STAT/MTHE 353:

6 - Convergence of Random Variables

and Limit Theorems

Markov and Chebyshev Inequalities

Recall that a random variable X is called nonnegative if $P(X \ge 0) = 1$.

Theorem 1 (Markov's inequality)

Let X be a nonnegative random variable with mean E(X). Then for any t > 0 $\mathbf{F}(\mathbf{V})$

$$P(X \ge t) \le \frac{E(X)}{t}$$

Proof: Assume X is continuous with pdf f. Then f(x) = 0 if x < 0, so

$$E(X) = \int_0^\infty x f(x) \, dx \ge \int_t^\infty x f(x) \, dx \ge t \int_t^\infty f(x) \, dx$$
$$= t P(X \ge t)$$

If X is discrete, replace the integrals with sums...

Example: Suppose X is nonnegative and P(X > 10) = 1/5; show that $E(X) \ge 2$. Also, Markov's inequality for |X|.

STAT/MTHE 353: 6 - Convergence and Limit Theorems

The following result often gives a much sharper bound if the MGF of Xis finite in some interval around zero.

Theorem 3 (Chernoff's bound)

Let X be a random variable with MGF $M_X(t)$. Then for any $a \in \mathbb{R}$

$$P(X \ge a) \le \min_{t > 0} e^{-at} M_X(t)$$

Proof: Fix t > 0. Then we have

$$P(X \ge a) = P(tX \ge ta) = P(e^{tX} \ge e^{ta})$$

$$\leq \frac{E(e^{tX})}{e^{ta}}$$
(Markov's inequality)
$$= e^{-ta}M_X(t)$$

Since this holds for all t > 0, it must hold for the t minimizing the upper bound. \square

Theorem 2 (Chebyshev's inequality)

Let X be a

Then for any t > 0

STAT/MTHE 353: 6 - Convergence and Limit 1

random variable with finite variance Var(X).

$$P(|X - E(X)| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}$$

Proof: Apply Markov's inequality to the nonnegative random variable $Y = |X - E(X)|^2$

$$P(|X - E(X)| \ge t) = P(|X - E(X)|^2 \ge t^2) \le \frac{E(|X - E(X)|^2)}{t^2}$$
$$= \frac{Var(X)}{t^2} \square$$

Example: Chebyshev with $t = k \sqrt{\operatorname{Var}(X)} \dots$

STAT/MTHE 353: 6 - Convergence and Limit Theorems

3 / 34

STAT/MTHE 353: 6 - Convergence and Limit Theorems

4 / 34

Example: Suppose $X \sim N(0, 1)$. Apply Chernoff's bound to upper bound $P(X \ge a)$ for a > 0 and compare with the bounds obtained from Chebyshev's and Markov's inequalities.

- Recall that a random variable X is a function $X : \Omega \to \mathbb{R}$ that maps any point ω in the sample space Ω to a real number $X(\omega)$.
- A random variable X must satisfy the following: any subset A of Ω in the form

$$A = \{\omega \in \Omega : X(\omega) \in B\}$$

for any "reasonable" $B \subset \mathbb{R}$ is an *event*. For example B can be any set obtained by a countable union and intersection of intervals.

• Recall that a sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ is said to converge to a limit $x \in \mathbb{R}$ (notation: $x_n \to x$) if for any $\epsilon > 0$ there exists N such that $|x_n - x| < \epsilon$ for all $n \ge N$.

STAT/MTHE 353: 6 - Convergence and Limit Theorem

Convergence of Random Variables

A probability space is a triple (Ω, \mathcal{A}, P) , where Ω is a sample space, \mathcal{A} is a collection of subsets of Ω called *events*, and P is a probability measure on \mathcal{A} . In particular, the set of events \mathcal{A} satisfies

- 1) Ω is an event
- 2) If $A \subset \Omega$ is an event, then A^c is also an event
- 3) If A_1, A_2, A_3, \ldots are events, then so is $\bigcup_{n=1}^{\infty} A_n$.

P is a function from the collection of events $\mathcal A$ to [0,1] which satisfies the axioms of probability:

1) $P(A) \ge 0$ for all events $A \in \mathcal{A}$.

