x, y) \in (0, 1)^2 - \Omega
\]

Thus \(X \) and \(Y \) are not independent.

Example: A point \((X, Y)\) is selected at random from the rectangle

\[
R = \{(x, y) : 0 \leq x \leq a, \ 0 \leq y \leq b\}
\]

Are \(X \) are \(Y \) independent?

Solution: Recall that the joint pdf is given by

\[
f(x, y) = \begin{cases}
 \frac{1}{\text{area}(R)} = \frac{1}{ab} & \text{if } (x, y) \in R \\
 0 & \text{otherwise}
\end{cases}
\]

Thus

\[
f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \begin{cases}
 \int_0^b \frac{1}{ab} \, dy = \frac{1}{a} & 0 \leq x \leq a \\
 0 & \text{otherwise}
\end{cases}
\]

Similarly

\[
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \begin{cases}
 \int_0^a \frac{1}{ab} \, dx = \frac{1}{b} & 0 \leq y \leq b \\
 0 & \text{otherwise}
\end{cases}
\]

Clearly, \(f(x, y) = f_X(x)f_Y(y) \) for all \(x \) and \(y \), so \(X \) and \(Y \) are independent.
Example: Let X and Y be independent exponential r.v.'s with pdf’s

$$f_X(x) = \begin{cases} \alpha e^{-\alpha x} & x \geq 0 \\ 0 & \text{otherwise} \end{cases}, \quad f_Y(y) = \begin{cases} \beta e^{-\beta y} & y \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Find $P(X < Y)$.

Solution: Since X and Y are independent,

$$f(x, y) = f_X(x)f_Y(y) = \begin{cases} \alpha \beta e^{-\alpha x-\beta y} & x, y \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

We will calculate

$$P(X < Y) = \iiint_{(x, y): x < y} f(x, y) \, dx \, dy$$

Some consequences of independence

Theorem 7

Let X and Y be discrete or jointly continuous independent random variables and $h(x)$ and $g(y)$ real functions. Then $h(X)$ and $g(Y)$ are independent r.v.'s.

For example, if X and Y are independent, then $\sin X$ and $\cos Y$ are independent, $\cos X$ and $\sin Y$ are independent, X^2 and e^{-Y} are independent, etc.

Theorem 8

Let X and Y be discrete or jointly continuous independent random variables and $h(x)$ and $g(y)$ real functions. Then

$$E[h(X)g(Y)] = E[h(X)]E[g(Y)]$$

Proof Assume X and Y are jointly continuous; the proof for the discrete case is similar:

$$E[h(X)g(Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x)g(y)f(x, y) \, dx \, dy$$

(by independence)

$$= \int_{-\infty}^{\infty} g(y) \left(\int_{-\infty}^{\infty} h(x)f_X(x) \, dx \right) dy$$

$$= E[h(X)] \int_{-\infty}^{\infty} g(y)f_Y(y) \, dy$$

$$= E[h(X)]E[g(Y)] \quad \square$$
Corollary 9

If \(X \) and \(Y \) are independent random variables, then

\[
E(XY) = E(X)E(Y)
\]

Remark: The converse of the corollary is not true, i.e., the fact that \(E(XY) = E(X)E(Y) \) does not imply that \(X \) and \(Y \) are independent.

We have

\[
E(X) = E(Y) = 0
\]

and

\[
E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xyf(x,y) \, dxdy
= \int_{R_1 \cup R_2 \cup R_3 \cup R_4} xy \, dxdy
= \sum_{i=1}^{4} \int_{R_i} xy \, dxdy
= \int_{1/2}^{1/2} \int_{0}^{1/2} xy \, dxdy + \int_{0}^{1/2} \int_{-1/2}^{1/2} xy \, dxdy
+ \int_{-1/2}^{0} \int_{-1/2}^{0} xy \, dxdy + \int_{-1/2}^{0} \int_{1/2}^{1/2} xy \, dxdy
= \left(\frac{1}{8} \right) \left(\frac{3}{8} \right) + \left(\frac{1}{8} \right) \left(-\frac{3}{8} \right) + \left(\frac{1}{8} \right) \left(-\frac{3}{8} \right) + \left(\frac{3}{8} \right) \left(-\frac{1}{8} \right) = 0
\]

Thus \(E(X)E(Y) = E(XY) \), but \(X \) and \(Y \) are not independent.

