STAT/MTHE 353: 5 - Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function

Definition Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a random vector and $\boldsymbol{t}=\left(t_{1}, \ldots, t_{n}\right)^{T} \in \mathbb{R}^{n}$. The moment generating function (MGF) is defined by

$$
M_{\boldsymbol{X}}(\boldsymbol{t})=E\left(e^{\boldsymbol{t}^{T} \boldsymbol{X}}\right)
$$

for all t for which the expectation exists (i.e., finite).
Remarks:

- $M_{\boldsymbol{X}}(\boldsymbol{t})=E\left(e^{\sum_{i=1}^{n} t_{i} X_{i}}\right)$
- For $\mathbf{0}=(0, \ldots, 0)^{T}$, we have $M_{\boldsymbol{X}}(\mathbf{0})=1$.
- If \boldsymbol{X} is a discrete random variable with finitely many values, then $M_{\boldsymbol{X}}(\boldsymbol{t})=E\left(e^{\boldsymbol{t}^{T} \boldsymbol{X}}\right)$ is always finite for all $\boldsymbol{t} \in \mathbb{R}^{n}$.
- We will always assume that the distribution of \boldsymbol{X} is such that $M_{\boldsymbol{X}}(\boldsymbol{t})$ is finite for all $\boldsymbol{t} \in\left(-t_{0}, t_{0}\right)^{n}$ for some $t_{0}>0$.

Connection with moments

- Let k_{1}, \ldots, k_{n} be nonnegative integers and $k=k_{1}+\cdots+k_{n}$. Then

$$
\begin{aligned}
\frac{\partial^{k}}{\partial t_{1}^{k_{1}} \cdots \partial t_{n}^{k_{n}}} M_{\boldsymbol{X}}(\boldsymbol{t}) & =\frac{\partial^{k}}{\partial t_{1}^{k_{1}} \cdots \partial t_{n}^{k_{n}}} E\left(e^{t_{1} X_{1}+\cdots+t_{n} X_{n}}\right) \\
& =E\left(\frac{\partial^{k}}{\partial t_{1}^{k_{1}} \cdots \partial t_{n}^{k_{n}}} e^{t_{1} X_{1}+\cdots+t_{n} X_{n}}\right) \\
& =E\left(X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}\left(e^{t_{1} X_{1}+\cdots+t_{n} X_{n}}\right)\right)
\end{aligned}
$$

Setting $\boldsymbol{t}=\mathbf{0}=(0, \ldots, 0)^{T}$, we get

$$
\left.\frac{\partial^{k}}{\partial t_{1}^{k_{1}} \cdots \partial t_{n}^{k_{n}}} M_{\boldsymbol{X}}(\boldsymbol{t})\right|_{\boldsymbol{t}=\mathbf{0}}=E\left(X_{1}^{k_{1}} \cdots X_{n}^{k_{n}}\right)
$$

- For a (scalar) random variable X we obtain the k th moment of X :

$$
\left.\frac{d^{k}}{d t^{k}} M_{X}(t)\right|_{t=0}=E\left(X^{k}\right)
$$

$$
M_{\boldsymbol{X}}(\boldsymbol{t})=\prod_{i=1}^{m} M_{\boldsymbol{X}_{i}}(\boldsymbol{t})
$$

Proof:

$$
\begin{align*}
M_{\boldsymbol{X}}(\boldsymbol{t}) & =E\left(e^{\boldsymbol{t}^{T} \boldsymbol{X}}\right)=E\left(e^{t^{T}\left(\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{m}\right)}\right) \\
& =E\left(e^{\boldsymbol{t}^{T} \boldsymbol{X}_{1}} \cdots e^{\boldsymbol{t}^{T} \boldsymbol{X}_{m}}\right) \\
& =E\left(e^{\boldsymbol{t}^{T} \boldsymbol{X}_{1}}\right) \cdots E\left(e^{t^{T} \boldsymbol{X}_{m}}\right) \\
& =M_{\boldsymbol{X}_{1}}(\boldsymbol{t}) \cdots M_{\boldsymbol{X}_{m}}(\boldsymbol{t})
\end{align*}
$$

Note: This theorem gives us a powerful tool for determining the distribution of the sum of independent random variables.

Example: MGF for $X \sim \operatorname{Gamma}(r, \lambda)$ and $X_{1}+\cdots+X_{m}$ where the X_{i} are independent and $X_{i} \sim \operatorname{Gamma}\left(r_{i}, \lambda\right)$.

Example: MGF for $X \sim \operatorname{Poisson}(\lambda)$ and $X_{1}+\cdots+X_{m}$ where the X_{i} are independent and $X_{i} \sim \operatorname{Gamma}\left(\lambda_{i}\right)$. Also, use the MGF to find $E(X), E\left(X^{2}\right)$, and $\operatorname{Var}(X)$.

