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Expectations of Sums of Random Variables

Recall that if X1, . . . , Xn are random variables with finite expectations,

then

E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn)

The Xi can be continuous or discrete or of any other type.

The expectation on the left-hand-side is with with respect to the

joint distribution of X1, . . . , Xn.

The ith expectation on the right-hand-side is with with respect to

the marginal distribution of Xi, i = 1, . . . , n.
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Often we can write a r.v. X as a sum of simpler random variables. Then

E(X) is the sum of the expectation of these simpler random variables.

Example: Consider (X1, . . . , Xr) having multinomial distribution with

parameters n and (p1, . . . , pr). Compute E(Xi), i = 1, . . . , r

Solution: . . .

Example: Let (X1, . . . , Xr) the multivariate hypergeometric distribution

with parameters N and n1, . . . , nr. Compute E(Xi), i = 1, . . . , r

Solution: . . .

Example: (Matching problem) If the integers 1, 2, . . . , n are randomly

permuted, what is the probability that integer i is in the ith position?

What is the expected number of integers in the correct position?

Solution: . . .
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Example: (HW problem in 2010) We have two urns. Initially Urn 1

contains n red balls and Urn 2 contains n blue balls. At each stage of the

experiment we pick a ball from Urn 1 at random, also pick a ball from

Urn 2 at random, and then swap the balls. Let X = # of red balls in

Urn 1 after k stages. Compute E(X) for even k.

Solution: . . .
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Conditional Expectation

Suppose X = (X1, . . . , Xn)T and Y = (Y1, . . . , Ym)T are two

vector random variables defined on the same probability space.

The distributions (joint marginals) of X and Y can be described the

pdfs fX(x) and fY (y) (if both X and Y are continuous) or by the

pmfs pX(x) and pY (y) (if both are discrete).

The joint distribution of the pair (X,Y ) can be described by their

joint pdf fX,Y (x,y) or joint pmf pX,Y (x,y).

The conditional distribution of X given Y = y is described by

either the conditional pdf

fX|Y (x|y) = fX,Y (x,y)

fY (y)

or the conditional pmf

pX|Y (x|y) = pX,Y (x,y)

pY (y)
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Remarks:

(1) In general, X and Y can have di↵erent types of distribution (e.g.,

one is discrete, the other is continuous).

Example: Let n = m = 1 and X = Y + Z, where Y is a

Bernoulli(p) r.v. and Z ⇠ N(0,�2), and Y and Z are independent.

Determine the conditional pdf of X given Y = 0 and Y = 1. Also,

determine the pdf of X.

Solution: . . .

(2) Not all random variables are either discrete or continuous. Mixed

discrete-continuous and even more general distributions are possible,

but they are mostly out of the scope of this course.
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Definitions

(1) The conditional expectation of X given Y = y is the mean

(expectation) of the distribution of X given Y = y and is denoted by

E(X|Y = y).

(2) The conditional variance of X given Y = y is the the variance of the

distribution of X given Y = y and is denoted by Var(X|Y = y).

If both X and Y are discrete,

E(X|Y = y) =
X

x

xpX|Y (x|y)

and Var(X|Y = y) =
X

x

�
x� E(X|Y = y)

�2
pX|Y (x|y)

In case both X and Y are continuous, we have

E(X|Y = y) =

Z 1

�1
xfX|Y (x|y) dx

and

Var(X|Y = y) =

Z 1

�1

�
x� E(X|Y = y)

�2
fX|Y (x|y) dx
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Special case: Assume X and Y are independent. Then (considering the

discrete case)

pX|Y (x|y) = pX(x)

so that for all y,

E(X|Y = y) =
X

x

xpX|Y (x|y) =
X

x

xpX(x) = E(X)

A similar argument shows E(X|Y = y) = E(X) if X and Y are

independent continuous random variables.
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Notation: Let g(y) = E(X|Y = y). We define the random variable

E(X|Y ) by setting

E(X|Y ) = g(Y )

Similarly, letting h(y) = Var(X|Y = y), the random variable Var(X|Y )

is defined by

Var(X|Y ) = h(Y )

For example, if X and Y are independent, then E(X|Y = y) = E(X)

(constant function), so

E(X|Y ) = E(X)
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The following are important properties of conditional expectation. We

don’t prove them formally, but they should be intuitively clear.