Example: Let \(R_1, R_2, R_3, \) and \(R_4 \) be the square regions defined by

\[
R_1 = \{ 0 \leq x \leq \frac{1}{2}, \frac{1}{2} \leq y \leq 1 \}, \quad R_2 = \{ -1 \leq x \leq -\frac{1}{2}, 0 \leq y \leq \frac{1}{2} \}
\]

\[
R_3 = \{ -\frac{1}{2} \leq x \leq 0, -1 \leq y \leq -\frac{1}{2} \}, \quad R_4 = \{ \frac{1}{2} \leq x \leq 1, -\frac{1}{2} \leq y \leq 0 \}
\]

and assume \((X,Y)\) is randomly drawn from \(A = R_1 \cup R_2 \cup R_3 \cup R_4 \). Then the joint pdf is

\[
f(x,y) = \begin{cases}
\frac{1}{\text{area}(A)} = 1 & (x,y) \in A \\
0 & \text{otherwise}
\end{cases}
\]

It is easy to see that the marginal pdf’s are

\[
f_X(x) = \begin{cases}
\frac{1}{2} & -1 \leq x \leq 1 \\
0 & \text{otherwise}
\end{cases}, \quad f_Y(y) = \begin{cases}
\frac{1}{2} & -1 \leq y \leq 1 \\
0 & \text{otherwise},
\end{cases}
\]

Thus both \(X \) and \(Y \) are uniform r.v.’s on the interval \([-1,1]\).

Clearly, \(f(x,y) \neq f_X(x)f_Y(y) \), so \(X \) and \(Y \) are not independent.

Example: Let \(X \) and \(Y \) be independent uniform r.v.’s on the interval \((0,1)\). Find the pdf of \(Z = XY \) and use it to calculate \(E(Z) \).

Solution: The joint pdf \(f(x,y) = f_X(x)f_Y(y) \) is given by

\[
f(x,y) = \begin{cases}
1 & 0 < x, y < 1 \\
0 & \text{otherwise}
\end{cases}
\]

Since \(Z = XY \) and \(X,Y \in (0,1) \), we have \(Z = XY \in (0,1) \), and so

\[
F_Z(t) = P(Z \leq t) = \begin{cases}
0 & t \leq 0 \\
P(XY \leq t) & 0 < t < 1 \\
1 & t \geq 1
\end{cases}
\]
For $0 < t < 1$ we have from the geometry of the problem
\[
P(XY \leq t) = P\left(Y \leq \frac{t}{X} \right) = t \cdot 1 + \int_{t}^{1} \int_{0}^{t/x} dydx
\]
\[
= t + \int_{t}^{1} \frac{t}{x} dx = t - t \ln t
\]
Thus the pdf of $Z = XY$ is given by
\[
f_{Z}(t) = F_{Z}'(t) = \begin{cases}
\frac{d}{dt}(t - t \ln t) & 0 < t < 1 \\
0 & \text{otherwise}
\end{cases}
\]
\[
= \begin{cases}
-t \ln t & 0 < t < 1 \\
0 & \text{otherwise}
\end{cases}
\]
We can calculate $E(Z)$ as
\[
E(Z) = \int_{-\infty}^{\infty} tf_{Z}(t) dt = \int_{0}^{1} (-t \ln t) dt
\]
Using integration by parts with $u = -\ln t$ and $dv = t$, we obtain
\[
E(Z) = \int_{0}^{1} (-t \ln t) dt = \left[-\frac{t^2}{2} \ln t \right]_{0}^{1} + \int_{0}^{1} \frac{t^2}{2} \cdot \frac{1}{t} dt
\]
\[
= 0 - 0 + \int_{0}^{1} \frac{t}{2} dt
\]
\[
= \frac{1}{4}
\]
Compare the above with the the following simple calculation which uses the fact that $E(XY) = E(X)E(Y)$ since X and Y are independent:
\[
E(XY) = E(X)E(Y) = \left(\int_{0}^{1} x dx \right) \left(\int_{0}^{1} y dy \right)
\]
\[
= \left(\frac{1}{2} \right)^2 = \frac{1}{4}
\]

