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Moment Generating Function

Definition Let X = (X1, . . . , Xn)T be a random vector and

t = (t1, . . . , tn)T 2 Rn
. The moment generating function (MGF) is

defined by

MX(t) = E
�
et

TX
�

for all t for which the expectation exists (i.e., finite).

Remarks:

MX(t) = E
�
e
Pn

i=1 tiXi
�

For 0 = (0, . . . , 0)T , we have MX(0) = 1.

If X is a discrete random variable with finitely many values, then

MX(t) = E
�
et

TX
�
is always finite for all t 2 Rn

.

We will always assume that the distribution of X is such that

MX(t) is finite for all t 2 (�t0, t0)n for some t0 > 0.
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The single most important property of the MGF is that is uniquely

determines the distribution of a random vector:

Theorem 1

Assume MX(t) and MY (t) are the MGFs of the random vectors X and

Y and such that MX(t) = MY (t) for all t 2 (�t0, t0)n. Then

FX(z) = FY (z) for all z 2 Rn

where FX and FY are the joint cdfs of X and Y .

Remarks:

FX(z) = FY (z) for all z 2 Rn
clearly implies MX(t) = MY (t).

Thus MX(t) = MY (t) () FX(z) = FY (z)

Most often we will use the theorem for random variables instead of

random vectors. In this case, MX(t) = MY (t) for all t 2 (�t0, t0)

implies FX(z) = FY (z) for all z 2 R.
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Connection with moments

Let k1, . . . , kn be nonnegative integers and k = k1 + · · ·+ kn. Then

@k

@tk1
1 · · · @tkn

n

MX(t) =
@k

@tk1
1 · · · @tkn

n

E
�
et1X1+···+tnXn

�

= E

✓
@k

@tk1
1 · · · @tkn

n

et1X1+···+tnXn

◆

= E
�
Xk1

1 · · ·Xkn
n

�
et1X1+···+tnXn

��

Setting t = 0 = (0, . . . , 0)T , we get

@k

@tk1
1 · · · @tkn

n

MX(t)
��
t=0

= E
�
Xk1

1 · · ·Xkn
n

�

For a (scalar) random variable X we obtain the kth moment of X:

dk

dtk
MX(t)

��
t=0

= E
�
Xk

�
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Theorem 2

Assume X1, . . . ,Xm are independent random vectors in Rn and let

X = X1 + · · ·+Xm. Then

MX(t) =
mY

i=1

MXi(t)

Proof:

MX(t) = E
�
et

TX
�
= E

�
et

T (X1+···+Xm)
�

= E
�
et

TX1 · · · et
TXm

�

= E
�
et

TX1
�
· · ·E

�
et

TXm
�

= MX1(t) · · ·MXm(t) ⇤

Note: This theorem gives us a powerful tool for determining the

distribution of the sum of independent random variables.
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Example: MGF for X ⇠ Gamma(r,�) and X1 + · · ·+Xm where the Xi

are independent and Xi ⇠ Gamma(ri,�).

Example: MGF for X ⇠ Poisson(�) and X1 + · · ·+Xm where the Xi

are independent and Xi ⇠ Gamma(�i). Also, use the MGF to find

E(X), E(X2), and Var(X).
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Theorem 3

Assume X is a random vector in Rn, A is an m⇥ n real matrix and

b 2 Rm. Then the MGF of Y = AX + b is given at t 2 Rm by

MY (t) = et
T bMX(AT t)

Proof:

MY (t) = E
�
et

TY
�
= E

�
et

T (AX+b)
�

= et
T bE

�
et

TAX
�
= et

T bE
�
e(A

T t)TX
�

= et
T bMX(AT t) ⇤

Note: In the scalar case Y = aX + b we obtain

MY (t) = etbMX(at)
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Applications to Normal Distribution

Let X ⇠ N(0, 1). Then

MX(t) = E(etX) =

Z 1

�1
etx

1p
2⇡

e�x2/2 dx

=

Z 1

�1

1p
2⇡

e�
1
2 (x

2�2tx) dx =

Z 1

�1

1p
2⇡

e�
1
2

⇥
(x�t)2�t2

⇤
dx

= et
2/2

Z 1

�1

1p
2⇡

e�
1
2 (x�t)2

| {z }
N(t,1) pdf

dx

= et
2/2

We obtain that for all t 2 R

MX(t) = et
2/2
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Moments of a standard normal random variable

Recall the power series expansion ez =
P1

k=0
zk

k! valid for all z 2 R.
Apply this to z = tX

MX(t) = E(etX) = E

✓ 1X

k=0

(tX)k

k!