STAT/MTHE 353: 6 – Convergence and Limit Theor

- 2) $P(\Omega) = 1.$
- 3) If A_1, A_2, A_3, \ldots are mutually exclusive events (i.e., $A_i \cap A_j = \emptyset$ for all $i \neq j$), then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Definitions (Modes of convergence) Let $\{X_n\} = X_1, X_2, X_3, \dots$ be a sequence of random variables defined in a probability space (Ω, \mathcal{A}, P) .

(i) We say that $\{X_n\}$ converges to a random variable X almost surely (notation: $X_n \xrightarrow{a.s.} X$) if

$$P(\{\omega: X_n(\omega) \to X(\omega)\}) = 1$$

(i) We say that $\{X_n\}$ converges to a random variable X in probability (notation: $X_n \xrightarrow{P} X$) if for any $\epsilon > 0$ we have

$$P(|X_n - X| > \epsilon) \to 0$$
 as $n \to \infty$

(iii) If r > 0 we say that $\{X_n\}$ converges to a random variable X in rth mean (notation: $X_n \xrightarrow{r.m.} X$) if

$$E(|X_n - X|^r) o 0$$
 as $n o \infty$

(iv) Let F_n and F denote the cdfs of X_n and X, respectively. We say that $\{X_n\}$ converges to a random variable X in distribution (notation: $X_n \stackrel{d}{\longrightarrow} X$) if

$$F_n(x) \to F(x)$$
 as $n \to \infty$

for any x such that F is continuous at x.

STAT/MTHE 353: 6 - Convergence and Limit Theorems

Remarks:

- A very important case of convergence in rth mean is when r = 2. In this case $E(|X_n X|^2) \to 0$ as $n \to \infty$ and we say that $\{X_n\}$ converges in mean square to X.
- Almost sure convergence is often called convergence with *probability 1.*
- Almost sure convergence, convergence in *r*th mean, and convergence in probability all state that X_n is eventually *close* to X (in different senses) as *n* increases.
- In contrast, convergence in distribution is only a statement about the closeness of the *distribution* of X_n to that of X for large n.

Example: Sequence $\{X_n\}$ such that $F_n(x) = F(x)$ for all $x \in \mathbb{R}$ and n = 1, 2, ..., but $P(|X_n - X| > 1/2) = 1$ for all n ...

Theorem 5

STAT/MTHE 353: 6 - Convergence and Limit Th

Convergence in rth mean implies convergence in probability; i.e., if $X_n \xrightarrow{r.m.} X$, then $X_n \xrightarrow{P} X$.

Proof: Assume $X_n \xrightarrow{r.m.} X$ for some r > 0; i.e., $E(|X_n - X|^r) \to 0$ as $n \to \infty$. Then for any $\epsilon > 0$,

$$\begin{aligned} P(|X_n - X| > \epsilon) &= P(|X_n - X|^r > \epsilon^r) \\ &\leq \frac{E(|X_n - X|^r)}{\epsilon^r} \to 0 \text{ as } n \to \infty \end{aligned}$$

where the inequality follows from Markov's inequality applied to the nonnegative random variable $|X_n - X|^r$.

Theorem 4

The following implications hold:

Remark: We will show that in general, $X_n \xrightarrow{a.s.} X$ does not imply that $X_n \xrightarrow{r.m.} X$, and also that $X_n \xrightarrow{r.m.} X$ does not imply $X_n \xrightarrow{a.s.} X$.

Theorem 6

Almost sure convergence implies convergence in probability; i.e., if $X_n \xrightarrow{a.s.} X$, then $X_n \xrightarrow{P} X$.

Proof: Assume $X_n \xrightarrow{a.s.} X$. We want to show that for any $\epsilon > 0$ we have $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$. Thus, defining the event

$$A_n(\epsilon) = \left\{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \right\}$$

we want to show that $P(A_n(\epsilon)) \to 0$ for any $\epsilon > 0$.

