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Moment Generating Function

Definition Let X = (Xi,..., X,,)T be a random vector and
t=(t1,...,tn)T € R". The moment generating function (MGF) is
defined by

Mx (t) = E(et"X)

for all ¢ for which the expectation exists (i.e., finite).
Remarks:
o Mx(t) = E(eXxi=tXs)
@ For 0= (0,...,0)", we have Mx(0) = 1.
o If X is a discrete random variable with finitely many values, then
Mx (t) = E(e*" X) is always finite for all t € R™.
o We will always assume that the distribution of X is such that
Mx (t) is finite for all t € (—to,19)" for some ty > 0.
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The single most important property of the MGF is that is uniquely
determines the distribution of a random vector:

Theorem 1
Assume Mx (t) and My (t) are the MGFs of the random vectors X and
Y and such that Mx (t) = My (t) for all t € (—to,to)™. Then

Fx(z) = Fy(z) forall z € R"

where Fx and Fy are the joint cdfs of X and Y .

Remarks:
e Fx(z) = Fy(z) for all z € R" clearly implies Mx (t) = My ().
Thus Mx(t) = My(t) Sl Fx(z> = Fy(Z)
@ Most often we will use the theorem for random variables instead of

random vectors. In this case, Mx (t) = My (t) for all t € (—to,to)
implies Fx (z) = Fy(z) for all z € R.
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Connection with moments

o Let kq,...,k, be nonnegative integers and k = k; +---+ k,. Then
ok oF

Mx(t) = E(et1 X1t +tn Xy
atllﬁ .. .(’%Zn X( ) at’fl . atﬁn ( )

ak
oty - othr

— E(Xfl Xs (et1X1+---+tan))

Setting t =0 = (0,...,0)7, we get

ak

_ k kn
o g Mx Bl = BT - X0)

@ For a (scalar) random variable X we obtain the kth moment of X:

@Mx(t”t:o = E<X )
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Assume X 1,...,X,, are independent random vectors in R™ and let
X=X;+---+X,, Then

i=1
Proof:
Mx(t) = E(etTX) — E(etT(X1+.A.+Xm))

_ E(etTX1 H_etTXm)
_ E(etTXl)--~E(etTX’")
= Mx,(t) - Mx,(t) O

Note: This theorem gives us a powerful tool for determining the
distribution of the sum of independent random variables.
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Example: MGF for X ~ Gamma(r, A) and X; + - -+ + X,,, where the X;
are independent and X; ~ Gamma(r;, \).

Example: MGF for X ~ Poisson(\) and X3 + --- + X,,, where the X;
are independent and X; ~ Gamma();). Also, use the MGF to find
E(X), E(X?), and Var(X).
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Assume X is a random vector in R™, A is an m X n real matrix and
b € R™. Then the MGF of Y = AX + b is given att € R™ by

MY (t) = ethMX (ATt)
Proof:

My(t) = E(f'Y) = E(et (AX+0)

ethE(etTAX> _ ethE(e(ATt)TX)

= PNy (ATE) O

Note: In the scalar case Y = aX + b we obtain

| My (1) = " My at)|
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Applications to Normal Distribution

Let X ~ N(0,1). Then

Mx(t) = E(etX):/ em—lfe_xzpd:v

N —oo 2

[ et [* L e
—oo V21 —oo V2T

t2/2 /OO 1 —3(@-)? 4
e —c¢ T
—co V2T

N(t,1) pdf

2
— 2

We obtain that for all t € R
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Moments of a standard normal random variable

Recall the power series expansion e = Zzozo %T valid for all z € R.
Apply this to z = tX

oo k
Mx(t) = E(etx)—E<Z (tf!) >

and to z = t2/2 .
> = (#2/2)"
_ e
Mx(t)y=e"?=3" -
=0
Matching the coefficient of t*, for k = 1,2, ... we obtain

k!
E(XxF) = { 2¥/2(k/2)V
0, k odd.

k even,
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Sum of independent normal random variables

@ Recall that if X ~ N(0,1) and Y = 60X + u, where o > 0, then
Y ~ N(u,0%). Thus the MGF of a N (i1, %) random variable is

My(t) = e"Mx(ot) = etel@)"/?