Theorem 3

Assume \boldsymbol{X} is a random vector in $\mathbb{R}^{n}, \boldsymbol{A}$ is an $m \times n$ real matrix and $\boldsymbol{b} \in \mathbb{R}^{m}$. Then the MGF of $\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b}$ is given at $\boldsymbol{t} \in \mathbb{R}^{m}$ by

$$
M_{\boldsymbol{Y}}(\boldsymbol{t})=e^{\boldsymbol{t}^{T} \boldsymbol{b}} M_{\boldsymbol{X}}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)
$$

Proof:

$$
\begin{aligned}
M_{\boldsymbol{Y}}(\boldsymbol{t}) & =E\left(e^{t^{T} \boldsymbol{Y}}\right)=E\left(e^{\boldsymbol{t}^{T}(\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b})}\right) \\
& =e^{\boldsymbol{t}^{T} \boldsymbol{b}} E\left(e^{\boldsymbol{t}^{T} \boldsymbol{A} \boldsymbol{X}}\right)=e^{\boldsymbol{t}^{T} \boldsymbol{b}} E\left(e^{\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)^{T} \boldsymbol{X}}\right) \\
& =e^{\boldsymbol{t}^{T} \boldsymbol{b}} M_{\boldsymbol{X}}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)
\end{aligned}
$$

Note: In the scalar case $Y=a X+b$ we obtain

$$
M_{Y}(t)=e^{t b} M_{X}(a t)
$$

Moments of a standard normal random variable

Recall the power series expansion $e^{z}=\sum_{k=0}^{\infty} \frac{z^{k}}{k!}$ valid for all $z \in \mathbb{R}$.
Apply this to $z=t X$

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right)=E\left(\sum_{k=0}^{\infty} \frac{(t X)^{k}}{k!}\right) \\
& =\sum_{k=0}^{\infty} \frac{E\left[(t X)^{k}\right]}{k!}=\sum_{k=0}^{\infty} \frac{E\left(X^{k}\right)}{k!} t^{k}
\end{aligned}
$$

and to $z=t^{2} / 2$

$$
M_{X}(t)=e^{t^{2} / 2}=\sum_{i=0}^{\infty} \frac{\left(t^{2} / 2\right)^{i}}{i!}
$$

Matching the coefficient of t^{k}, for $k=1,2, \ldots$ we obtain

$$
E\left(X^{k}\right)= \begin{cases}\frac{k!}{2^{k / 2}(k / 2)!}, & k \text { even } \\ 0, & k \text { odd. }\end{cases}
$$

Multivariate Normal Distributions

Linear Algebra Review

- Recall that an $n \times n$ real matrix \boldsymbol{C} is called nonnegative definite if it is symmetric and

$$
\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{x} \geq 0 \text { for all } \boldsymbol{x} \in \mathbb{R}^{n}
$$

and positive definite if it is symmetric and

$$
\boldsymbol{x}^{T} \boldsymbol{C} \boldsymbol{x}>0 \text { for all } \boldsymbol{x} \in \mathbb{R}^{n} \text { such that } \boldsymbol{x} \neq \mathbf{0}
$$

- Let \boldsymbol{A} be an arbitrary $n \times n$ real matrix. Then $\boldsymbol{C}=\boldsymbol{A}^{T} \boldsymbol{A}$ is nonnegative definite. If \boldsymbol{A} is nonsingular (invertible), then \boldsymbol{C} is positive definite.
Proof: $\boldsymbol{A}^{T} \boldsymbol{A}$ is symmetric since $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{T}=\left(\boldsymbol{A}^{T}\right)\left(\boldsymbol{A}^{T}\right)^{T}=\boldsymbol{A}^{T} \boldsymbol{A}$.
Thus it is nonnegative definite since

$$
\boldsymbol{x}^{T}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right) \boldsymbol{x}=\boldsymbol{x}^{T} \boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=(\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{A} \boldsymbol{x})=\|\boldsymbol{A} \boldsymbol{x}\|^{2} \geq 0
$$

Sum of independent normal random variables

- Recall that if $X \sim N(0,1)$ and $Y=\sigma X+\mu$, where $\sigma>0$, then $Y \sim N\left(\mu, \sigma^{2}\right)$. Thus the MGF of a $N\left(\mu, \sigma^{2}\right)$ random variable is

$$
\begin{aligned}
M_{Y}(t) & =e^{t \mu} M_{X}(\sigma t)=e^{t \mu} e^{(\sigma t)^{2} / 2} \\
& =e^{t \mu+t^{2} \sigma^{2} / 2}
\end{aligned}
$$

- Let X_{1}, \ldots, X_{m} be independent r.v.'s with $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ and set $X=X_{1}+\cdots+X_{m}$. Then
$M_{X}(t)=\prod_{i=1}^{m} M_{X_{i}}(t)=\prod_{i=1}^{m} e^{t \mu_{i}+t^{2} \sigma_{i}^{2} / 2}=e^{t\left(\sum_{i=1}^{m} \mu_{i}\right)+\left(\sum_{i=1}^{m} \sigma_{i}^{2}\right) t^{2} / 2}$
This implies

$$
X \sim N\left(\sum_{i=1}^{m} \mu_{i}, \sum_{i=1}^{m} \sigma_{i}^{2}\right)
$$

i.e., $X_{1}+\cdots+X_{m}$ is normal with mean $\mu_{X}=\sum_{i=1}^{m} \mu_{i}$ and variance $\sigma_{X}^{2}=\sum_{i=1}^{m} \sigma_{i}^{2}$.