Define

STAT/MTHE 353: 6 - Convergence and Limit Theorem

$$A(\epsilon) = \{\omega : |X_n(\omega) - X(\omega)| > \epsilon \text{ for infinitely many } n\}$$

Then for any $\omega \in A(\epsilon)$ we have that $X_n(\omega) \not\rightarrow X(\omega)$. Since $X_n \xrightarrow{a.s.} X$ we must have that

$$P(A(\epsilon)) = 0$$

STAT/MTHE 353: 6 - Convergence and Limit Theorems

Proof cont'd: Now define the event

$$B_n(\epsilon) = \left\{ \omega : |X_m(\omega) - X(\omega)| > \epsilon \text{ for some } m \ge n \right\}$$

Notice that $B_1(\epsilon) \supset B_2(\epsilon) \supset \cdots \supset B_{n-1}(\epsilon) \supset B_n(\epsilon) \supset \cdots$; i.e., $\{B_n(\epsilon)\}$ is a *decreasing sequence* of events, satisfying

$$A(\epsilon) = \bigcap_{n=1}^{\infty} B_n(\epsilon)$$

Therefore by the continuity of probability

TAT/MTHE 353: 6 – Convergence and Limit The

$$P(A(\epsilon)) = P\left(\bigcap_{n=1}^{\infty} B_n(\epsilon)\right) = \lim_{n \to \infty} P(B_n(\epsilon))$$

But since $P(A(\epsilon)) = 0$, we obtain that $\lim_{n \to \infty} P(B_n(\epsilon)) = 0$.

Proof cont'd: We clearly have

$$A_n(\epsilon) \subset B_n(\epsilon) \quad \text{for all } n$$

so $P(A_n(\epsilon)) \leq P(B_n(\epsilon))$, so $P(A_n(\epsilon)) \to 0$ as $n \to \infty$. We obtain
$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

for any $\epsilon > 0$ as claimed. \Box

Lemma 7 (Sufficient condition for a.s. convergence)

Suppose
$$\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty$$
 for all $\epsilon > 0$. Then $X_n \xrightarrow{a.s.} X$.

Proof: Recall the event

STAT/MTHE 353: 6 - Convergence and Limit Theorem

$$A(\epsilon) = \left\{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \text{ for infinitely many } n \right\}$$

Then

$$A(\epsilon)^c = \{\omega : \text{ there exists } N \text{ such that } |X_n(\omega) - X(\omega)| \le \epsilon \text{ for all } n \ge N\}$$

For $\epsilon=1/k$ we obtain a decreasing sequence of events $\left\{A(1/k)^c\right\}_{k=1}^\infty.$ Let

$$C = \bigcap_{k=1}^{\infty} A(1/k)^c$$

16 / 34

and notice that if $\omega \in C$, then $X_n(\omega) \to X(\omega)$ as $n \to \infty$. Thus if P(C) = 1, then $X_n \xrightarrow{a.s.} X$.

Example: $(X_n \xrightarrow{P} X \text{ does not imply } X_n \xrightarrow{a.s.} X.)$ Let X_1, X_2, \ldots be independent random variables with distribution

$$P(X_n = 0) = 1 - \frac{1}{n}, \quad P(X_n = 1) = \frac{1}{n}$$

and show that there is a random variable X such that $X_n \xrightarrow{P} X$, but $P(\{\omega : X_n(\omega) \to X(\omega)\}) = 0.$

Solution: ...

Example: $(X_n \xrightarrow{r.m.} X \text{ does not imply } X_n \xrightarrow{a.s.} X.)$ Use the previous example...

STAT/MTHE 353: 6 - Convergence and Limit Theorems

Proof cont'd: But from the continuity of probability

$$P(C) = P\left(\bigcap_{k=1}^{\infty} A(1/k)^{c}\right) = \lim_{k \to \infty} P\left(A(1/k)^{c}\right)$$

so if $P(A(1/k)^c) = 1$ for all k, then P(C) = 1 and we obtain $X_n \xrightarrow{a.s.} X$. Thus $P(A(\epsilon)) = 0$ for all $\epsilon > 0$ implies $X_n \xrightarrow{a.s.} X$.