Conditional Distributions

Recall the definition of conditional probability of an event A given another event B (such that $P(B) > 0$):
\[
P(A|B) = \frac{P(AB)}{P(B)}
\]
We want to extend this notion to a pair of random variables X and Y. Specifically, we are interested in how the knowledge of the value of one of them "affects" the probability distribution of the other.

Discrete distributions

Let X and Y be discrete random variables with joint pmf $p(x, y)$. If we don’t know anything about the the value of Y, the probabilities concerning X are calculated from the marginal pmf
\[
p_{X}(x) = \sum_{y \in Y} p(x, y)
\]
Now assume that we know that $Y = y$. Then we have extra knowledge about the probabilities concerning X in the form of the conditional probabilities
\[
P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x, y)}{p_{Y}(y)}
\]
Definition Let X and Y be discrete r.v.’s with joint pmf $p(x, y)$. The conditional pmf of X given $Y = y$ is defined by

$$p_{X|Y}(x|y) = \frac{p(x, y)}{p_Y(y)}$$

whenever $p_Y(y) > 0$.

Note: For fixed $y \in \mathcal{Y}$, the function $p_{X|Y}(x|y)$ is a pmf in x. Indeed, $p_{X|Y}(x|y) \geq 0$ and

$$\sum_{x \in \mathcal{X}} p_{X|Y}(x|y) = \sum_{x \in \mathcal{X}} \frac{p(x, y)}{p_Y(y)} = \frac{1}{p_Y(y)} \sum_{x \in \mathcal{X}} p(x, y) = \frac{1}{p_Y(y)} p_Y(y) = 1$$

Example: Let X be the number of spades and Y the number of clubs in a randomly drawn poker hand. We have seen that

$$p(x, y) = \begin{cases} \binom{13}{x} \binom{13}{y} \binom{26}{5-x-y} \\ 0 \end{cases} \frac{1}{\binom{52}{5}}$$

if $0 \leq x, y \leq 5, \ x + y \leq 5$

otherwise

Let’s calculate the conditional pmf of X given Y. We have

$$p_Y(y) = \frac{\binom{13}{y} \binom{39}{52-y}}{\binom{52}{5}}, \quad 0 \leq y \leq 5$$

Thus

$$p_{X|Y}(x|y) = \frac{p(x, y)}{p_Y(y)} = \frac{\binom{13}{x} \binom{13}{y} \binom{26}{5-x-y} / \binom{52}{5}}{\binom{y}{y} \binom{39}{52-y} / \binom{52}{5}} = \frac{\binom{13}{x} \binom{26}{5-x-y} / \binom{39}{52-y}}{\binom{5}{5-x-y}} \quad 0 \leq x \leq 5 - y$$

Remarks:

1. The conditional pmf $p_{Y|X}(y|x)$ is similarly defined.
2. The conditional pmf can be used to calculate the conditional probability of events in the form $\{X \in C\}$ given $\{Y = y\}$:

$$P(X \in C|Y = y) = \sum_{x \in C} p_{X|Y}(x|y)$$

Proof This is essentially the law of total probability. The formal proof is left as an exercise.

3. If X and Y are independent, then $p(x, y) = p_X(x)p_Y(y)$, so

$$p_{X|Y}(x|y) = \frac{p(x, y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Thus in this case $p_{X|Y}(x|y) = p_X(x)$. The converse is also true, and in fact X and Y are independent if and only if $p_{X|Y}(x|y) = p_X(x)$ for all x and y such that $p_Y(y) > 0$.
Continuous distributions

It is not immediately clear how to condition on the value of a continuous random variable \(Y \) since \(P(Y = y) = 0 \) for all \(y \).