For any nonnegative definite $n \times n$ matrix \boldsymbol{C} the following hold:
(1) \boldsymbol{C} has n nonnegative eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (counting multiplicities) and corresponding n orthogonal unit-length eigenvectors $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$:

$$
\boldsymbol{C} \boldsymbol{b}_{i}=\lambda_{i} \boldsymbol{b}_{i}, \quad i=1, \ldots, n
$$

where $\boldsymbol{b}_{i}^{T} \boldsymbol{b}_{i}=1, i=1, \ldots, n$ and $\boldsymbol{b}_{i}^{T} \boldsymbol{b}_{j}=0$ if $i \neq j$.
(2) (Spectral decomposition) C can be written as

$$
\boldsymbol{C}=\boldsymbol{B} \boldsymbol{D} \boldsymbol{B}^{T}
$$

where $\boldsymbol{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the diagonal matrix of the eigenvalues of \boldsymbol{C}, and \boldsymbol{B} is the orthogonal matrix whose i th column is \boldsymbol{b}_{i}, i.e., $\boldsymbol{B}=\left[\boldsymbol{b}_{1} \ldots \boldsymbol{b}_{n}\right]$.
(3) C is positive definite $\Longleftrightarrow C$ is nonsingular \Longleftrightarrow all the eigenvalues λ_{i} are positive
(4) C has a unique nonnegative definite square root $C^{1 / 2}$, i.e., there exists a unique nonnegative definite \boldsymbol{A} such that

$$
C=A A
$$

Proof: We only prove the existence of \boldsymbol{A}. Let
$\boldsymbol{D}^{1 / 2}=\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{n}^{1 / 2}\right)$ and note that $\boldsymbol{D}^{1 / 2} \boldsymbol{D}^{1 / 2}=\boldsymbol{D}$. Let $\boldsymbol{A}=\boldsymbol{B} \boldsymbol{D}^{1 / 2} \boldsymbol{B}^{T}$. Then \boldsymbol{A} is nonnegative definite and

$$
\begin{aligned}
\boldsymbol{A}^{2} & =\boldsymbol{A} \boldsymbol{A}=\left(\boldsymbol{B} \boldsymbol{D}^{1 / 2} \boldsymbol{B}^{T}\right)\left(\boldsymbol{B} \boldsymbol{D}^{1 / 2} \boldsymbol{B}^{T}\right) \\
& =\boldsymbol{B} \boldsymbol{D}^{1 / 2} \boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{D}^{1 / 2} \boldsymbol{B}^{T}=\boldsymbol{B} \boldsymbol{D}^{1 / 2} \boldsymbol{D}^{1 / 2} \boldsymbol{B}^{T} \\
& =\boldsymbol{C}
\end{aligned}
$$

Remarks:

- If \boldsymbol{C} is positive definite, then so is \boldsymbol{A}.
- If we don't require that \boldsymbol{A} be nonnegative definite, then in general there are infinitely many solutions \boldsymbol{A} for $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{C}$.

Lemma 4

If $\boldsymbol{\Sigma}$ is the covariance matrix of some random vector
$\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$, then it is nonnegative definite.
Proof: We know that $\boldsymbol{\Sigma}=\operatorname{Cov}(\boldsymbol{X})$ is symmetric. Let $\boldsymbol{b} \in \mathbb{R}^{n}$ be arbitrary. Then

$$
\boldsymbol{b}^{T} \boldsymbol{\Sigma} \boldsymbol{b}=\boldsymbol{b}^{T} \operatorname{Cov}(\boldsymbol{X}) \boldsymbol{b}=\operatorname{Cov}\left(\boldsymbol{b}^{T} \boldsymbol{X}\right)=\operatorname{Var}\left(\boldsymbol{b}^{T} \boldsymbol{X}\right) \geq 0
$$

so $\boldsymbol{\Sigma}$ is nonnegative definite
Remark: It can be shown that an $n \times n$ matrix $\boldsymbol{\Sigma}$ is nonnegative definite if and only if there exists a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ such that
$\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{\Sigma}$.