As before, let $A_n(\epsilon) = \{\omega : |X_n(\omega) - X(\omega)| > \epsilon\}$ and

$$B_n(\epsilon) = \left\{ \omega : |X_m(\omega) - X(\omega)| > \epsilon \text{ for some } m \ge n \right\}$$

We have seen in the proof of Theorem 6 that

STAT/MTHE 353: 6 - Convergence and Limit Theo

$$P(A(\epsilon)) = \lim_{n \to \infty} P(B_n(\epsilon))$$

Thus if we can show that $\lim_{n\to\infty}P(B_n(\epsilon))=0$ for all $\epsilon>0,$ then $X_n\xrightarrow{a.s.}X.$

Example: $(X_n \xrightarrow{a.s.} X \text{ does not imply } X_n \xrightarrow{r.m.} X.)$ Let X_1, X_2, \ldots be random variables with marginal distributions given by

$$P(X_n = n^3) = \frac{1}{n^2}, \quad P(X_n = 0) = 1 - \frac{1}{n^2}$$

Show that there is a random variable X such that $X_n \xrightarrow{a.s.} X$, but $X_n \xrightarrow{r.m.} X$ if $r \ge 2/3$.

Proof cont'd: Note that

$$B_n(\epsilon) = \bigcup_{m=n}^{\infty} A_m(\epsilon)$$

and that the condition $\sum_{n=1}^\infty P\bigl(A_n(\epsilon)\bigr) = \sum_{n=1}^\infty P(|X_n-X|>\epsilon) < \infty$ implies

$$\lim_{n \to \infty} \sum_{m=n}^{\infty} P(A_n(\epsilon)) = 0$$

We obtain

$$P(B_n(\epsilon)) = P\left(\bigcup_{m=n}^{\infty} A_m(\epsilon)\right)$$
(union bound)

$$\leq \sum_{m=n}^{\infty} P(A_m(\epsilon)) \to 0 \text{ as } n \to \infty$$

$$P_n(\epsilon) = 0 \text{ for all } \epsilon \geq 0. \text{ Thus } Y = \frac{a.s}{2} \cdot Y$$

so $\lim_{n \to \infty} P(B_n(\epsilon)) = 0$ for all $\epsilon > 0$. Thus $X_n \xrightarrow{a.s.} X$.

Theorem 8

Convergence in probability implies convergence in distribution; i.e., if $X_n \xrightarrow{P} X$, then $X_n \xrightarrow{d} X$.

Proof: Let F_n and F be the cdfs of X_n and X, respectively and let $x \in \mathbb{R}$ be such that F is continuous at x. We want to show that $X_n \xrightarrow{P} X$ implies $F_n(x) \to F(x)$ as $n \to \infty$.

For any given $\epsilon > 0$ we have

STAT/MTHE 353: 6 - Convergence and Limit Theorem

$$F_n(x) = P(X_n \le x)$$

= $P(X_n \le x, X \le x + \epsilon) + P(X_n \le x, X > x + \epsilon)$
 $\le P(X \le x + \epsilon) + P(|X_n - X| > \epsilon)$
= $F(x + \epsilon) + P(|X_n - X| > \epsilon)$

Proof cont'd: Similarly,

$$F(x-\epsilon) = P(X \le x - \epsilon)$$

= $P(X \le x - \epsilon, X_n \le x) + P(X \le x - \epsilon, X_n > x)$
 $\le P(X_n \le x) + P(|X_n - X| > \epsilon)$
= $F_n(x) + P(|X_n - X| > \epsilon)$

We obtain

$$F(x-\epsilon) - P(|X_n - X| > \epsilon) \le F_n(x) \le F(x+\epsilon) + P(|X_n - X| > \epsilon)$$

Since $X_n \xrightarrow{P} X$, we have $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$. Choosing $N(\epsilon)$ large enough so that $P(|X_n - X| > \epsilon) < \epsilon$ for all $n \ge N(\epsilon)$, we obtain

 $F(x-\epsilon) - \epsilon \le F_n(x) \le F(x+\epsilon) + \epsilon$

for all $n \ge N(\epsilon)$. Since F is continuous at x, letting $\epsilon \to 0$ we obtain $\lim_{n\to\infty} F_n(x) = F(x)$.