2 2
— | etntt?o?/2

e Let Xi,...,X,, be independent r.v.'s with X; ~ N (j;,0?) and set
X=X1+4+ -+ X,,. Then

M . tpi+t2o2 /2 t(Z’," ﬂ)+( m g?)tz/z
Mx(t) =[] Mx,(t) = [[ et/ = ez ol
=1 =1

This implies

X NN(i/luiU?)
i=1

i=1

i.e., X1+ -+ Xy, is normal with mean px = ;" p; and
variance 0% =Y ", 0.
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Multivariate Normal Distributions

Linear Algebra Review
@ Recall that an n x n real matrix C' is called nonnegative definite if it
is symmetric and
z'Cz >0 for all z € R"
and positive definite if it is symmetric and

2T Cx > 0 for all z € R" such that « # 0

o Let A be an arbitrary n x n real matrix. Then C = AT A is
nonnegative definite. If A is nonsingular (invertible), then C'is
positive definite.

Proof: AT A is symmetric since (AT A)T = (AT)(AT)T = AT A.
Thus it is nonnegative definite since
2T (AT A)x = 2T AT Ax = (Ax)T (Az) = |Az|?* >0 O
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For any nonnegative definite n x n matrix C' the following hold:

(1) C has n nonnegative eigenvalues A1, ..., A\, (counting multiplicities)
and corresponding n orthogonal unit-length eigenvectors by, ..., by,:

Cb,:)\zb“ iil,...,n

where b/ b; =1,i=1,...,nand b] b; = 0 if i # j.

(2) (Spectral decomposition) C' can be written as
C =BDB"

where D = diag(Aq, ..., Ay,) is the diagonal matrix of the
eigenvalues of C, and B is the orthogonal matrix whose ith column
is bi, i.e., B = [bl . bn]

(3) C is positive definite <= C' is nonsingular <= all the eigenvalues
\; are positive
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(4) C has a unique nonnegative definite square root C1/2, i.e., there

exists a unique nonnegative definite A such that

C=AA

Proof: We only prove the existence of A. Let
D'? = diag(\/%, ..., AY/?) and note that D'/2D'/? = D. Let
A=BDY?B". Then A'is nonnegative definite and

A’ = AA=(BD'/’B")(BD'’B")
— BDY?BTBDY?BT — BD'Y2pD'/2BT
= C O
Remarks:

o If C is positive definite, then so is A.
o If we don’t require that A be nonnegative definite, then in
general there are infinitely many solutions A for AAT = C.
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Lemma 4

If X is the covariance matrix of some random vector
X = (X1,...,X,)7T, then it is nonnegative definite.

Proof: We know that ¥ = Cov(X) is symmetric. Let b € R" be
arbitrary. Then

b'Eb = b" Cov(X)b = Cov(b’ X) = Var(b” X) >0

so X is nonnegative definite

Remark: It can be shown that an n X n matrix 3 is nonnegative definite
if and only if there exists a random vector X = (X1,..., X,,)T such that
Cov(X) = X.
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Defining the Multivariate Normal Distribution

Let Z1,...,Z, be independent r.v.'s with Z; ~ N(0,1). The
multivariate MGF of Z = (Zy,...,Z,)T is

Mz(t) = E(f'?) = B(eXi %) = [[ E(e"%)

i=1

n
2 2 14T
Lot = s [
=1

Now let ;1 € R™ and A an n X n real matrix. Then the MGF of
X=AZ+pis

T T 1(AT\T (AT
Mx(t) = e HMz(ATt)=¢t tezlA 8 (A0

where 3 = AA”. Note that ¥ is nonnegative definite.
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Definition Let 1 € R™ and let 3 be an n X n nonnegative definite
matrix. A random vector X = (X1,...,X,,) is said to have a
multivariate normal distribution with parameters p and X if its
multivariate MGF is

M (t) = ¢t w1670

Notation: X ~ N(p,X).