Defining the Multivariate Normal Distribution

Let Z_{1}, \ldots, Z_{n} be independent r.v.'s with $Z_{i} \sim N(0,1)$. The multivariate MGF of $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ is

$$
\begin{aligned}
M_{\boldsymbol{Z}}(\boldsymbol{t}) & =E\left(e^{\boldsymbol{t}^{T} \boldsymbol{Z}}\right)=E\left(e^{\sum_{i=1}^{n} t_{i} Z_{i}}\right)=\prod_{i=1}^{n} E\left(e^{t_{i} Z_{i}}\right) \\
& =\prod_{i=1}^{n} e^{t_{i}^{2} / 2}=e^{\sum_{i=1}^{n} t_{i}^{2} / 2}=e^{\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{t}}
\end{aligned}
$$

Now let $\boldsymbol{\mu} \in \mathbb{R}^{n}$ and \boldsymbol{A} an $n \times n$ real matrix. Then the MGF of $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}$ is

$$
\begin{aligned}
M_{\boldsymbol{X}}(\boldsymbol{t}) & =e^{\boldsymbol{t}^{T} \boldsymbol{\mu}} M_{\boldsymbol{Z}}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)=e^{\boldsymbol{t}^{T} \boldsymbol{\mu}} e^{\frac{1}{2}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)^{T}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)} \\
& =e^{\boldsymbol{t}^{T} \boldsymbol{\mu}} e^{\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{A} \boldsymbol{A}^{T} \boldsymbol{t}}=e^{\boldsymbol{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{\Sigma} \boldsymbol{t}}
\end{aligned}
$$

where $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{T}$. Note that $\boldsymbol{\Sigma}$ is nonnegative definite.

Definition Let $\boldsymbol{\mu} \in \mathbb{R}^{n}$ and let $\boldsymbol{\Sigma}$ be an $n \times n$ nonnegative definite matrix. A random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is said to have a multivariate normal distribution with parameters $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ if its multivariate MGF is

$$
M_{\boldsymbol{X}}(\boldsymbol{t})=e^{\boldsymbol{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{\Sigma} \boldsymbol{t}}
$$

Notation: $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
Remarks:

- If $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ with $Z_{i} \sim N(0,1), i=1, \ldots, n$, then $\boldsymbol{Z} \sim N(\mathbf{0}, \boldsymbol{I})$, where \boldsymbol{I} is the $n \times n$ identity matrix.
- We saw that if $\boldsymbol{Z} \sim N(\mathbf{0}, \boldsymbol{I})$, then $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{T}$. One can show the following:
$\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ if and only if $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}$ for a random n-vector $\boldsymbol{Z} \sim N(\mathbf{0}, \boldsymbol{I})$ and some $n \times n$ matrix \boldsymbol{A} with $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{T}$.

Mean and covariance for multivariate normal distribution

Consider first $\boldsymbol{Z} \sim N(\mathbf{0}, \boldsymbol{I})$, i.e., $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$, where the Z_{i} are independent $N(0,1)$ random variables. Then

$$
E(\boldsymbol{Z})=\left(E\left(Z_{1}\right), \ldots, E\left(Z_{n}\right)\right)^{T}=(0, \cdots, 0)^{T}
$$

and

$$
E\left(\left(Z_{i}-E\left(Z_{i}\right)\right)\left(Z_{j}-E\left(Z_{j}\right)\right)\right)=E\left(Z_{i} Z_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Thus

$$
E(\boldsymbol{Z})=\mathbf{0}, \quad \operatorname{Cov}(\boldsymbol{Z})=\boldsymbol{I}
$$

If $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}$ for a random n-vector $\boldsymbol{Z} \sim N(\mathbf{0}, \boldsymbol{I})$ and some $n \times n$ matrix \boldsymbol{A} with $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{T}$.

We have

$$
E(\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu})=\boldsymbol{A} E(\boldsymbol{Z})+\boldsymbol{\mu}=\boldsymbol{\mu}
$$

Also,

$$
\operatorname{Cov}(\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu})=\operatorname{Cov}(\boldsymbol{A} \boldsymbol{Z})=\boldsymbol{A} \operatorname{Cov}(\boldsymbol{Z}) \boldsymbol{A}^{T}=\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{\Sigma}
$$

Thus

$$
E(\boldsymbol{X})=\boldsymbol{\mu}, \quad \operatorname{Cov}(\boldsymbol{X})=\boldsymbol{\Sigma}
$$

Theorem 6

If $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is nonsingular, then it has a joint pdf given by

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}, \quad \boldsymbol{x} \in \mathbb{R}^{n}
$$

Proof: We know that $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}$ where $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T} \sim N(\mathbf{0}, \boldsymbol{I})$ and \boldsymbol{A} is an $n \times n$ matrix such that $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{\Sigma}$. Since $\boldsymbol{\Sigma}$ is nonsingular, \boldsymbol{A} must be nonsingular with inverse \boldsymbol{A}^{-1}. Thus the mapping

$$
h(\boldsymbol{z})=\boldsymbol{A} \boldsymbol{z}+\boldsymbol{\mu}
$$

is invertible with inverse $g(\boldsymbol{x})=\boldsymbol{A}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})$ whose Jacobian is

$$
J_{g}(\boldsymbol{x})=\operatorname{det} \boldsymbol{A}^{-1}
$$

By the multivariate transformation theorem

$$
f_{\boldsymbol{X}}(\boldsymbol{x})=f_{\boldsymbol{Z}}(g(\boldsymbol{x}))\left|J_{g}(\boldsymbol{x})\right|=f_{\boldsymbol{Z}}\left(\boldsymbol{A}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)\left|\operatorname{det} \boldsymbol{A}^{-1}\right|
$$