Definition Let \(X \) and \(Y \) be jointly continuous r.v.’s with joint pdf \(f(x, y) \). The **conditional pdf** of \(X \) given \(Y = y \) is defined by

\[
f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)}
\]

whenever \(f_Y(y) > 0 \). Similarly, the conditional pdf of \(Y \) given \(X = x \) is

\[
f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}
\]

whenever \(f_X(x) > 0 \).

Remarks:

1. Just as in the discrete case, it is easy to show that \(f_{X|Y}(x|y) \) is a valid pdf for fixed \(y \):

\[
\int_{-\infty}^{\infty} f_{X|Y}(x|y) \, dx = \int_{-\infty}^{\infty} \frac{f(x, y)}{f_Y(y)} \, dx = \frac{1}{f_Y(y)} \int_{-\infty}^{\infty} f(x, y) \, dx = \frac{1}{f_Y(y)} f_Y(y) = 1
\]

2. Similarly to the discrete case, it can be shown that \(X \) and \(Y \) are independent if and only if

\[
f_{X|Y}(x|y) = f_X(x)
\]

for all \(x \) and \(y \) such that \(f_Y(y) > 0 \).

Definition For a reasonable set \(B \subset \mathbb{R} \), the conditional probability of the event \(\{ Y \in B \} \) given \(X = x \) is defined by

\[
P(Y \in B|X = x) = \int_B f_{Y|X}(y|x) \, dy
\]

Note: The meaning of \(P(Y \in B|X = x) \) is not as obvious as in the discrete case, since we are conditioning on the event \(\{ X = x \} \) of probability zero. We will see later how useful \(P(Y \in B|X = x) \) can be.

Example: Let the joint pdf of \(X \) and \(Y \) be

\[
f(x, y) = \begin{cases} 10xy^2 & 0 \leq x \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]

(a) Find \(f_{X|Y}(x|y) \) and \(f_{Y|X}(y|x) \).

Solution: We have seen that

\[
f_Y(y) = \begin{cases} 5y^4 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]

We have \(f_Y(y) > 0 \) if \(y \in (0, 1) \). Thus for all \(y \in (0, 1) \),

\[
f_{X|Y}(x|y) = \frac{f(x, y)}{f_Y(y)} = \begin{cases} \frac{10xy^2}{5y^4} = \frac{2x}{y^2} & 0 \leq x < y \\ 0 & \text{otherwise} \end{cases}
\]
Previously we have also calculated $f_X(x)$:

$$f_X(x) = \begin{cases} 10x(1-x^3) & 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Thus for $x \in (0, 1)$ (so that $f_X(x) > 0$),

$$f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)} = \begin{cases} \frac{10xy^2}{10x(1-x^3)} = \frac{3y^2}{1-x^3} & x \leq y < 1 \\ 0 & \text{otherwise} \end{cases}$$

(b) Find $P(X \leq \frac{1}{2} | Y = \frac{3}{4})$.

Solution: We have

$$f_{X|Y}(x|3/4) = \begin{cases} \frac{2x}{(\frac{3}{4})^2} & 0 \leq x \leq \frac{3}{4} \\ 0 & \text{otherwise} \end{cases}$$

Thus

$$P(X \leq \frac{1}{2} | Y = \frac{3}{4}) = \int_{-\infty}^{1/2} f_{X|Y}(x|y) \, dx$$

$$= \frac{32}{9} \int_{0}^{1/2} x \, dx$$

$$= \frac{32}{9} \cdot \frac{1}{8} = \frac{4}{9}$$

The conditional probability $P(Y \in B | X = x)$ can be very useful in calculating probabilities via the following version of the law of total probability:

Theorem 10 (Law of total probability)