Properties

(i) (Linearity of conditional expectation) If X1 and X2 are random

variables with finite expectations, then for all a, b 2 R,

E(aX1 + bX2|Y ) = aE(X1|Y ) + bE(X2|Y )

(ii) If g : R ! R is a function such that E[g(Y )] is finite, then

E
⇥
g(Y )|Y

⇤
= g(Y )

and if E
⇥
g(Y )X

⇤
is finite, then

E
⇥
g(Y )X|Y

⇤
= g(Y )E(X|Y )
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Theorem 1 (Law of total expectation)

E(X) = E
⇥
E(X|Y )

⇤

Proof: Assume both X and Y are discrete. Then

E
⇥
E(X|Y )

⇤
=

X

y

E(X|Y = y)pY (y) =
X

y

✓X

x

xpX|Y (x|y)
◆
pY (y)

=
X

y

✓X

x

x
pX,Y (x, y)

pY (y)

◆
pY (y) =

X

y

X

x

xpX,Y (x, y)

=
X

x

xpX(x) = E(X) ⇤

Example: Expected value of geometric distribution. . .
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Lemma 2 (Variance formula)

Var(X) = E
⇥
Var(X|Y )

⇤
+Var

⇥
E(X|Y )

⇤

Proof: Since Var(X|Y = y) is the variance of the conditional distribution

of X given Y = y,

Var(X|Y ) = E[X2|Y ]�
�
E[X|Y ]

�2

Taking expectation (with respect to Y ),

E
⇥
Var(X|Y )

⇤
= E

�
E[X2|Y ])�E

⇥�
E[X|Y ]

�2⇤
= E(X2)�E

⇥�
E[X|Y ]

�2⇤

On the other hand,

Var
�
E[X|Y ]

�
= E

⇥�
E[X|Y ]

�2⇤�
�
E
⇥
E(X|Y )

⇤�2
= E

⇥�
E[X|Y ]

�2⇤�
�
E(X)

�2

so

Var(X) = E(X2)�
�
E(X)

�2
= E

⇥
Var(X|Y )

⇤
+Var

⇥
E(X|Y )

⇤
⇤
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Remarks:

(1) Let A be an event and X the indicator of A:

X =

8
<

:
1 if A occurs

0 if Ac occurs

Then E(X) = P (A). Assuming Y is a discrete r.v., we have

E(X|Y = y) = P (A|Y = y) and the law of total expectation states

P (A) = E(X) =
X

y

E(X|Y = y)pY (y) =
X

y

P (A|Y = y)pY (y)

which is the law of total probability.

For continuous Y we have

P (A) =

Z 1

�1
E(X|Y = y)fY (y) dy =

Z 1

�1
P (A|Y = y)fY (y) dy
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(2) The law of total expectation says that we can compute the mean of

a distribution by conditioning on another random variable. This

distribution can be a conditional distribution. For example, for r.v.’s

X, Y , and Z,

E(X|Y = y) = E
⇥
E(X|Y = y, Z)|Y = y

⇤

so that

E(X|Y ) = E
⇥
E(X|Y, Z)|Y

⇤

For example, if Z is discrete,

E(X|Y = y) =
X

z

E(X|Y = y, Z = z)pZ|Y (z|y)

=
X

z

E(X|Y = y, Z = z)P (Z = z|Y = y)

Exercise: Prove the above statement if X, Y , and Z are discrete.
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Example: Repeatedly flip a biased coin which comes up heads with

probability p. Let X denote the number of flips until 2 consecutive heads

occur. Find E(X).