Proof cont'd: Since $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$, where the Z_{i} are independent $N(0,1)$ random variables, we have
$f_{\boldsymbol{Z}}(\boldsymbol{z})=\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2 \pi}}\right) e^{-z_{i}^{2} / 2}=\frac{1}{\sqrt{(2 \pi)^{n}}} e^{-\frac{1}{2} \sum_{i=1}^{n} z_{i}^{2}}=\frac{1}{\sqrt{(2 \pi)^{n}}} e^{-\frac{1}{2} \boldsymbol{z}^{T} \boldsymbol{z}}$
so we get

$$
\begin{aligned}
f_{\boldsymbol{X}}(\boldsymbol{x}) & =f_{\boldsymbol{Z}}\left(\boldsymbol{A}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)\left|\operatorname{det} \boldsymbol{A}^{-1}\right| \\
& =\frac{1}{\sqrt{(2 \pi)^{n}}} e^{-\frac{1}{2}\left(\boldsymbol{A}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)^{T}\left(\boldsymbol{A}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)}\left|\operatorname{det} \boldsymbol{A}^{-1}\right| \\
& =\frac{1}{\sqrt{(2 \pi)^{n}}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T}\left(\boldsymbol{A}^{-1}\right)^{T} \boldsymbol{A}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}\left|\operatorname{det} \boldsymbol{A}^{-1}\right| \\
& =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \boldsymbol{\Sigma}}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
\end{aligned}
$$

since $\left|\operatorname{det} \boldsymbol{A}^{-1}\right|=\frac{1}{\sqrt{\operatorname{det} \boldsymbol{\Sigma}}}$ and $\left(\boldsymbol{A}^{-1}\right)^{T} \boldsymbol{A}^{-1}=\boldsymbol{\Sigma}^{-1}$ (exercise!)

We have

$$
\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]^{-1}=\frac{1}{\operatorname{det} \boldsymbol{\Sigma}}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\rho \sigma_{1} \sigma_{2} \\
-\rho \sigma_{1} \sigma_{2} & \sigma_{1}^{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
& (\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& \quad=\left[\begin{array}{ll}
x_{1}-\mu_{1}, & \left.x_{2}-\mu_{1}\right] \frac{1}{\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}^{2}}\left[\begin{array}{cc}
\sigma_{2}^{2} & -\rho \sigma_{1} \sigma_{2} \\
-\rho \sigma_{1} \sigma_{2} & \sigma_{1}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{1}
\end{array}\right] \\
& =\frac{1}{\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}^{2}}\left[x_{1}-\mu_{1}, \quad x_{2}-\mu_{1}\right]\left[\begin{array}{l}
\sigma_{2}^{2}\left(x_{1}-\mu_{1}\right)-\rho \sigma_{1} \sigma_{2}\left(x_{2}-\mu_{2}\right) \\
\sigma_{1}^{2}\left(x_{2}-\mu_{2}\right)-\rho \sigma_{1} \sigma_{2}\left(x_{1}-\mu_{1}\right)
\end{array}\right] \\
& =\frac{1}{\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}^{2}}\left(\sigma_{2}^{2}\left(x_{1}-\mu_{1}\right)^{2}-2 \rho \sigma_{1} \sigma_{2}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\sigma_{1}^{2}\left(x_{2}-\mu_{2}\right)^{2}\right) \\
& =\frac{1}{\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right)
\end{array}\right.
\end{aligned}
$$

Special case: bivariate normal

For $n=2$ we have

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{1}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

where $\mu_{i}=E\left(X_{i}\right), \sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right), i=1,2$, and

$$
\rho=\rho\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sigma_{1} \sigma_{2}}
$$

Thus the bivariate normal distribution is determined by five scalar parameters $\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}$, and ρ.
$\boldsymbol{\Sigma}$ is positive definite $\Longleftrightarrow \boldsymbol{\Sigma}$ is invertible $\Longleftrightarrow \operatorname{det} \boldsymbol{\Sigma}>0$:

$$
\operatorname{det} \boldsymbol{\Sigma}=\left(1-\rho^{2}\right) \sigma_{1}^{2} \sigma_{2}^{2}>0 \quad \Longleftrightarrow \quad|\rho|<1 \text { and } \sigma_{1}^{2} \sigma_{2}^{2}>0
$$

so a bivariate normal random variable $\left(X_{1}, X_{2}\right)$ has a pdf if and only if the components X_{1} and X_{2} have positive variances and $|\rho|<1$.

Thus the joint pdf of $\left(X_{1}, X_{2}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right)}
$$

Remark: If $\rho=0$, then

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\frac{1}{2 \pi \sigma_{1} \sigma_{2}} e^{\frac{1}{2}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)} \\
& =\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \cdot \frac{1}{\sigma_{2} \sqrt{2 \pi}} e^{\frac{\left(x_{2}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}} \\
& =f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
\end{aligned}
$$

Therefore X_{1} and X_{2} are independent. It is also easy to see that $f\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$ for all x_{1} and x_{2} implies $\rho=0$. Thus we obtain

Two jointly normal random variables X_{1} and X_{2} are independent if and only if they are uncorrelated.