Let X and Y be discrete random variables. Then

$$P(Y \in B) = \sum_{x \in X} P(Y \in B | X = x)p_X(x)$$

If X and Y are jointly continuous random variables, then

$$P(Y \in B) = \int_{-\infty}^{\infty} P(Y \in B | X = x) f_X(x) \, dx$$

Proof We only do the continuous case:

$$\int_{-\infty}^{\infty} P(Y \in B | X = x) f_X(x) \, dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{B} f_{Y|X}(y|x) \, dy \right) f_X(x) \, dx$$

$$= \int_{B} \left(\int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) \, dx \right) dy$$

$$= \int_{B} f_Y(y) \, dy$$

$$= P(Y \in B) \quad \square$$
Example: Suppose X is uniformly distributed on $[0, 1]$. Given $X = x$, let Y be a random point in the interval $[0, x]$. Calculate the probability $P(Y \geq 1/2)$.

Solution: We could calculate $f_{X,Y}(x, y)$ and obtain $P(Y \geq 1/2)$ from a double integral. Instead, we will use the law of total probability.

We have

$$f_{Y|X}(y|x) = \begin{cases} \frac{1}{x} & 0 \leq y \leq x \\ 0 & \text{otherwise} \end{cases}$$

and so

$$P(Y \geq 1/2|X = x) = \begin{cases} \frac{x - 1/2}{x} & 1/2 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Thus from the law of total probability we have

$$P(Y \geq 1/2) = \int_{-\infty}^{\infty} P(Y \geq 1/2|X = x) f_X(x) \, dx$$

$$= \int_{1/2}^{1} \frac{x - 1/2}{x} \, dx$$

$$= \int_{1/2}^{1} \left(1 - \frac{1}{2x}\right) \, dx$$

$$= \left[x - \frac{1}{2} \ln x \right]_{1/2}^{1}$$

$$= \frac{1}{2} (1 - \ln 2)$$

Conditional Expectation

We can generalize the expected value to conditional distributions in the following way.

Definition Let X and Y be random variables defined on the same sample space. If X and Y are discrete, then the conditional expectation of X given $Y = y$ is defined by

$$E(X|Y = y) = \sum_{x \in \mathcal{X}} x p_{X|Y}(x|y)$$

whenever $p_Y(y) > 0$. If X and Y are jointly continuous, the corresponding definition is

$$E(X|Y = y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, dx$$

whenever $f_Y(y) > 0$.

Note: For fixed y, the conditional expectation of X given $Y = y$ is simply an expectation calculated according to the conditional distribution of X given $Y = y$.

Thus all the basic properties we derived for (unconditional) expectations still hold. For example,

$$E(h(X)|Y = y) = \sum_{x \in \mathcal{X}} h(x) p_{X|Y}(x|y)$$

for discrete r.v.’s, and

$$E(h(X)|Y = y) = \int_{-\infty}^{\infty} h(x) f_{X|Y}(x|y) \, dx$$

for continuous r.v.’s.
Example. Let the joint pdf of X and Y be

$$f(x, y) = \begin{cases}
10xy^2 & 0 \leq x \leq y \leq 1 \\
0 & \text{otherwise}
\end{cases}$$

(a) Find $E(X|Y = y)$.

Solution: We previously derived

$$f_{X|Y}(x|y) = \begin{cases}
\frac{2x}{y^2} & 0 \leq x < y \leq 1 \\
0 & \text{otherwise}
\end{cases}$$

Thus for all $y \in [0, 1]$ we need to calculate

$$E(X|Y = y) = \int_{-\infty}^{\infty} xf_{X|Y}(x|y) \, dx = \int_{0}^{y} x \frac{2x}{y^2} \, dx$$

(b) Find $E(Y|X = x)$.

Solution: From previous calculations,

$$f_{Y|X}(y|x) = \begin{cases}
\frac{3y^2}{1 - x^3} & 0 \leq x < y \leq 1 \\
0 & \text{otherwise}
\end{cases}$$

Hence for $x \in [0, 1]$

$$E(Y|X = x) = \int_{-\infty}^{\infty} yf_{Y|X}(y|x) \, dy = \int_{x}^{1} \frac{3y^2}{1 - x^3}$$

Conditional expectation can greatly simplify the calculation of expected value.