Remarks:
o If Z=(Z,...,Z,)" with Z; ~ N(0,1), i = 1,...,n, then
Z ~ N(0,I), where I is the n x n identity matrix.
o We saw that if Z ~ N(0,I), then X = AZ + p ~ N(u, X), where
> = AA”. One can show the following:

X ~ N(u,X) if and only if X = AZ + p for a random n-vector
Z ~ N(0,I) and some n x n matrix A with & = AAT.
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Mean and covariance for multivariate normal distribution

Consider first Z ~ N(0,1), i.e., Z = (Zy,...,Z,)T, where the Z; are
independent N (0, 1) random variables. Then

E(Z) = (BE(Z),...,E(Zy))" = (0,---,0)"
and

1 ifi=j,

E((Zi — E(Z))(Z; - E(Z;))) = E(Z:iZ)) = 0 it

Thus
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If X ~ N(p,3), then X = AZ + p for a random n-vector
Z ~ N(0,I) and some n x n matrix A with = = AAT.

We have
E(AZ+p)=AE(Z)+pu=pn

Also,
Cov(AZ +p) = Cov(AZ) = ACov(Z)AT = AAT =%

Thus

|B(X)=p,  Cov(X)=3]
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Joint pdf for multivariate normal distribution

Lemma 5

If a random vector X = (X1, ..., X,,)T has covariance matrix ¥ that is
not of full rank (i.e., singular), then X does not have a joint pdf.

Proof sketch: If 3 is singular, then there exists b € R™ such that b # 0
and b = 0. Consider the random variable b7 X = Z?:l b; X

Var(b” X) = Cov(b” X) = b" Cov(X)b=b"Zb=0

Therefore P(b” X = ¢) = 1 for some constant c. If X had a joint pdf
f(x), then for B = {x: b= = ¢} we should have

1=P(bTXIC)=P(XEB):/---/f(:z:l,...,xn)dacl--dxn
B

But this is impossible since B is an (n — 1)-dimensional hyperplane

whose n-dimensional volume is zero, so the integral must be zero. |
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If X =(Xy,...,X,)T ~ N(u, X), where X is nonsingular, then it has a
Joint pdf given by
1

_ 3@ (z—p) n
DE e 2 , xR
fx(@) (2m)n det X

Proof: We know that X = AZ + p where

Z = (Z,...,2,)T ~N(0,I) and A is an n x n matrix such that
AAT = 3. Since ¥ is nonsingular, A must be nonsingular with inverse
AL, Thus the mapping

hz)=Az+p

is invertible with inverse g(x) = A~ (x — ) whose Jacobian is
Jy(x) = det A7

By the multivariate transformation theorem

Ix () = fz(g(@))|Jg(x)| = fz(AT (2 — p))|det A7
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Proof cont'd: Since Z = (Zy,...,Z,)", where the Z; are independent
N(0,1) random variables, we have

1 > 1 R 1 LT
fz(z) = ()e 27/2 — eTTXim1F = | 3% 2
is\var (2m)" V(@2m)n
so we get
fx(@) = fz(A7 (@ —p))|det A7}
L A e AT @) gep A
Vv (2m)"
= L et AT @) gep 4|
Vv (2m)"
_ ! o~ d@—n)= @)
V(2m)" det X
. -1 1 —INT 4—1 -1 .
since |det A™"| = and (A7 )P A7 =37 (exercise!) O

vdet X
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Special case: bivariate normal

For n = 2 we have

lj/:
M1

’“] and X =

2

01 pPO102
2

pPo102 0y

where 11; = E(X;), 0 = Var(X;), i = 1,2, and

COV(AXVl7 XQ)
0102

p=p(X1,X2) =

Thus the bivariate normal distribution is determined by five scalar
parameters i1, [z, 02, 02, and p.