STAT/MTHE 353: 6 – Convergence and Limit Theorems

Laws of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables with finite mean $\mu = E(X_i)$ and variance $\sigma^2 = \operatorname{Var}(X_i)$. The sample mean \overline{X}_n is defined by

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Theorem 10 (Weak law of large numbers)

We have $\bar{X}_n \xrightarrow{P} \mu$; i.e., for all $\epsilon > 0$

STAT/MTHE 353: 6 - Convergence and Limit Theorems

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \epsilon) = 0$$

If X is a constant random variable, then the converse also holds:

Theorem 9

Let $c \in \mathbb{R}$. If $X_n \xrightarrow{d} c$, then $X_n \xrightarrow{P} c$.

Proof: For X with P(X = c) let F_n and F be as before and note that

$$F(x) = \begin{cases} 0 & \text{if } x < c \\ 1 & \text{if } x \ge c \end{cases}$$

Then F is continuous at all $x\neq c,$ so $F_n(x)\to F(x)$ as $n\to\infty$ for all $x\neq c.$ For any $\epsilon>0$

$$P(|X_n - c| > \epsilon) = P(X_n < c - \epsilon) + P(X_n > c + \epsilon)$$

$$\leq P(X_n \le c - \epsilon) + P(X_n > c + \epsilon)$$

$$= F_n(c - \epsilon) + 1 - F_n(c + \epsilon)$$

Since $F_n(c-\epsilon) \to 0$ and $F_n(c+\epsilon) \to 1$ as $n \to \infty$, we obtain $P(|X_n - c| > \epsilon) \to 0$ as $n \to \infty$. STAT/MTHE 353: 6 - Convergence and Limit Theorems

Proof: Since the X_i are independent,

STAT/MTHE 353: 6 - Convergence and Limit Theorems

$$\operatorname{Var}(\bar{X}_n) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\sum_{i=1}^n \operatorname{Var}(X_i) = \frac{\sigma^2}{n}$$

Since $E(\bar{X}_n) = \mu$, Chebyshev's inequality implies for any $\epsilon > 0$

$$P(|\bar{X}_n - \mu| > \epsilon) \le \frac{\operatorname{Var}(X_n)}{\epsilon^2} = \frac{\sigma}{\epsilon^2 n}$$

Thus $P(|\bar{X}_n - \mu| > \epsilon) \to 0$ as $n \to \infty$ for any $\epsilon > 0$.

24 / 34

Theorem 11 (Strong law of large numbers)

If X_1, X_2, \ldots is an i.i.d. sequence with finite mean $\mu = E(X_i)$ and variance $\operatorname{Var}(X_i) = \sigma^2$, then $\overline{X}_n \xrightarrow{a.s.} \mu$; i.e.,

$$P\left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu\right) =$$

1

Proof: First we show that the subsequence $\bar{X}_{1^2}, \bar{X}_{2^2}, \bar{X}_{3^2}, \ldots$ converges a.s. to μ .

Let $S_n = \sum_{i=1}^n X_i$. Then $E(S_{n^2}) = n^2 \mu$ and $Var(S_{n^2}) = n^2 \sigma^2$. For any $\epsilon > 0$ we have by Chebyshev's inequality

$$P(|\bar{X}_{n^2} - \mu| > \epsilon) = P\left(\left|\frac{1}{n^2}S_{n^2} - \mu\right| > \epsilon\right) = P\left(|S_{n^2} - n^2\mu| > n^2\epsilon\right)$$
$$\leq \frac{\operatorname{Var}(S_{n^2})}{n^4\epsilon^2} = \frac{\sigma^2}{n^2\epsilon^2}$$

Thus $\sum_{n=1}^{\infty} P(|\bar{X}_{n^2} - \mu| > \epsilon) < \infty$ and Lemma 7 gives $\bar{X}_{n^2} \xrightarrow{a.s.} \mu$. STAT/MTHE 353: 6 - Convergence and Limit Theorems

