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Multinomial Distribution

@ Consider an experiment with r possible outcomes such that the
probability of the ith outcome is p;, i = 1,...,r (generalization of a
Bernoulli trial).

@ Repeat the experiment independently n times and let

X,; = # of outcomes of type i in the n trials

@ The random variables (X1, Xs,..., X,.) are said to have a
multinomial distribution with parameters n and (p1,...,pr).

o Note that all the X; take nonnegative integer values and
X1+X2++Xr:n
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Joint pmf of multinomial random variables

o Let xy,...,x, € Z4 such that x1 +---+ 2. =n. Then

P(Xl = xlaXQ =Z2,.. '7XT‘ = xT) = C’npflp§2 o p;t'r
where C,, is the number of sequences of outcomes of length n that
have x; outcomes of type 1, xo outcomes of type 2,..., x,
outcomes of type r.

n

@ Let's use the generalized counting principle: There are (gc1

) ways of
choosing the x; positions for type 1 outcomes. For each such

choice, there are ("_ ') ways of choosing the x5 positions for type 2
outcomes, ... For each choice of the positions of the type 1...r —1
objects there are ("7 7~7*"=1) = 1 ways of choosing the ,

positions for type r outcomes.
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Thus
n\ /n—x nN—=Ty—...— Tp_
X T2 Ly
n!
Toylag! )
= ( ) (multinomial coefficient)
L1,L2y-+.,Lp
We obtain

n
P(X1=x21,Xo0=29,...,X =T, = T1yT2 | yTr
(X1 =21,Xo =22,..., X, ) (1517552,“-,507«)1)1 J R s

for any z1,x9,...,2, € Z4 with 1 + 29+ -+ -+, = n.
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@ Noting that X, = n — le_ll X;,and p, =1— Z::_ll p; we can
equivalently describe the multinomial distribution by the distribution
of (Xl, e ,erl):
PXi=x,...,.Xp_1 =2,_1)
r—1_

n! T Tr—1 r—1 n—y 1 1 x;
= — p .. p - 1 _ - p i=
xll...xr_ll(n_z:::f $1)| 1 r—1 ( Zz 1 z)

forall z1,...,2,—1 € Z4y withzy + - -+ 2,1 < n.

Note: For r = 2 this is the usual way to write the Binomial(n, p)

distribution. In this case p =p; and po =1 —p.
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@ The joint marginal pmfs can be easily obtained from combinatorial
considerations. For {i1,...,ix} C {1,...,7} we want the joint pmf
of (Xi,,...,X;,). Let's use the common label O for all outcomes
not in {i1,...,ix}. Thus we have outcomes i1, ...,i, and O with

probabilities p;,,...,p;, and po =1 —p;; — -+ — Dy,

Then from the second representation of the multinomial pmf:

P()(,1 :xiﬂ"'?Xik :.Z'ik)

| k
n: T g k n—>37_, x;,
= ' ' - pill .. .pikk (1 _ Zj:lpij) J J
X! zzk(n — Zj:l a:ij)!
for all z;,,..., i, € Z4 with 23, +--- +z;, < n.

@ From this we find that the marginal pdf of X, is Binomial(n, p;):

|
& (l_pl)n7x17 .’L'i:O,...,TL

P(X; = i) = zil(n - x,)lp?
i i)
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Gamma Distribution

Definition A continuous r.v. X is said to have a gamma distribution
with parameters r > 0 and A > 0 if its pdf is given by

A " le M if x>0,
fla) =4 )

0 otherwise.

where I'(r) is the gamma function defined for » > 0 by

I(r) :/ y eV dy.
0
Notation: X ~ Gamma(r, \)
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Properties of the gamma function
(1) T(1/2) = /7.
Proof:

ra/2) = / —e Ydy (change of variable y = u?/2)

P(Z>0)=1/2, where Z ~ N(0,1)

_ zf%:ﬁ. 0
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(2) T(r) = (r — YI(r — 1) for r > 1. Moments E(X%): For X ~ Gamma(r,\) and k > 1 an integer,