Theorem 11 (Law of total expectation)

Let X and Y be random variables defined on the same sample space. If X and Y are discrete, then

$$E(Y) = \sum_{x \in X} E(Y|X = x)p_X(x)$$

If X and Y are jointly continuous, then

$$E(Y) = \int_{-\infty}^{\infty} E(Y|X = x)f_X(x) \, dx$$

Note: The proof is very similar to the proof of the law of total probability and is left as an exercise. The theorem also holds if the roles of X and Y are exchanged.
Example: Suppose X is uniformly distributed on $[0, 1]$. Given $X = x$, let Y be a random point in the interval $[0, x]$. Calculate $E(Y)$.

Solution: Since Y is uniformly distributed on $[0, x]$ given $X = x$, we have

$$E(Y|X = x) = \frac{x}{2}$$

Thus by the law of total expectation,

$$E(Y) = \int_0^\infty E(Y|X = x) f_X(x) \, dx = \int_0^1 \frac{x}{2} \, dx = \frac{1}{4}$$

Exercise: Calculate $E(Y)$ by finding $f_Y(y)$ first. Which solution is simpler?

Transformations of Two Random Variables

Here we consider the two-dimensional generalization of the problem of finding the pdf of $h(X)$ for an invertible $h : \mathbb{R} \to \mathbb{R}$ and continuous r.v. X.

Suppose X and Y are jointly continuous and $h_1, h_2 : \mathbb{R}^2 \to \mathbb{R}$ are real functions. We want to determine the joint pdf of the pair of r.v.’s $U = h_1(X, Y)$, $V = h_2(X, Y)$

We will be able to do this if h_1 and h_2 satisfy certain regularity conditions.

Let \mathcal{J} denote the Jacobian of (g_1, g_2), i.e.,

$$\mathcal{J}(u, v) = \det \begin{bmatrix} \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial v} \end{bmatrix} = \frac{1}{\mathcal{J}(g_1(u, v), g_2(u, v))}$$

Theorem 12 (Joint pdf of transformed random variables)

Assume X and Y have joint pdf $f_{X,Y}(x, y)$. If h_1 and h_2 satisfy the above conditions, then the joint pdf of $U = h_1(X, Y)$ and $V = h_2(X, Y)$ is given by

$$f_{U,V}(u, v) = f_{X,Y}(g_1(u, v), g_2(u, v)) |\mathcal{J}(u, v)|$$

Remark: The proof of the theorem relies on the change of variable formula for double integrals.
Example: Let X and Y be independent standard normal r.v.'s. Let R and Θ be the polar coordinates of the point (X, Y), i.e.,

$$R = \sqrt{X^2 + Y^2}, \quad \Theta = \arctan(Y/X)$$

Find the joint pdf of R and Θ.

Solution: We have $h_1(x, y) = \sqrt{x^2 + y^2}$ and $h_2(x, y) = \arctan(y/x)$. We have to solve

$$r = \sqrt{x^2 + y^2}, \quad \theta = \arctan(y/x)$$

for x and y. The solution (of course) is the well-known expression

$$x = r \cos \theta = g_1(r, \theta), \quad y = r \sin \theta = g_2(r, \theta)$$

Note that $-\infty < x < \infty$ and $-\infty < y < \infty$, while $0 \leq r < \infty$ and $0 \leq \theta < 2\pi$.

Since X and Y are independent,

$$f_{X,Y}(x, y) = f_X(x)f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \frac{1}{\sqrt{2\pi}} e^{-y^2/2}$$

$$= \frac{1}{2\pi} e^{-(x^2+y^2)/2}$$

Therefore

$$f_{R,\Theta}(r, \theta) = f_{X,Y}(g_1(r, \theta), g_2(r, \theta)) |J(r, \theta)|$$

$$= f_{X,Y}(r \cos \theta, r \sin \theta) |J(r, \theta)|$$

$$= \frac{1}{2\pi} e^{-r^2/2} r$$

for all $r > 0$ and $0 \leq \theta < 2\pi$.