Proof cont'd: Now we remove the restriction $X_i \ge 0$. Define

 $X_i^+ = \max(X_i, 0), \qquad X_i^- = \max(-X_i, 0)$

and note that $X_i=X_i^+-X_i^-$ and $X_i^+\geq 0,\,X_i^-\geq 0.$ Letting $\mu^+=E(X_i^+),\,\mu^-=E(X_i^-)$ and

$$A_{1} = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} X_{i}^{+}(\omega) \to \mu^{+} \right\}, \qquad A_{2} = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} X_{i}^{-}(\omega) \to \mu^{-} \right\}$$

we know that $P(A_1) = P(A_2) = 1$. Thus $P(A_1 \cap A_2) = 1$. But for all $\omega \in A_1 \cap A_2$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^+(\omega) - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^-(\omega)$$
$$= \mu^+ - \mu^- = \mu$$

We conclude that $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mu$.

Proof cont'd: Next suppose that $X_i \ge 0$ for all i. Then $S_n(\omega) = X_1(\omega) + \cdots + X_n(\omega)$ is a nondecreasing sequence. For any nthere is a unique i_n such that $i_n^2 \le n < (i_n + 1)^2$. Thus

$$S_{i_n^2} \le S_n \le S_{(i_n+1)^2} \implies \frac{S_{i_n^2}}{(i_n+1)^2} \le \frac{S_n}{n} \le \frac{S_{(i_n+1)^2}}{i_n^2}$$

This is equivalent to

$$\left(\frac{i_n}{i_n+1}\right)^2 \frac{S_{i_n^2}}{i_n^2} \le \frac{S_n}{n} \le \left(\frac{i_n+1}{i_n}\right)^2 \frac{S_{(i_n+1)^2}}{(i_n+1)^2}$$

i.e.

$$\left(\frac{i_n}{i_n+1}\right)^2 \bar{X}_{i_n^2} \le \bar{X}_n \le \left(\frac{i_n+1}{i_n}\right)^2 \bar{X}_{(i_n+1)^2}$$

Letting $A = \{\omega : \bar{X}_{n^2}(\omega) \to \mu\}$, we know that P(A) = 1. Since $i_n/(i_n + 1) \to 1$ and $(i_n + 1)/i_n \to 1$ as $n \to \infty$, and for all $\omega \in A$, $\bar{X}_{i_n^2}(\omega) \to \mu$ and $\bar{X}_{(i_n+1)^2}(\omega) \to \mu$ as $n \to \infty$, we obtain

$$ar{X}_n(\omega)
ightarrow \mu$$
 for all $\omega \in A$

Remark: The condition $Var(X_i) < \infty$ is not needed. The strong law of large numbers (SLLN) holds for any i.i.d. sequence X_1, X_2, \ldots with finite mean $\mu = E(X_1)$.

Example: Simple random walk

STAT/MTHE 353: 6 - Convergence and Limit Theorem

Example: (Single server queue) Customers arrive one-by-one at a service station.

- The time between the arrival of the (i 1)th and ith customer is Y_i, and Y₁, Y₂,... are i.i.d. nonnegative random variables with finite mean E(Y₁) and finite variance.
- The time needed to service the *i*th customer is U_i , and U_1, U_2, \ldots are i.i.d. nonnegative random variables with finite mean $E(U_1)$ and finite variance.

Show that if $E(U_1) < E(Y_1)$, then (after the first customer arrives) the queue will eventually become empty with probability 1.

STAT/MTHE 353: 6 - Convergence and Limit Theorems

27 / 34

Central Limit Theorem

- If X_1, X_2, \ldots are Bernoulli(p) random variables, then $S_n = X_1 + \cdots + X_n$ is a Binomial(n, p) random variable with mean $E(S_n) = np$ and variance $Var(S_n) = np(1-p)$.
- Recall the De Moivre-Laplace theorem:

$$\lim_{n \to \infty} P\left(\frac{S_n - np}{\sqrt{np(1-p)}} \le x\right) = \Phi(x)$$

where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$ is the cdf of a N(0,1) random variable X.

• Since $\Phi(x)$ is continuous at every x, the above is equivalent to

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} X$$

where $\mu = E(X_1) = p$ and $\sigma = \sqrt{\operatorname{Var}(X_1)} = p(1-p)$.