3 is positive definite <= 3 is invertible <= det 3 > 0:
detX = (1 — p?)oios >0 <= |p| <1andoios >0

so a bivariate normal random variable (X1, X2) has a pdf if and only if
the components X; and X» have positive variances and |p| < 1.
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We have

and
(@ —p)"2 (@ - p)

= |z, — T — }; o3 —poi0oy T — [
i IO 20702 | —poyoy o2 T2 — [

= 71 o222 |T1— M1, xz—m}
(1 p?)oios [ L (z2 — p2) — poroa(zr — 1)

1
= W(Ug(ﬂfl — m)? = 2po102 (1 — ) (@2 — p2) + 07 (22 — p2)?)
12

1 ((xl —m)? | (w2 —pe)® 2p(x1 — ) (w2 — M2)>

1 o5 (1 _Nl)_P0'10'2(x2_H2):|
2
1

C(1-p?)

+
U% O'% 0102
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Thus the joint pdf of (X1, X2)T ~ N(p, %) is

1 1 ((11*;@)2+(12*u2)272/3(11*#1)(12*;@))
flay, @) = ————=—==¢>0""" i 7 e
2mo1094/1 — p?
Remark: If p =0, then
1 %((w1*51)2+<12*52)2)
f(xlv xZ) = e o1 73
2mo109
(x1-p1)?2 (wg—12)?
_ 1 202 1 202

1 2

——e . e
o1V 2T ooV 2T

= fX1 (xl)fXQ(IQ)

Therefore X7 and X5 are independent. It is also easy to see that
f(z1,22) = fx,(x1) fx,(x2) for all z1 and xo implies p = 0. Thus we
obtain

Two jointly normal random variables X; and X5 are independent if and

only if they are uncorrelated.
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In general, the following important facts can be proved using the
multivariate MGF:

(i) f X =(X1,..., X)) ~ N(u, %), then X1, Xo,... X, are
independent if and only if they are uncorrelated, i.e.,
Cov(X;,X;)=0if i # j, i.e,, X is a diagonal matrix.

(i) Assume X = (X1,..., X,)T ~ N(u,2) and let

X =(Xq,..., Xp)7T, Xy = (Xpg1,...,X)7T

Then X7 and X are independent if and only if
Cov(X 1, X2) = Oy (n—k), the k x (n — k) matrix of zeros, i.e., 3
can be partitioned as

where 211 = COV(Xl) and 222 = COV(XQ).
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Marginals of multivariate normal distributions

Let X = (X1,...,X,)T ~ N(u,X). If Ais an m x n matrix and
b € R™, then
Y=AX+b

is a random m-vector. Its MGF at t € R™ is
My (t) = ¥ ®Mx (ATt
Since Mx (1) = €™ #2737 for all 7 € R", we obtain
My (t) = ethe(ATt)Tp.+%(ATt)TE(ATt)
etT(bJrA/.L)Jr%tTAEATt
This means that Y ~ N(b+ Au, AXAT), ie., Y is multivariate normal
with mean b+ Ap and covariance AX AT,

Example: Let aq,...,a, € R and determine the distribution of
Y:a1X1+~-'+aan.
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For some 1 <m < nlet {i1,...,4m} C{1,...,n} such that
i1 <idg <+ <ip. Lete; =(0,...,0,1,0,...,0)" be the jth unit
vector in R™ and define the m x n matrix A by

el

A= |
r
im

Then
eg; X1 Xil
AX = X =
el | | Xn X

Thus (Xi,,..., X, )T ~ N(Au, ALAT).
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Note the following:

Hiy
Ap=|
P,
and the (j, k)th entry of AXA” is
(AZA");;, = (A x (ixth column of X))

= (E)i]’il\, = COV(X»L'],, ’Lk)

Thus if X = (X1,...,X,)T ~ N(, %), then (X;,,...,X;, )T is mul-
tivariate normal whose mean and covariance are obtained by picking out

the corresponding elements of p and 3.