◆

=
1X

k=0

E
⇥
(tX)k

⇤

k!
=

1X

k=0

E
�
Xk

�

k!
tk

and to z = t2/2

MX(t) = et
2/2 =

1X

i=0

�
t2/2

�i

i!

Matching the coe�cient of tk, for k = 1, 2, . . . we obtain

E(Xk) =

8
><

>:

k!

2k/2(k/2)!
, k even,

0, k odd.
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Sum of independent normal random variables

Recall that if X ⇠ N(0, 1) and Y = �X + µ, where � > 0, then

Y ⇠ N(µ,�2). Thus the MGF of a N(µ,�2) random variable is

MY (t) = etµMX(�t) = etµe(�t)
2/2

= etµ+t2�2/2

Let X1, . . . , Xm be independent r.v.’s with Xi ⇠ N(µi,�2
i ) and set

X = X1 + · · ·+Xm. Then

MX(t) =
mY

i=1

MXi(t) =
mY

i=1

etµi+t2�2
i /2 = et

�Pm
i=1 µi

�
+
�Pm

i=1 �2
i

�
t2/2

This implies

X ⇠ N

✓ mX

i=1

µi,
mX

i=1

�2
i

◆

i.e., X1 + · · ·+Xm is normal with mean µX =
Pm

i=1 µi and

variance �2
X =

Pm
i=1 �

2
i .
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Multivariate Normal Distributions

Linear Algebra Review

Recall that an n⇥ n real matrix C is called nonnegative definite if it

is symmetric and

xTCx � 0 for all x 2 Rn

and positive definite if it is symmetric and

xTCx > 0 for all x 2 Rn
such that x 6= 0

Let A be an arbitrary n⇥ n real matrix. Then C = ATA is

nonnegative definite. If A is nonsingular (invertible), then C is

positive definite.

Proof: ATA is symmetric since (ATA)T = (AT )(AT )T = ATA.

Thus it is nonnegative definite since

xT (ATA)x = xTATAx = (Ax)T (Ax) = kAxk2 � 0 ⇤
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For any nonnegative definite n⇥ n matrix C the following hold:

(1) C has n nonnegative eigenvalues �1, . . . ,�n (counting multiplicities)

and corresponding n orthogonal unit-length eigenvectors b1, . . . , bn:

Cbi = �ibi, i = 1, . . . , n

where bTi bi = 1, i = 1, . . . , n and bTi bj = 0 if i 6= j.

(2) (Spectral decomposition) C can be written as

C = BDBT

where D = diag(�1, . . . ,�n) is the diagonal matrix of the

eigenvalues of C, and B is the orthogonal matrix whose ith column

is bi, i.e., B = [b1 . . . bn].

(3) C is positive definite () C is nonsingular () all the eigenvalues

�i are positive
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(4) C has a unique nonnegative definite square root C1/2
, i.e., there

exists a unique nonnegative definite A such that

C = AA

Proof: We only prove the existence of A. Let

D1/2 = diag(�1/2
1 , . . . ,�1/2

n ) and note that D1/2D1/2 = D. Let

A = BD1/2BT
. Then A is nonnegative definite and

A2 = AA = (BD1/2BT )(BD1/2BT )

= BD1/2BTBD1/2BT = BD1/2D1/2BT

= C ⇤

Remarks:

If C is positive definite, then so is A.

If we don’t require that A be nonnegative definite, then in

general there are infinitely many solutions A for AAT = C.
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Lemma 4

If ⌃ is the covariance matrix of some random vector

X = (X1, . . . , Xn)T , then it is nonnegative definite.

Proof: We know that ⌃ = Cov(X) is symmetric. Let b 2 Rn
be

arbitrary. Then

bT⌃b = bT Cov(X)b = Cov(bTX) = Var(bTX) � 0

so ⌃ is nonnegative definite

Remark: It can be shown that an n⇥ n matrix ⌃ is nonnegative definite

if and only if there exists a random vector X = (X1, . . . , Xn)T such that

Cov(X) = ⌃.