Solution:

Example: (Simplex algorithm) There are n vertices (points) that are

ranked from best to worst. Start from point j and at each step, jump to

one of the better points at random (with equal probability). What is the

expected number of steps to reach the best point?

Solution:

STAT/MTHE 353: 4 - More on Expectations 15 / 37

Minimum mean square error (MMSE) estimation

Suppose a r.v. Y is observed and based on its value we want to “guess”

the value of another r.v. X. Formally, we want to use a function g(Y ) of

Y to estimate the unobserved X in the sense of minimizing the mean

square error

E
⇥
(X � g(Y ))2

⇤

It turns out that g⇤(Y ) = E(X|Y ) is the optimal choice.

Theorem 3

Suppose X has finite variance. Then for g⇤(Y ) = E(X|Y ) and any

function g

E
⇥
(X � g(Y ))2

⇤
� E

⇥
(X � g⇤(Y ))2

⇤
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Proof: Use the properties of conditional expectation:

E
⇥
(X � g(Y ))2|Y

⇤

= E
⇥
(X � g⇤(Y ) + g⇤(Y )� g(Y ))2|Y

⇤

= E
⇥
(X � g⇤(Y ))2 + (g⇤(Y )� g(Y ))2 � 2(X � g⇤(Y ))(g⇤(Y )� g(Y ))|Y

⇤

= E
⇥
(X � g⇤(Y ))2|Y

⇤
+ E

⇥
(g⇤(Y )� g(Y ))2|Y

⇤

� 2E
⇥
(X � g⇤(Y ))(g⇤(Y )� g(Y ))|Y

⇤

= E
⇥
(X � g⇤(Y ))2|Y

⇤
+ (g⇤(Y )� g(Y ))2

� 2(g⇤(Y )� g(Y ))E
⇥
X � g⇤(Y )|Y

⇤

= E
⇥
(X � g⇤(Y ))2|Y

⇤
+ (g⇤(Y )� g(Y ))2

� 2(g⇤(Y )� g(Y ))
⇥
E(X|Y )� g⇤(Y )

⇤
| {z }

=0

= E
⇥
(X � g⇤(Y ))2|Y

⇤
+ (g⇤(Y )� g(Y ))2
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Proof cont’d

Thus

E
⇥
(X � g(Y ))2|Y

⇤
= E

⇥
(X � g⇤(Y ))2|Y

⇤
+ (g⇤(Y )� g(Y ))2

Take expectations on both sides and use the law of total expectation to

obtain

E
⇥
(X � g(Y ))2

⇤
= E

⇥
(X � g⇤(Y ))2

⇤
+ E

⇥
g⇤(Y )� g(Y ))2

⇤

Since
�
g⇤(Y )� g(Y )

�2 � 0, this implies

E
⇥
(X � g(Y ))2

⇤
� E

⇥
(X � g⇤(Y ))2

⇤
⇤
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Remark: Note that since g⇤(y) = E(X|Y = y), we have

E
⇥
Var(X|Y )

⇤
= E

⇥
(X � g⇤(Y ))2

⇤

i.e., E
⇥
Var(X|Y )

⇤
is the mean square error of the MMSE estimate of X

given Y .

Example: Suppose X ⇠ N(0,�2
X) and Z ⇠ N(0,�2

Z), where X and Z

are independent. Here X represents a signal sent from a remote location

which is corrupted by noise Z so that the received signal is Y = X + Z.