In general, the following important facts can be proved using the multivariate MGF:
(i) If $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $X_{1}, X_{2}, \ldots X_{n}$ are independent if and only if they are uncorrelated, i.e., $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$ if $i \neq j$, i.e., $\boldsymbol{\Sigma}$ is a diagonal matrix.
(ii) Assume $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and let

$$
\boldsymbol{X}_{1}=\left(X_{1}, \ldots, X_{k}\right)^{T}, \quad \boldsymbol{X}_{2}=\left(X_{k+1}, \ldots, X_{n}\right)^{T}
$$

Then \boldsymbol{X}_{1} and \boldsymbol{X}_{2} are independent if and only if $\operatorname{Cov}\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right)=\mathbf{0}_{k \times(n-k)}$, the $k \times(n-k)$ matrix of zeros, i.e., $\boldsymbol{\Sigma}$ can be partitioned as

$$
\boldsymbol{\Sigma}=\left[\begin{array}{c:c}
\boldsymbol{\Sigma}_{11} & \mathbf{0}_{k \times(n-k)} \\
\hdashline \mathbf{0}_{(n-k) \times k} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

where $\boldsymbol{\Sigma}_{11}=\operatorname{Cov}\left(\boldsymbol{X}_{1}\right)$ and $\boldsymbol{\Sigma}_{22}=\operatorname{Cov}\left(\boldsymbol{X}_{2}\right)$.

For some $1 \leq m<n$ let $\left\{i_{1}, \ldots, i_{m}\right\} \subset\{1, \ldots, n\}$ such that $i_{1}<i_{2}<\cdots<i_{m}$. Let $\boldsymbol{e}_{j}=(0, \ldots, 0,1,0, \ldots, 0)^{t}$ be the j th unit vector in \mathbb{R}^{n} and define the $m \times n$ matrix \boldsymbol{A} by

$$
\boldsymbol{A}=\left[\begin{array}{c}
\boldsymbol{e}_{i_{1}}^{T} \\
\vdots \\
\boldsymbol{e}_{i_{m}}^{T}
\end{array}\right]
$$

Then

$$
\boldsymbol{A} \boldsymbol{X}=\left[\begin{array}{c}
\boldsymbol{e}_{i_{1}}^{T} \\
\vdots \\
\boldsymbol{e}_{i_{m}}^{T}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right]=\left[\begin{array}{c}
X_{i_{1}} \\
\vdots \\
X_{i_{m}}
\end{array}\right]
$$

Thus $\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)^{T} \sim N\left(\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)$.

Marginals of multivariate normal distributions

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. If \boldsymbol{A} is an $m \times n$ matrix and $\boldsymbol{b} \in \mathbb{R}^{m}$, then

$$
\boldsymbol{Y}=\boldsymbol{A} \boldsymbol{X}+\boldsymbol{b}
$$

is a random m-vector. Its MGF at $t \in \mathbb{R}^{m}$ is

$$
M_{\boldsymbol{Y}}(\boldsymbol{t})=e^{\boldsymbol{t}^{T} \boldsymbol{b}} M_{\boldsymbol{X}}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)
$$

Since $M_{\boldsymbol{X}}(\boldsymbol{\tau})=e^{\boldsymbol{\tau}^{T} \boldsymbol{\mu}+\frac{1}{2} \boldsymbol{\tau}^{T} \boldsymbol{\Sigma} \boldsymbol{\tau}}$ for all $\boldsymbol{\tau} \in \mathbb{R}^{n}$, we obtain

$$
\begin{aligned}
M_{\boldsymbol{Y}}(\boldsymbol{t}) & =e^{\boldsymbol{t}^{T} \boldsymbol{b}} e^{\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)^{T} \boldsymbol{\mu}+\frac{1}{2}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)^{T} \boldsymbol{\Sigma}\left(\boldsymbol{A}^{T} \boldsymbol{t}\right)} \\
& =e^{\boldsymbol{t}^{T}(\boldsymbol{b}+\boldsymbol{A} \boldsymbol{\mu})+\frac{1}{2} \boldsymbol{t}^{T} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T} \boldsymbol{t}}
\end{aligned}
$$

This means that $\boldsymbol{Y} \sim N\left(\boldsymbol{b}+\boldsymbol{A} \boldsymbol{\mu}, \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)$, i.e., \boldsymbol{Y} is multivariate normal with mean $\boldsymbol{b}+\boldsymbol{A} \boldsymbol{\mu}$ and covariance $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}$.

Example: Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and determine the distribution of $Y=a_{1} X_{1}+\cdots+a_{n} X_{n}$.