STAT/MTHE 353: 5 – MGF & Multivariate Normal Distribution 14 / 34

Defining the Multivariate Normal Distribution

Let Z1, . . . , Zn be independent r.v.’s with Zi ⇠ N(0, 1). The

multivariate MGF of Z = (Z1, . . . , Zn)T is

MZ(t) = E
�
et

TZ
�
= E

�
e
Pn

i=1 tiZi
�
=

nY

i=1

E
�
etiZi

�

=
nY

i=1

et
2
i /2 = e

Pn
i=1 t2i /2 = e

1
2 t

Tt

Now let µ 2 Rn
and A an n⇥ n real matrix. Then the MGF of

X = AZ + µ is

MX(t) = et
TµMZ(A

T t) = et
Tµe

1
2 (A

T t)T (AT t)

= et
Tµe

1
2 t

TAAT t = et
Tµ+ 1

2 t
T⌃t

where ⌃ = AAT
. Note that ⌃ is nonnegative definite.
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Definition Let µ 2 Rn
and let ⌃ be an n⇥ n nonnegative definite

matrix. A random vector X = (X1, . . . , Xn) is said to have a

multivariate normal distribution with parameters µ and ⌃ if its

multivariate MGF is

MX(t) = et
Tµ+ 1

2 t
T⌃t

Notation: X ⇠ N(µ,⌃).

Remarks:

If Z = (Z1, . . . , Zn)T with Zi ⇠ N(0, 1), i = 1, . . . , n, then

Z ⇠ N(0, I), where I is the n⇥ n identity matrix.

We saw that if Z ⇠ N(0, I), then X = AZ + µ ⇠ N(µ,⌃), where

⌃ = AAT
. One can show the following:

X ⇠ N(µ,⌃) if and only if X = AZ + µ for a random n-vector

Z ⇠ N(0, I) and some n⇥ n matrix A with ⌃ = AAT
.
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Mean and covariance for multivariate normal distribution

Consider first Z ⇠ N(0, I), i.e., Z = (Z1, . . . , Zn)T , where the Zi are

independent N(0, 1) random variables. Then

E(Z) =
�
E(Z1), . . . , E(Zn)

�T
= (0, · · · , 0)T

and

E
�
(Zi � E(Zi))(Zj � E(Zj))

�
= E(ZiZj) =

8
<

:
1 if i = j,

0 if i 6= j

Thus

E(Z) = 0, Cov(Z) = I
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If X ⇠ N(µ,⌃), then X = AZ + µ for a random n-vector

Z ⇠ N(0, I) and some n⇥ n matrix A with ⌃ = AAT
.

We have

E(AZ + µ) = AE(Z) + µ = µ

Also,

Cov(AZ + µ) = Cov(AZ) = ACov(Z)AT = AAT = ⌃

Thus

E(X) = µ, Cov(X) = ⌃
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Joint pdf for multivariate normal distribution

Lemma 5

If a random vector X = (X1, . . . , Xn)T has covariance matrix ⌃ that is

not of full rank (i.e., singular), then X does not have a joint pdf.

Proof sketch: If ⌃ is singular, then there exists b 2 Rn
such that b 6= 0

and ⌃b = 0. Consider the random variable bTX =
Pn

i=1 biXi:

Var(bTX) = Cov(bTX) = bT Cov(X)b = bT⌃b = 0

Therefore P (bTX = c) = 1 for some constant c. If X had a joint pdf

f(x), then for B = {x : bTx = c} we should have

1 = P (bTX = c) = P (X 2 B) =

Z
· · ·

Z

B

f(x1, . . . , xn) dx1 · · · dxn

But this is impossible since B is an (n� 1)-dimensional hyperplane

whose n-dimensional volume is zero, so the integral must be zero. ⇤
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Theorem 6