What is the MMSE estimate of X given Y = y?
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Random Sums

Theorem 4 (Wald’s equation)

Let X1, X2 . . . be i.i.d. random variables with mean µ. Let N be r.v.

with values in {1, 2, . . .} that is independent of the Xi’s and has finite

mean E(N). Define X =
PN

i=1 Xi. Then

E(X) = E(N)µ

Proof:

E(X|N = n) = E(X1 + · · ·+XN |N = n)

= E(X1 + · · ·+Xn|N = n)

= E(X1|N = n) + · · ·+ E(Xn|N = n)

(linearity of expectation)

= E(X1) + · · ·+ E(Xn) (N and Xi are independent)

= nµ
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Proof cont’d: We obtained E(X|N = n) = nµ for all n = 1, 2, . . ., i.e,

E(X|N) = Nµ. By the law of total expectation

E(X) = E
⇥
E(X|N)

⇤
= E(Nµ) = E(N)µ ⇤

Example: (Branching Process) Suppose a population evolves in

generations starting from a single individual (generation 0). Each

individual of the ith generation produces a random number of o↵springs;

the collection of all o↵springs by generation i individuals forms generation

i+ 1. The number of o↵springs born to distinct individuals are

independent random variables with mean µ. Let Xn be the number of

individuals in the nth generation. Find E(Xn).
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Covariance and Correlation

Covariance

Definition Let X and Y be two random variables with finite variance.

Their covariance is defined by

Cov(X,Y ) = E
⇥
(X � E(X))(Y � E(Y ))

⇤

Properties:

(1)
Cov(X,Y ) = E(XY )� E

⇥
E(X)Y

⇤
� E

⇥
XE(Y )

⇤
+ E

⇥
E(X)E(Y )

⇤

= E(XY )� 2E(X)E(Y ) + E(X)E(Y )

= E(XY )� E(X)E(Y )

The formula Cov(X,Y ) = E(XY )� E(X)E(Y ) is often useful in

computations.
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(2) Cov(X,Y ) = Cov(Y,X).

(3) If X = Y we obtain

Cov(X,Y ) = E
⇥
(X � E(X))2)

⇤
= Var(X)

(4) For any constants a, b, c and d,

Cov(aX + b, cY + d)

= E
⇥
(aX + b� E(aX + b))(cY + d� E(cY + d))

⇤

= E
⇥
a(X � E(X))c(Y � E(Y ))

⇤

= acE
⇥
(X � E(X))(Y � E(Y ))

⇤

= acCov(X,Y )
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(5) If X and Y are independent, then Cov(X,Y ) = 0.

Proof: By independence, E(XY ) = E(X)E(Y ), so

Cov(X,Y ) = E(XY )� E(X)E(Y ) = 0

Definition Let X1, . . . , Xn be random variables with finite variances.

The covariance matrix of the vector X = (X1, . . . , Xn)T is the n⇥ n

matrix Cov(X) whose (i, j)th entry is Cov(Xi, Xj).

Remarks:

The ith diagonal entry of Cov(X) is Var(Xi), i = 1, . . . , n

Cov(X) is a symmetric matrix since Cov(Xi, Xj) = Cov(Xj , Xi)

for all i and j.
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Some properties of covariance are easier to derive using a matrix

formalism.

Let V = {Yij ; i = 1, . . . ,m, j = 1, . . . , n} be an m⇥ n matrix of

random variables having finite expectations. We define E(V ) by

taking expectations componentwise:

E(V ) = E

2

66664

Y11 . . . Y1n

Y21 . . . Y2n

...
. . .

...

Ym1 . . . Ymn

3

77775
=

2

66664

E(Y11) . . . E(Y1n)

E(Y21) . . . E(Y2n)
...

. . .
...

E(Ym1) . . . E(Ymn)

3

77775

Now notice that the n⇥ n matrix (X � E(X))(X � E(X))T has

(Xi � E(Xi))(Xj � E(Xj)) in its (i, j)th entry. Thus

Cov(X) = E
⇥
(X � E(X))(X � E(X))T

⇤
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Lemma 5

Let A be an m⇥ n real matrix and define Y = AX (an m-dimensional

random vector). Then

Cov(Y ) = ACov(X)AT

Proof: First note that by the linearity of expectation,

E(Y ) = E(AX) = AE(X).