The partial derivatives of g_1 and g_2 are

$$\frac{\partial g_1}{\partial r} = \cos \theta, \quad \frac{\partial g_1}{\partial \theta} = -r \sin \theta$$

and

$$\frac{\partial g_2}{\partial r} = \sin \theta, \quad \frac{\partial g_2}{\partial \theta} = r \cos \theta$$

Thus the Jacobian of (g_1, g_2) is

$$J(r, \theta) = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r \cos^2 \theta + r \sin^2 \theta = r$$

since $\cos^2 \theta + \sin^2 \theta = 1$.

In conclusion, we obtained that

$$f_{R,\Theta}(r, \theta) = \begin{cases} \frac{1}{2\pi} r e^{-r^2/2} & r > 0, 0 \leq \theta < 2\pi \\ 0 & \text{otherwise} \end{cases}$$

The marginal pdf's are

$$f_R(r) = \begin{cases} r e^{-r^2/2} & r > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$f_\Theta(\theta) = \begin{cases} \frac{1}{2\pi} & 0 \leq \theta < 2\pi \\ 0 & \text{otherwise} \end{cases}$$

Since $f_{R,\Theta}(r, \theta) = f_R(r)f_\Theta(\theta)$, the random variables R and Θ are independent. Also note that Θ is uniformly distributed on $[0, 2\pi)$.
Sum of two independent random variables

Assume X and Y are independent and let $U = X + Y$. We want to find the pdf of U in terms of the pdf's of X and Y.

One way to do this is to calculate the joint pdf $f_{U,V}(u,v)$ of the pair $U = X + Y$, $V = X - Y$, and then find $f_U(u)$ as the marginal of $f_{U,V}(u,v)$.

Instead, we follow a more direct approach:

$$F_U(u) = P(U \leq u) = \int_{x+y \leq u} f_{X,Y}(x,y) \, dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{u-y} f_X(x)f_Y(y) \, dx\,dy$$

Thus

$$f_U(u) = F_U'(u) = \frac{d}{du} \int_{-\infty}^{\infty} \int_{-\infty}^{u-y} f_X(x)f_Y(y) \, dx\,dy$$

$$= \int_{-\infty}^{\infty} \frac{d}{du} \left(\int_{-\infty}^{u-y} f_X(x) \, dx \right) f_Y(y) \, dy$$

$$= \int_{-\infty}^{\infty} f_X(u-y) f_Y(y) \, dy$$

We obtained

$$f_U(u) = \int_{-\infty}^{\infty} f_X(u-y) f_Y(y) \, dy$$

By symmetry, the same proof also implies that

$$f_U(u) = \int_{-\infty}^{\infty} f_X(x) f_Y(u-x) \, dx$$

Remark: The integral

$$\int_{-\infty}^{\infty} f_X(u-y) f_Y(y) \, dy$$

is called the convolution of $f_X(x)$ and $f_Y(y)$ and is denoted by $f_X * f_Y$.

Example: Let X and Y be independent uniform r.v.'s on $[0,1]$. Find the pdf of $U = X + Y$.

Solution: We have $f_U = f_X * f_Y$, where

$$f_X(t) = f_Y(t) = \begin{cases} 1 & 0 \leq t \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Thus

$$f_U(u) = \int_{-\infty}^{\infty} f_X(u-y) f_Y(y) \, dy = \int_{0}^{1} f_X(u-y) \, dy$$

If $u < 0$ or $u > 2$, then $f_U(u) = 0$. For $0 \leq u < 1$ we have

$$\int_{0}^{1} f_X(u-y) \, dy = \int_{0}^{u} dy = u$$

For $1 \leq u \leq 2$,

$$\int_{0}^{1} f_X(u-y) \, dy = \int_{u-1}^{1} dy = 2 - u$$

Putting these together, we obtain

$$f_U(u) = \begin{cases} u & 0 \leq u < 1 \\ 2 - u & 1 \leq u \leq 2 \\ 0 & \text{otherwise} \end{cases}$$

This function is called the triangular pdf.