If X = (X1, . . . , Xn)T ⇠ N(µ,⌃), where ⌃ is nonsingular, then it has a

joint pdf given by

fX(x) =
1p

(2⇡)n det⌃
e�

1
2 (x�µ)T⌃�1(x�µ), x 2 Rn

Proof: We know that X = AZ + µ where

Z = (Z1, . . . , Zn)T ⇠ N(0, I) and A is an n⇥ n matrix such that

AAT = ⌃. Since ⌃ is nonsingular, A must be nonsingular with inverse

A�1
. Thus the mapping

h(z) = Az + µ

is invertible with inverse g(x) = A�1(x� µ) whose Jacobian is

Jg(x) = detA�1

By the multivariate transformation theorem

fX(x) = fZ(g(x))|Jg(x)| = fZ
�
A�1(x� µ)

�
| detA�1|
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Proof cont’d: Since Z = (Z1, . . . , Zn)T , where the Zi are independent

N(0, 1) random variables, we have

fZ(z) =
nY

i=1

✓
1p
2⇡

◆
e�z2

i /2 =
1p
(2⇡)n

e�
1
2

Pn
i=1 z2

i =
1p
(2⇡)n

e�
1
2z

Tz

so we get

fX(x) = fZ
�
A�1(x� µ)

�
| detA�1|

=
1p
(2⇡)n

e�
1
2 (A

�1(x�µ))T (A�1(x�µ))| detA�1|

=
1p
(2⇡)n

e�
1
2 (x�µ)T (A�1)TA�1(x�µ)| detA�1|

=
1p

(2⇡)n det⌃
e�

1
2 (x�µ)T⌃�1(x�µ)

since | detA�1| = 1p
det⌃

and (A�1)TA�1 = ⌃�1
(exercise!) ⇤
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Special case: bivariate normal

For n = 2 we have

µ =

"
µ1

µ1

#
and ⌃ =

"
�2
1 ⇢�1�2

⇢�1�2 �2
2

#

where µi = E(Xi), �2
i = Var(Xi), i = 1, 2, and

⇢ = ⇢(X1, X2) =
Cov(X1, X2)

�1�2

Thus the bivariate normal distribution is determined by five scalar

parameters µ1, µ2, �2
1 , �

2
2 , and ⇢.

⌃ is positive definite () ⌃ is invertible () det⌃ > 0:

det⌃ = (1� ⇢2)�2
1�

2
2 > 0 () |⇢| < 1 and �2

1�
2
2 > 0

so a bivariate normal random variable (X1, X2) has a pdf if and only if

the components X1 and X2 have positive variances and |⇢| < 1.
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We have

⌃�1 =

"
�2
1 ⇢�1�2

⇢�1�2 �2
2

#�1

=
1

det⌃

"
�2
2 �⇢�1�2

�⇢�1�2 �2
1

#

and

(x� µ)T⌃�1(x� µ)

=
h
x1 � µ1, x2 � µ1

i 1

(1� ⇢2)�2
1�

2
2

"
�2
2 �⇢�1�2

�⇢�1�2 �2
1

#"
x1 � µ1

x2 � µ1

#

=
1

(1� ⇢2)�2
1�

2
2

h
x1 � µ1, x2 � µ1

i "�2
2(x1 � µ1)� ⇢�1�2(x2 � µ2)

�2
1(x2 � µ2)� ⇢�1�2(x1 � µ1)

#

=
1

(1� ⇢2)�2
1�

2
2

�
�2
2(x1 � µ1)

2 � 2⇢�1�2(x1 � µ1)(x2 � µ2) + �2
1(x2 � µ2)

2
�

=
1

(1� ⇢2)

✓
(x1 � µ1)2

�2
1

+
(x2 � µ2)2

�2
2

� 2⇢(x1 � µ1)(x2 � µ2)

�1�2

◆
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Thus the joint pdf of (X1, X2)T ⇠ N(µ,⌃) is

f(x1, x2) =
1

2⇡�1�2

p
1� ⇢2

e
1

2(1�⇢2)

�
(x1�µ1)2

�2
1

+
(x2�µ2)2

�2
2

� 2⇢(x1�µ1)(x2�µ2)
�1�2

�

Remark: If ⇢ = 0, then

f(x1, x2) =
1

2⇡�1�2
e

1
2

�
(x1�µ1)2

�2
1

+
(x2�µ2)2

�2
2

�

=
1

�1

p
2⇡

e
(x1�µ1)2

2�2
1 · 1

�2

p
2⇡

e
(x2�µ2)2

2�2
2

= fX1(x1)fX2(x2)

Therefore X1 and X2 are independent. It is also easy to see that

f(x1, x2) = fX1(x1)fX2(x2) for all x1 and x2 implies ⇢ = 0. Thus we

obtain

Two jointly normal random variables X1 and X2 are independent if and

only if they are uncorrelated.
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In general, the following important facts can be proved using the

multivariate MGF:

(i) If X = (X1, . . . , Xn)T ⇠ N(µ,⌃), then X1, X2, . . . Xn are

independent if and only if they are uncorrelated, i.e.,

Cov(Xi, Xj) = 0 if i 6= j, i.e., ⌃ is a diagonal matrix.