Proof: E(Xk) _ / 2k <)‘Txrlekm) da
- 0 I(r)
I'(r) = / Yy le TV dy (integration by parts: _ N /OO L PR
; =
u=1y""! dv=e"Ydy) L) Jo
v Y XT(r4k) [ ATHE
1 100 oo o — — / xTJrkflef)\m dx
= [—y e y}o +/ (r—=1)y" “e Ydy L(r) A o L(r+k)
- 0 _ T(r+k)  (r+Ek-1DI(Fr+k-1)
= (r— 1)/ y 2V dy TN L(r)A*
0
(r+k—=10r+k—-2)---rT(r)
= (r—1I(r—1). O - L(r)\k
|+ k-1 +k—=2)-r
Corollary: If r is a positive integer, then I'(r) = (r — 1)! B Ak
Proof: Noting that I'(1) = [“e ¥ dy =1, For k =1 we get | E(X) = % | for k=2, | B(X?) = U577 | so
I'r) = r—1O)Ir—1)=@F—-1)Fr—-2TFr—-2)=... Var(X) = (r+1r (1)2 _|r
= (r=D(r=2)---2-1-T(1) = (r = 1)! . g ' a
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Special Cases Beta function

Let o, 8 > 0 and consider
o If r =1, then f(x) = Ae™™*, >0, so X ~ Exp()\), i.e, X has the
exponential distribution with parameter A. Thus T()(8) = (/ po—lo—e dw) </ yP=lev dy>

0 0

Exp(A) = Gamma(l, \) /OO /OO 2@~ Lyl @) g dy.
o Jo

Use change of variables u = = +y, v = x/(z + y) with inverse

o If r = k/2 for some positive integer k and A = 1/2, then

f@) = UL s gmare g p=w,  y=u—w=(-ou
I'(k/2) The region {z > 0,y > 0} is mapped onto {u > 0,0 < v < 1}. The

This is called the x? (chi-squared) distribution with k degrees of Jacobian of the inverse is
freedom (x3). % 0 v U
J(u,v) = det oy oy | = det ) = —vu—(1—v)u=—-u

Example: ... du v

STAT/MTHE 353: 3 — Special Distributions / STAT/MTHE 353: 3 — Special Distributions




We obtain

INCYINE)

2ol B Lo—(z+y) dady

uotB-lomuyo— a1 - ))5*1 dudv

i
/ ) (u(l —v))P~te™| — u| dudv
a

I
-

/ 1

( utth e du) (/0 ua—1(1v)5—1dv>

T'(a+8)

Define the beta function of two positive arguments o and (3 by

1
B(a, ) :/0 v 11 — )P dv

We have obtained

L(e)T(5)

BB =Tatp)
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Example: Suppose X7 ~ Gamma(ry, A) and Xy ~ Gamma(ra, \) are
independent. Find the pdf of U = X + X5.

Solution:

Conclusion: the family of gamma distributions with given X is closed
under sums of independent random variables.
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@ We have seen that if X; ~ Gamma(ry, A) and X3 ~ Gamma(ra, A)
are independent, then X + X5 ~ Gamma(ry + 2, \).

Inductively, if X1,...,X,, are independent with
X; ~ Gamma(r;, A), then

X144+ X, ~Gamma(ry + -+ 1, A)

e Also, we saw that if Z ~ N(0,1), then Z? ~ Gamma(1/2,1/2) (i.e.,

Z% ~ 7).
o Combining the above gives that if Zy,...,Z, are i.i.d. N(0,1)
random variables, then

’Zf + -+ Z2 ~ Gamma(n/2,1/2) = Xfl‘

This result is often used in statistics.
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Let Z1,...,Z, bei.i.d. random variables with common mean u and
variance 0. The sample mean and sample variance are defined by

" 1

n

3\»*

Example: Show that E(Z) = u and E(5?%) = o2

An important result in statistics is the following:

Assume Z, ..., Zy are i.id. N(0,1). Then
Z~N(0,1/n), (n—=1)8"~xi_,

and Z and S? are independent.
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Before proving the lemma, let’s review a few facts about orthogonal
(linear) transformations on R™.

@ An n x n real matrix A is called orthogonal if AT =AY e,
AAT = AT A = I (the n x n identity matrix).

@ An orthogonal A does not change the norm (length) of its argument:

Y ai=z|? =2z =2" AT Az = (Az)" (Ax) = ||Az|
=1

o If A is orthogonal, then |det A| = 1.