STAT/MTHE 353: 5 - MGF \& Multivariate Normal Distribution

Note the following:

$$
\boldsymbol{A} \boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{i_{1}} \\
\vdots \\
\mu_{i_{m}}
\end{array}\right]
$$

and the (j, k) th entry of $\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}$ is

$$
\begin{aligned}
\left(\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{T}\right)_{j k} & =\left(\boldsymbol{A} \times\left(i_{k} \text { th column of } \boldsymbol{\Sigma}\right)\right)_{j} \\
& =(\boldsymbol{\Sigma})_{i_{j} i_{k}}=\operatorname{Cov}\left(X_{i_{j}}, X_{i_{k}}\right)
\end{aligned}
$$

Thus if $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\left(X_{i_{1}}, \ldots, X_{i_{m}}\right)^{T}$ is multivariate normal whose mean and covariance are obtained by picking out the corresponding elements of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.

Special case: For $m=1$ we obtain that $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, where $\mu_{i}=E\left(X_{i}\right)$ and $\sigma_{i}^{2}=\operatorname{Var}\left(X_{i}\right)$, for all $i=1, \ldots, n$.

Conditional distributions

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and for $1 \leq m<n$ define

$$
\boldsymbol{X}_{1}=\left(X_{1}, \ldots, X_{m}\right)^{T}, \quad \boldsymbol{X}_{2}=\left(X_{m+1}, \ldots, X_{n}\right)^{T}
$$

We know that $\boldsymbol{X}_{1} \sim N\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$ and $\boldsymbol{X}_{2} \sim N\left(\boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{22}\right)$ where
$\boldsymbol{\mu}_{i}=E\left(\boldsymbol{X}_{i}\right), \boldsymbol{\Sigma}_{i i}=\operatorname{Cov}\left(\boldsymbol{X}_{i}\right), i=1,2$.
Then $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ can be partitioned as

$$
\boldsymbol{\mu}=\left[\begin{array}{c}
\boldsymbol{\mu}_{1} \\
\hdashline \boldsymbol{\mu}_{2}
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{c:c}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\hdashline \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

where $\boldsymbol{\Sigma}_{i j}=\operatorname{Cov}\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right), i, j=1,2$. Note that $\boldsymbol{\Sigma}_{11}$ is $m \times m, \boldsymbol{\Sigma}_{22}$ is $(n-m) \times(n-m), \boldsymbol{\Sigma}_{12}$ is $m \times(n-m)$, and $\boldsymbol{\Sigma}_{21}$ is $(n-m) \times m$. Also, $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{T}$.

We assume that $\boldsymbol{\Sigma}_{11}$ is nonsingular and we want to determine the conditional distribution of \boldsymbol{X}_{2} given $\boldsymbol{X}_{1}=\boldsymbol{x}_{1}$.

We want to solve for $\boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D}. First consider $\boldsymbol{B} \boldsymbol{B}^{T}=\boldsymbol{\Sigma}_{11}$. We choose \boldsymbol{B} to be the unique positive definite square root of $\boldsymbol{\Sigma}_{11}$:

$$
\boldsymbol{B}=\boldsymbol{\Sigma}_{11}^{1 / 2}
$$

Recall that \boldsymbol{B} is symmetric and it is invertible since $\boldsymbol{\Sigma}_{11}$ is. Then $\boldsymbol{\Sigma}_{21}=\boldsymbol{C} \boldsymbol{B}^{T}=$ implies

$$
\boldsymbol{C}=\boldsymbol{\Sigma}_{21}\left(\boldsymbol{B}^{T}\right)^{-1}=\boldsymbol{\Sigma}_{21} \boldsymbol{B}^{-1}
$$

Then $\boldsymbol{\Sigma}_{22}=\boldsymbol{C} \boldsymbol{C}^{T}+\boldsymbol{D} \boldsymbol{D}^{T}$ gives

$$
\begin{aligned}
\boldsymbol{D} \boldsymbol{D}^{T} & =\boldsymbol{\Sigma}_{22}-\boldsymbol{C} \boldsymbol{C}^{T}=\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{B}^{-1} \boldsymbol{B}^{-1}\left(\boldsymbol{\Sigma}_{21}\right)^{T} \\
& =\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21}(\boldsymbol{B} \boldsymbol{B})^{-1} \boldsymbol{\Sigma}_{12}=\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}
\end{aligned}
$$

Now note that $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}$ gives

$$
\boldsymbol{X}_{1}=\boldsymbol{B} \boldsymbol{Z}_{1}+\boldsymbol{\mu}_{1}, \quad \boldsymbol{X}_{2}=\boldsymbol{C} \boldsymbol{Z}_{1}+\boldsymbol{D} \boldsymbol{Z}_{2}+\boldsymbol{\mu}_{2}
$$

Recall that $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{Z}+\boldsymbol{\mu}$ for some $\boldsymbol{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ where the Z_{i} are independent $N(0,1)$ random variables and \boldsymbol{A} is such that $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{\Sigma}$.