(ii) Assume X = (X1, . . . , Xn)T ⇠ N(µ,⌃) and let

X1 = (X1, . . . , Xk)
T , X2 = (Xk+1, . . . , Xn)

T

Then X1 and X2 are independent if and only if

Cov(X1,X2) = 0k⇥(n�k), the k ⇥ (n� k) matrix of zeros, i.e., ⌃

can be partitioned as

⌃ =

"
⌃11 0k⇥(n�k)

0(n�k)⇥k ⌃22

#

where ⌃11 = Cov(X1) and ⌃22 = Cov(X2).
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Marginals of multivariate normal distributions

Let X = (X1, . . . , Xn)T ⇠ N(µ,⌃). If A is an m⇥ n matrix and

b 2 Rm
, then

Y = AX + b

is a random m-vector. Its MGF at t 2 Rm
is

MY (t) = et
T bMX(AT t)

Since MX(⌧ ) = e⌧
Tµ+ 1

2⌧
T⌃⌧

for all ⌧ 2 Rn
, we obtain

MY (t) = et
T be(A

T t)Tµ+ 1
2 (A

T t)T⌃(AT t)

= et
T (b+Aµ)+ 1

2 t
TA⌃AT t

This means that Y ⇠ N(b+Aµ,A⌃AT ), i.e., Y is multivariate normal

with mean b+Aµ and covariance A⌃AT
.

Example: Let a1, . . . , an 2 R and determine the distribution of

Y = a1X1 + · · ·+ anXn.
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For some 1  m < n let {i1, . . . , im} ⇢ {1, . . . , n} such that

i1 < i2 < · · · < im. Let ej = (0, . . . , 0, 1, 0, . . . , 0)t be the jth unit

vector in Rn
and define the m⇥ n matrix A by

A =

2

664

eTi1
.
.
.

eTim

3

775

Then

AX =

2

664

eTi1
.
.
.

eTim

3

775

2

664

X1

.

.

.

Xn

3

775 =

2

664

Xi1
.
.
.

Xim

3

775

Thus (Xi1 , . . . , Xim)T ⇠ N(Aµ,A⌃AT ).
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Note the following:

Aµ =

2

664

µi1
.
.
.

µim

3

775

and the (j, k)th entry of A⌃AT
is

(A⌃AT )jk =
�
A⇥ (ikth column of ⌃)

�
j

= (⌃)ijik = Cov(Xij , Xik)

Thus if X = (X1, . . . , Xn)T ⇠ N(µ,⌃), then (Xi1 , . . . , Xim)T is mul-

tivariate normal whose mean and covariance are obtained by picking out

the corresponding elements of µ and ⌃.

Special case: For m = 1 we obtain that Xi ⇠ N(µi,�2
i ), where

µi = E(Xi) and �2
i = Var(Xi), for all i = 1, . . . , n.
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Conditional distributions

Let X = (X1, . . . , Xn)T ⇠ N(µ,⌃) and for 1  m < n define

X1 = (X1, . . . , Xm)T , X2 = (Xm+1, . . . , Xn)
T

We know that X1 ⇠ N(µ1,⌃11) and X2 ⇠ N(µ2,⌃22) where

µi = E(Xi), ⌃ii = Cov(Xi), i = 1, 2.

Then µ and ⌃ can be partitioned as

µ =

"
µ1

µ2

#
, ⌃ =

"
⌃11 ⌃12

⌃21 ⌃22

#

where ⌃ij = Cov(Xi,Xj), i, j = 1, 2. Note that ⌃11 is m⇥m, ⌃22 is

(n�m)⇥ (n�m), ⌃12 is m⇥ (n�m), and ⌃21 is (n�m)⇥m. Also,

⌃21 = ⌃T
12.