STAT/MTHE 353: 6 - Convergence and Limit Theorems

To prove the CLT we will assume that each X_i has MGF $M_{X_i}(t)$ that is defined in an open interval around zero. The key to the proof is the following result which we won't prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Z_1, Z_2, \ldots are random variables such that the MGF $M_{Z_n}(t)$ is defined for all $t \in (-a, a)$ for some a > 0 and all $n = 1, 2, \ldots$ Suppose X is a random variable with MGF $M_X(t)$ defined for $t \in (-a, a)$. If

$$\lim_{n \to \infty} M_{Z_n}(t) = M_X(t) \text{ for all } t \in (-a, a)$$

then $Z_n \xrightarrow{d} X$.

STAT/MTHE 353: 6 - Convergence and Limit Theorems

The De Moivre-Laplace theorem is a special case of the following general result:

Theorem 12 (Central Limit Theorem)

Let X_1, X_2, \ldots be i.i.d. random variables with mean μ and finite variance σ^2 . Then for $S_n = X_1 + \cdots + X_n$ we have

$$\frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} X$$

where $X \sim N(0, 1)$.

Remark: Note that $\frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu)$. The SLLN implies that with probability 1, $\bar{X}_n - \mu \to 0$ as $n \to \infty$ The central limit theorem (CLT) tells us something about the speed at which $\bar{X}_n - \mu$ converges to zero.

Proof of CLT: Let $Y_n = X_n - \mu$. Then $E(Y_n) = 0$ and $Var(Y_n) = \sigma^2$. Note that

$$\frac{\sum_{i=1}^{n} Y_i}{\sigma \sqrt{n}} = \frac{S_n - n\mu}{\sigma \sqrt{n}} = Z_n$$

Letting $M_Y(t)$ denote the (common) moment generating function of the Y_i , we have by the independence of Y_1, Y_2, \ldots

$$M_{Z_n}(t) = M_Y \left(\frac{t}{\sigma\sqrt{n}}\right)^r$$

If $X\sim N(0,1),$ then $M_X(t)=e^{t^2/2}.$ Thus if we show that $M_{Z_n}(t)\to e^{t^2/2},$ or equivalently

$$\lim_{n \to \infty} \ln \left(M_{Z_n}(t) \right) = \frac{t^2}{2}$$

then Levy's continuity theorem implies the CLT.

Proof cont'd: Let $h = \frac{t}{\sigma \sqrt{n}}$. Then

$$\lim_{n \to \infty} \ln(M_{Z_n}(t)) = \lim_{n \to \infty} \ln\left(M_Y\left(\frac{t}{\sigma\sqrt{n}}\right)^n\right)$$
$$= \lim_{n \to \infty} n \ln\left(M_Y\left(\frac{t}{\sigma\sqrt{n}}\right)\right)$$
$$= \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{\ln M_Y(h)}{h^2}$$

It can be shown that $M_Y(h)$ and all its derivatives are continuous at h = 0. Since $M_Y(0) = E(e^{0 \cdot Y}) = 1$, the above limit is indeterminate. Applying l'Hospital's rule, we consider the limit

$$\frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M'_Y(h)/M_Y(h)}{2h} = \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M'_Y(h)}{2hM_Y(h)}$$

Again, since M'(0) = E(Y) = 0, the limit is indeterminate.

STAT/MTHE 353: 6 - Convergence and Limit The

Proof cont'd: Apply l'Hospital's rule again:

X

33 / 34

STAT/MTHE 353: 6 - Convergence and Limi

$$\begin{split} \lim_{n \to \infty} \ln(M_{Z_n}(t)) &= \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{\ln M_Y(h)}{h^2} \\ &= \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M'_Y(h)}{2hM_Y(h)} \\ &= \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M''_Y(h)}{2M_Y(h) + 2hM'_Y(h)} \\ &= \frac{t^2}{\sigma^2} \cdot \frac{M''_Y(0)}{2M_Y(0)} = \frac{t^2}{\sigma^2} \cdot \frac{\sigma^2}{2} \\ &= \frac{t^2}{2} \end{split}$$

Thus $M_{Z_n}(t) \to e^{t^2/2}$ and therefore $Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} X$, where $X \sim N(0, 1)$.