Special case: For m = 1 we obtain that X; ~ N (u;,0?), where
wi = B(X;) and 0% = Var(X;), forall i = 1,...,n.
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Conditional distributions

Let X = (X1,...,X,)T ~ N(u,X) and for 1 < m < n define
X1 = (X1, X)) T, Xo = (Xmt1s--5 Xn)"

We know that X1 ~ N(pq,311) and Xo ~ N(pq, Xo2) where

Then p and X can be partitioned as

where 2”‘ = COV(XZ'7XJ'), 1,7 = 1,2. Note that 37 is m x m, g is

(n—m) X (n—m), X1z is m X (n —m), and Xay is (n —m) x m. Also,

¥ =3k

We assume that X1 is nonsingular and we want to determine the
conditional distribution of X5 given X1 = ;.
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Recall that X = AZ + p for some Z = (Zy,...,Z,)T where the Z; are
independent N (0,1) random variables and A is such that AA” = 3.

Let Z1 = (Z1,...,Zm)T and Z5 = (Zpmyi1,-- -, Zn)T. We want to
determine such A in a partitioned form with dimensions corresponding to
the partitioning of X:

A= [ B 0nxinm)
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We want to solve for B, C and D. First consider BBT = 3;. We
choose B to be the unique positive definite square root of Xq1:

B=xl/?

Recall that B is symmetric and it is invertible since 317 is. Then
3y = CBT = implies

C=%y(B")'=3%,B"
Then ¥4 = CCT + DDT gives

DD = 3, -CcCT =%y -2, B 'B7 1 (Zy)T
= 29— 39(BB) 'Z1 =3 - 20 3' S0

Now note that X = AZ + u gives

X1:le—|—u1, XQZCZ1+DZQ+[.L2

STAT/MTHE 353: 5 — MGF & Multivariate Normal Distribution

Since B is invertible, given X1 = x;, we have Z; = Bil(wl — ). So
given X1 = x1, we have that the conditional distribution of X5 and the
conditional distribution of

CB (1 — ) + DZs +
are the same.

But Z, is independent of X, so given X = «1, the conditional
distribution of CB™'(xy — p,) + DZy + p, is the same as its
unconditional distribution.

We conclude that the conditional distribution of X5 given X1 = @ is
multivariate normal with mean

E(Xo|X1=21) = py+CB ' (x1—py)
ty+ T BB (@) — py)

= o+ T B (@1 — py)

and covariance matrix | Xgp; = DD = Yoo — 2212f11212
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Special case: bivariate normal

Suppose X = (X1, X5)T ~ N(p,2) with

un= i and X =
H1

2

01 pPo102
2

pPoO102 0y

We have
_ o
Mo + 2212111(131 —p1) = p2 + Pf(xl — 1)
1
and 5 5 o
_ oio
29 — £ 57 S1p = 03— ° 012 2 =o3(1-p°)

1
Thus the conditional distribution of X5 given X; = 1 is normal with

(conditional) mean

o
E(Xo| X1 =x1) = pp + pf(xl — 1)
1

and variance

’Var(X2|X1 =x) = 03(1 - p?) ‘

STAT/MTHE 353: 5 — MGF & Multivariate Normal Distribution

Equivalently, the conditional distribution of X5 given X = x4 is

g2
N (p2 + P;l(xl —m),05(1—p?))

If |p| < 1, then the conditional pdf exists and is given by

2
(Iz—uz—p?{(h—m))
202 (1—p2)

1 —

fXg\Xl (w2|my) = me

Remark: Note that E(Xo|X1 = 1) = p2 + pZ2 (21 — pu1) is a linear
(affine) function of ;.

Example: Recall the MMSE estimate problem for X ~ N(0,0%) from
the observation Y = X + Z, where Z ~ N(O,a%) and X and Z are
independent. Use the above the find g*(y) = E[X|Y = y| and compute
the minimum mean square error E[(X — g*(Y))?].
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