We assume that ⌃11 is nonsingular and we want to determine the

conditional distribution of X2 given X1 = x1.
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Recall that X = AZ + µ for some Z = (Z1, . . . , Zn)T where the Zi are

independent N(0, 1) random variables and A is such that AAT = ⌃.

Let Z1 = (Z1, . . . , Zm)T and Z2 = (Zm+1, . . . , Zn)T . We want to

determine such A in a partitioned form with dimensions corresponding to

the partitioning of ⌃:

A =

"
B 0m⇥(n�m)

C D

#

We can write ⌃ = AAT
as

"
⌃11 ⌃12

⌃21 ⌃22

#
=

"
B 0m⇥(n�m)

C D

#"
BT CT

0(n�m)⇥m DT

#

=

"
BBT BCT

CBT CCT +DDT

#
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We want to solve for B, C and D. First consider BBT = ⌃11. We

choose B to be the unique positive definite square root of ⌃11:

B = ⌃1/2
11

Recall that B is symmetric and it is invertible since ⌃11 is. Then

⌃21 = CBT = implies

C = ⌃21(B
T )�1 = ⌃21B

�1

Then ⌃22 = CCT +DDT
gives

DDT = ⌃22 �CCT = ⌃22 �⌃21B
�1B�1(⌃21)

T

= ⌃22 �⌃21(BB)�1⌃12 = ⌃22 �⌃21⌃
�1
11 ⌃12

Now note that X = AZ + µ gives

X1 = BZ1 + µ1, X2 = CZ1 +DZ2 + µ2
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Since B is invertible, given X1 = x1, we have Z1 = B�1(x1 � µ1). So

given X1 = x1, we have that the conditional distribution of X2 and the

conditional distribution of

CB�1(x1 � µ1) +DZ2 + µ2

are the same.

But Z2 is independent of X1, so given X1 = x1, the conditional

distribution of CB�1(x1 � µ1) +DZ2 + µ2 is the same as its

unconditional distribution.

We conclude that the conditional distribution of X2 given X1 = x1 is

multivariate normal with mean

E(X2|X1 = x1) = µ2 +CB�1(x1 � µ1)

= µ2 +⌃21B
�1B�1(x1 � µ1)

= µ2 +⌃21⌃
�1
11 (x1 � µ1)

and covariance matrix ⌃22|1 = DDT = ⌃22 �⌃21⌃
�1
11 ⌃12
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Special case: bivariate normal

Suppose X = (X1, X2)T ⇠ N(µ,⌃) with

µ =

"
µ1

µ1

#
and ⌃ =

"
�2
1 ⇢�1�2

⇢�1�2 �2
2

#

We have

µ2 + ⌃21⌃
�1
11 (x1 � µ1) = µ2 + ⇢

�2

�1
(x1 � µ1)

and

⌃22 � ⌃21⌃
�1
11 ⌃12 = �2

2 �
⇢2�2

1�
2
2

�2
1

= �2
2(1� ⇢2)

Thus the conditional distribution of X2 given X1 = x1 is normal with

(conditional) mean

E(X2|X1 = x1) = µ2 + ⇢
�2

�1
(x1 � µ1)

and variance

Var(X2|X1 = x1) = �2
2(1� ⇢2)
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Equivalently, the conditional distribution of X2 given X1 = x1 is

N
�
µ2 + ⇢

�2

�1
(x1 � µ1),�

2
2(1� ⇢2)

�

If |⇢| < 1, then the conditional pdf exists and is given by

fX2|X1
(x2|x1) =

1

�2

p
2⇡(1� ⇢2)

e
�

�
x2�µ2�⇢

�2
�1

(x1�µ1)

�2

2�2
2(1�⇢2)

Remark: Note that E(X2|X1 = x1) = µ2 + ⇢�2
�1
(x1 � µ1) is a linear

(a�ne) function of x1.

Example: Recall the MMSE estimate problem for X ⇠ N(0,�2
X) from

the observation Y = X + Z, where Z ⇠ N(0,�2
Z) and X and Z are

independent. Use the above the find g⇤(y) = E[X|Y = y] and compute

the minimum mean square error E
⇥
(X � g⇤(Y ))2

⇤
.
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