Thus

Cov(Y ) = E
⇥
(Y � E(Y ))(Y � E(Y ))T

⇤

= E
⇥
(AX �AE(X))(AX �AE(X))T

⇤

= E
⇥
(A(X � E(X)))(A(X � E(X)))T

⇤

= E
⇥
A(X � E(X))(X � E(X)))TAT ⇤

= AE
⇥
(X � E(X))(X � E(X)))T

⇤
AT

= ACov(X)AT ⇤
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For any m-vector c = (c1, . . . , cm)T we also have

Cov(Y + c) = Cov(Y )

since Cov(Yi + ci, Yj + cj) = Cov(Yi, Yj).

Thus

Cov(AX + c) = ACov(X)AT

Let m = 1 so that c = c is a scalar and A is and 1⇥ n matrix, i.e., A is

a row vector A = aT = (a1, . . . , an). Then

Cov(aTX + c) = Cov

✓ nX

i=1

aiXi + c

◆
= Var

✓ nX

i=1

aiXi + c

◆
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On the other hand,

Cov(aTX + c) = aT Cov(X)a =
nX

i=1

nX

j=1

aiaj Cov(Xi, Xj)

=
nX

i=1

a2i Cov(Xi, Xi) + 2
X

i<j

aiaj Cov(Xi, Xj)

=
nX

i=1

a2i Var(Xi) + 2
X

i<j

aiaj Cov(Xi, Xj)

Hence

Var

✓ nX

i=1

aiXi + c

◆
=

nX

i=1

a2i Var(Xi) + 2
X

i<j

aiaj Cov(Xi, Xj)

Note that if X1, . . . , Xn are independent, then Cov(Xi, Xj) = 0 for

i 6= j, and we obtain

Var

✓ nX

i=1

aiXi + c

◆
=

nX

i=1

a2i Var(Xi)
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More generally, let X = (X1, . . . , Xn)T and Y = (Y1, . . . , Ym)T and let

Cov(X,Y ) be the n⇥m matrix with (i, j)th entry Cov(Xi, Yj). Note

that

Cov(X,Y ) = E
⇥
(X � E(X))(Y � E(Y ))T

⇤

If A is a k ⇥ n matrix, B is an l ⇥m matrix, c is a k-vector and d is an

l-vector, then

Cov(AX + c,BY + d)

= E
⇥
(AX + c� E(AX + c))(BY + d� E(BY + d))T

⇤

= AE
⇥
(X � E(X))(Y � E(Y ))T

⇤
BT

We obtain

Cov(AX + c,BY + d) = ACov(X,Y )BT
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We can now prove the following important property of covariance:

Lemma 6

For any constants a1, . . . , an and b1, . . . , bm,

Cov

✓ nX

i=1

aiXi,
mX

j=1

bjYj

◆
=

nX

i=1

mX

j=1

aibj Cov(Xi, Yj)

i.e., Cov(X,Y ) is bilinear.

Proof: Let k = l = 1 and A = aT = (a1, . . . , an) and

B = bT = (b1, . . . , bm). Then we have

Cov

✓ nX

i=1

aiXi,
mX

j=1

bjYj

◆
= Cov(aTX, bTY ) = Cov(AX,BY )

= ACov(X,Y )BT = aT Cov(X,Y )b

=
nX

i=1

mX

j=1

aibj Cov(Xi, Yj) ⇤

STAT/MTHE 353: 4 - More on Expectations 30 / 37

The following property of covariance is of fundamental importance:

Lemma 7

|Cov(X,Y )| 
p
Var(X)Var(Y )

Proof: First we prove the Cauchy-Schwarz inequality for random variables

U and V with finite variances. Let � 2 R, then

0  E
⇥
(U � �V )2

⇤
= E(U2 � 2�UV + �2V 2)

= E(U2)� 2�E(UV ) + �2E(V 2)

This is a quadratic polynomial in � which cannot have two distinct real

roots.
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Proof cont’d: Thus its discriminant cannot be positive:

4
⇥
E(UV )

⇤2 � 4E(U2)E(V 2)  0

so we obtain

[E(UV )]2  E(U2)E(V 2)

Use this with U = X � E(X) and V = Y � E(Y ) to get

|Cov(X,Y )| =
��E

⇥
(X � E(X))(Y � E(Y ))

⇤��


q
E
⇥
(X � E(X))2

⇤
E
⇥
(Y � E(Y ))2

⇤

=
p
Var(X)Var(Y ) ⇤
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Correlation

Recall that Cov(aX, bY ) = abCov(X,Y ). This is an undesirable

property if we want to use Cov(X,Y ) as a measure of association

between X and Y . A proper normalization will solve this problem:

Definition The correlation coe�cient between X and Y having nonzero

variances is defined by

⇢(X,Y ) =
Cov(X,Y )p
Var(X)Var(Y )

Remarks:

Since Var(aX + b) = a2 Var(X),

⇢(aX + b, aY + d) = ⇢(X,Y )
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Letting µX = E(X), µY = E(Y ), �2
X = Var(X), �2

Y = Var(Y ), we

have

⇢(X,Y ) =
Cov(X,Y )

�X�Y
=

Cov(X � µX , Y � µY )

�X�Y

= Cov

✓
X � µX

�X
,
Y � µY

�Y

◆

Thus ⇢(X,Y ) is the covariance between the standardized versions of

X and Y .

If X and Y are independent, then Cov(X,Y ) = 0, so ⇢(X,Y ) = 0.

On the other hand, ⇢(X,Y ) = 0 does not imply that X and Y are

independent.

Remark: If ⇢(X,Y ) = 0 we say that X and Y are uncorrelated.

Example: Find random variables X and Y that are uncorrelated but

not independent.

Example: Covariance and correlation for multinomial random variables. . .
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Theorem 8

The correlation always satisfies

|⇢(X,Y )|  1

Moreover, |⇢(X,Y )| = 1 if and only if Y = aX + b for some constants a

and b (a 6= 0), i.e., Y is an a�ne function of X.

Proof: We know that |Cov(X,Y )| 
p
Var(X)Var(Y ), so

|⇢(X,Y )|  1 always holds.

Let’s assume now that Y = aX + b, where a 6= 0. Then

Cov(X,Y ) = Cov(X, aX+b) = Cov(X, aX) = aCov(X,X) = aVar(X)

so

⇢(X,Y ) =
aVar(X)p

Var(X)a2 Var(X)
=

ap
a2

= ±1
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Proof cont’d:

Conversely, suppose that ⇢(X,Y ) = 1. Then

Var

✓
X

�X
� Y

�Y

◆
= Cov

✓
X

�X
� Y

�Y
,
X

�X
� Y

�Y

◆

= Var

✓
X

�X

◆
+Var

✓
Y

�Y

◆
� 2Cov

✓
X

�X
,
Y

�Y

◆

=
Var(X)

�2
X

+
Var(Y )

�2
Y

� 2
Cov(X,Y )

�X�Y

= 1 + 1� 2 = 0

This means that
X

�X
� Y

�Y
= c for some constant c, so

Y =
�Y

�X
X � �Y c

If ⇢(X,Y ) = �1, consider Var
�

X
�X

+ Y
�Y

�
and use the same proof ⇤

Remark: The previous theorem implies that correlation can be thought

of as a measure of linear association (linear dependence) between X and

Y . Recall the multinomial example. . .
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Example: (Linear MMSE estimation) Let X and Y are random variables

with zero means and finite variances �2
X > 0 and �2

Y > 0. Suppose we

want to estimate X in the MMSE sense using a linear function of Y ; i.e.,

we are looking for a 2 R minimizing

E
⇥
(X � aY )2

⇤

Find the minimizing a and determine the resulting minimum mean square

error. Relate the results to ⇢(X,Y ).

Solution: . . .
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