Now let Z = (Z1,...,Z,) have joint pdf f(z). Letting Y = AZ for an
orthogonal A, we have Z = A~'Y . By the transformation formula the
pdf fy (y) of Y is

fr(y) = f(A Y| = f(A'y) = f(ATy).

o
| det(A)]
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Proof of Lemma: The joint pdf of Zy,...,Z, is

n

- STl = () et
f(z)—f(zla---,zn)—il:[lme (\/7) e

Let A be an n x n matrix with first row equal to (1/\/57 e 1/\/ﬁ) and
choose rows 2,...,n in any way so that they have unit length and they
are orthogonal to all other rows. A constructed this way is orthogonal.

The joint pdf of Y = AZ is

fy(y) = f(ATy) = (VLZTT)"(;E Sy

since A” is orthogonal and so ||[ATy|? = |ly|? = 321, v7.

Thus Y1,...,Y, areii.d. N(0,1).
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Proof cont'd: From'Y = AZ, we have

n

1 nZ _
Y= — Zi=——=+/nZ

and

n

Vaeev: = (vE)-vi= (Y 2) —nz
=1

=1

= ... :Z(Zi—Z)Z:(n—l)SQ.

Since Z is a function of Y;, S? is a function of Ya,...,Y,,, we get that Z
and 52 are independent (since Y7, Y3, ...,Y,, are independent).

Since Z = Y;/\/n and Y; ~ N(0,1), we obtain Z ~ N(0,1/n).

Since (n —1)S? =YZ +--- + Y2, we have
(n—1)S? ~ Gamma((n — 1)/2,1/2) = x2_;. O
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Connection with Poisson Process

@ Recall: If X; denotes the time of the first event occurring in a
Poisson process with rate A, then X; ~ Exp()\).

@ The following can be shown: For i =1,2,...,n let X; denote the
time between the occurrence of the (i — 1)th and the ith events in a
Poisson process with rate A. Then the random variables X1,..., X,
are independent and X; ~ Exp(A).

o Let S,, = Xy +---+ X, the time till until the nth event. Since
Exp(\) = Gamma(1, \), we obtain that

’Sn ~ Gamma(n, A). ‘
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Beta Distribution

Definition A continuous r.v. X is said to have a beta distribution with
parameters o > 0 and 8 > 0 if its pdf is given by

1
fz)={ B, f)

0 otherwise.

2 1 —2)ft ifo<z <1,

where the beta function B(a, ) is given by

['(a)L(B)

1
Blag) = [ -ty = g,

Notation: X ~ Beta(a, 3)

STAT/MTHE 353: 3 — Special Distributions

Moments E(X¥): For X ~ Beta(a, 3) and k > 1 an integer,

1
k _ k 1 a— _ B—
EX" = /0 x B(a,ﬁ)x ' —z)f~tdx

— P(a + 5) ! xk+a—1(1 _ I)ﬁ—l da

L(a)T(B) Jo

B(k+ «, )
T(a+ B8) T(k+ a)T'(B)
F(@T(B) Tk + o + )
k+a—-1) -«
(tatB-D(a+h)

Letting k = 1,2 we get | E(X) = ;95| and E(X?) = % , SO
(o + 1o o? af
Var(X) = - -
R T Ea Y e R e L [ R R R
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Examples:

@ For a = 8 =1 we obtain X ~ Uniform(0, 1) having mean 1/2 and
variance 1/12.

@ Recall that the pdf of the kth order statistics X of random
sample X1,..., X, with common cdf F(z) is

n!

fu(@) = mf

(@)F ()" (1 - F(z))" "

If the X; are sampled from Uniform(0, 1), then F(x) = x for
0 <z <1 and we get

fu(z) = W(!nfk)!zk_l(l —z)"k ifo<a<,

0 otherwise.

Thus X () ~ Beta(k,n —k +1).
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The beta distribution is useful as a model for random variables that take

values in a bounded interval, say (a,b).

Example: Let X ~ Beta(w, 3) and let Y = (b — a)X + a. Find the pdf
of Y.

Solution: ...

Example: (Connection with gamma distribution) Assume Xy,...,X,, are
independent with X; ~ Gamma(r;, «). Show that

X;

—=t  ~ Beta(ri,r)
Zj:l X;

where r_; = (Z?_l rj) -7y

Solution: ...

STAT/MTHE 353: 3 — Special Distributions