Let $\boldsymbol{Z}_{1}=\left(Z_{1}, \ldots, Z_{m}\right)^{T}$ and $\boldsymbol{Z}_{2}=\left(Z_{m+1}, \ldots, Z_{n}\right)^{T}$. We want to
determine such \boldsymbol{A} in a partitioned form with dimensions corresponding to the partitioning of $\boldsymbol{\Sigma}$:

$$
\boldsymbol{A}=\left[\begin{array}{c:c}
\boldsymbol{B} & \mathbf{0}_{m \times(n-m)} \\
\hdashline \boldsymbol{C} & \boldsymbol{D}
\end{array}\right]
$$

We can write $\boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{A}^{T}$ as

$$
\begin{aligned}
{\left[\begin{array}{c:c}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\hdashline \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right] } & =\left[\begin{array}{c:c}
\boldsymbol{B} & \mathbf{0}_{m \times(n-m)} \\
\hdashline \boldsymbol{C} & \boldsymbol{D}
\end{array}\right]\left[\begin{array}{c:c}
\boldsymbol{B}^{T} & \boldsymbol{C}^{T} \\
\hdashline \mathbf{0}_{(n-m) \times m} & \boldsymbol{D}^{T^{-}}
\end{array}\right] \\
& =\left[\begin{array}{c:c}
\boldsymbol{B} \boldsymbol{B}^{T} & \boldsymbol{B} \boldsymbol{C}^{T} \\
\hdashline \boldsymbol{C} \boldsymbol{B}^{T} & \boldsymbol{C} \boldsymbol{C}^{T}+\boldsymbol{D} \boldsymbol{D}^{T}
\end{array}\right]
\end{aligned}
$$

Since \boldsymbol{B} is invertible, given $\boldsymbol{X}_{1}=\boldsymbol{x}_{1}$, we have $\boldsymbol{Z}_{1}=\boldsymbol{B}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right)$. So given $\boldsymbol{X}_{1}=\boldsymbol{x}_{1}$, we have that the conditional distribution of \boldsymbol{X}_{2} and the conditional distribution of

$$
\boldsymbol{C B} \boldsymbol{B}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right)+\boldsymbol{D} \boldsymbol{Z}_{2}+\boldsymbol{\mu}_{2}
$$

are the same.
But \boldsymbol{Z}_{2} is independent of \boldsymbol{X}_{1}, so given $\boldsymbol{X}_{1}=\boldsymbol{x}_{1}$, the conditional distribution of $\boldsymbol{C B} \boldsymbol{B}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right)+\boldsymbol{D} \boldsymbol{Z}_{2}+\boldsymbol{\mu}_{2}$ is the same as its unconditional distribution.
We conclude that the conditional distribution of \boldsymbol{X}_{2} given $\boldsymbol{X}_{1}=\boldsymbol{x}_{1}$ is multivariate normal with mean

$$
\begin{aligned}
E\left(\boldsymbol{X}_{2} \mid \boldsymbol{X}_{1}=\boldsymbol{x}_{1}\right) & =\boldsymbol{\mu}_{2}+\boldsymbol{C B}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right) \\
& =\boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{21} \boldsymbol{B}^{-1} \boldsymbol{B}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right) \\
& =\boldsymbol{\mu}_{2}+\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right)
\end{aligned}
$$

and covariance matrix $\boldsymbol{\Sigma}_{22 \mid 1}=\boldsymbol{D} \boldsymbol{D}^{T}=\boldsymbol{\Sigma}_{22}-\boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$

Special case: bivariate normal

Suppose $\boldsymbol{X}=\left(X_{1}, X_{2}\right)^{T} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{1} \\
\mu_{1}
\end{array}\right] \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right]
$$

We have

$$
\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right)
$$

and

$$
\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}=\sigma_{2}^{2}-\frac{\rho^{2} \sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}}=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Thus the conditional distribution of X_{2} given $X_{1}=x_{1}$ is normal with (conditional) mean

$$
E\left(X_{2} \mid X_{1}=x_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right)
$$

and variance

$$
\operatorname{Var}\left(X_{2} \mid X_{1}=x_{1}\right)=\sigma_{2}^{2}\left(1-\rho^{2}\right)
$$

Equivalently, the conditional distribution of X_{2} given $X_{1}=x_{1}$ is

$$
N\left(\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right), \sigma_{2}^{2}\left(1-\rho^{2}\right)\right)
$$

If $|\rho|<1$, then the conditional pdf exists and is given by

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{1}{\sigma_{2} \sqrt{2 \pi\left(1-\rho^{2}\right)}} e^{-\frac{\left(x_{2}-\mu_{2}-\rho \frac{\sigma_{2}}{\left.\sigma_{1}\left(x_{1}-\mu_{1}\right)\right)^{2}}\right.}{2 \sigma_{2}^{2}\left(1-\rho^{2}\right)}}
$$

Remark: Note that $E\left(X_{2} \mid X_{1}=x_{1}\right)=\mu_{2}+\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x_{1}-\mu_{1}\right)$ is a linear (affine) function of x_{1}.
Example: Recall the MMSE estimate problem for $X \sim N\left(0, \sigma_{X}^{2}\right)$ from the observation $Y=X+Z$, where $Z \sim N\left(0, \sigma_{Z}^{2}\right)$ and X and Z are independent. Use the above the find $g^{*}(y)=E[X \mid Y=y]$ and compute the minimum mean square error $E\left[\left(X-g^{*}(Y)\right)^{2}\right]$.

