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Markov and Chebyshev Inequalities

Recall that a random variable X is called nonnegative if P(X > 0) = 1.

Theorem 1 (Markov's inequality)

Let X be a nonnegative random variable with mean E(X). Then for any
t>0

P(?Qt)ﬁ@

Proof: Assume X is continuous with pdf f. Then f(z) =0if z <0, so

EX) = / xf(w)dasZ/ zf(m)det/ f(z)dx
0 t t
= tP(X >1t)
If X is discrete, replace the integrals with sums. .. O

Example: Suppose X is nonnegative and P(X > 10) = 1/5; show that
E(X) > 2. Also, Markov's inequality for | X]|.
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Theorem 2 (Chebyshev's inequality)
Let X be a random variable with finite variance Var(X).
Then for any t > 0

Var(X)
$2

P(X - B(X)| > 1) <
Proof: Apply Markov's inequality to the nonnegative random variable
Y = [X - B(X)]?

E(IX - BE(X)P)
12

P(IX - E(X)| 2 t) P(X - B(X)?>1?) <

Var(X)
= t2 D

Example: Chebyshev with t = ky/Var(X) ...
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The following result often gives a much sharper bound if the MGF of X

is finite in some interval around zero.

Theorem 3 (Chernoff’s bound)

Let X be a random variable with MGF Mx (t). Then for any a € R

P(X >a) <mine “M
(X 2 a) < mine™ " Mx(1)

Proof: Fix t > 0. Then we have

P(X >a) = P(tX >ta)=P(e"N > ')
E tX
< <6t ) (Markov's inequality)
e a
= € taMx(t)

Since this holds for all ¢ > 0, it must hold for the ¢ minimizing the upper
bound. O
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Example: Suppose X ~ N(0,1). Apply Chernoff’s bound to upper
bound P(X > a) for a > 0 and compare with the bounds obtained from

Chebyshev's and Markov's inequalities.
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Convergence of Random Variables

A probability space is a triple (Q, A, P), where Q is a sample space, A is

a collection of subsets of €) called events, and P is a probability measure
on A. In particular, the set of events A satisfies

1) Qis an event

2) If A C Qs an event, then A€ is also an event

3) If Ay, Ay, As, ... are events, then sois |, A,.

P is a function from the collection of events A to [0, 1] which satisfies
the axioms of probability:
1) P(A) > 0 for all events A € A.
2) P(Q) =1.
3) If Ay, A, As, ... are mutually exclusive events (i.e., A; N A; = () for
all i # j), then P(U;2; Ai) = > ooy P(A).
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@ Recall that a random variable X is a function X : Q — R that maps
any point w in the sample space 2 to a real number X (w).

@ A random variable X must satisfy the following: any subset A of
in the form
A={weQ:X(w) € B}
for any “reasonable” B C R is an event. For example B can be any
set obtained by a countable union and intersection of intervals.
@ Recall that a sequence of real numbers {z,,}2° , is said to converge

to a limit z € R (notation: x,, — ) if for any € > 0 there exists N
such that |z, — 2| < € for all n > N.

STAT/MTHE 353: 6 — Convergence and Limit Theorems

Definitions (Modes of convergence) Let {X,} = X1, X2, X3,... be a
sequence of random variables defined in a probability space (2, A, P).

(i) We say that {X,,} converges to a random variable X almost surely
(notation: X,, %3 X) if
P{w: Xp(w) » X(w)}) =1
(i) We say that {X,,} converges to a random variable X in probability
(notation: X, £ X) if for any € > 0 we have
P(|X,—X[>¢) =0 as n— o0
(iii) If r > 0 we say that {X,,} converges to a random variable X in rth
mean (notation: X,, =% X) if
E(|X,—X[") >0 as n—oo
(iv) Let F,, and F denote the cdfs of X,, and X, respectively. We say
that {X,,} converges to a random variable X in distribution
(notation: X, N X) if
F,(z) > F(z) as n— o0
for any x such that F' is continuous at z.
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Remarks:

@ A very important case of convergence in rth mean is when r = 2. In
this case E(|X,, — X|?) — 0 as n — oo and we say that {X,,}
converges in mean square to X.

@ Almost sure convergence is often called convergence with
probability 1.

@ Almost sure convergence, convergence in rth mean, and
convergence in probability all state that X, is eventually close to X
(in different senses) as n increases.

@ In contrast, convergence in distribution is only a statement about
the closeness of the distribution of X,, to that of X for large n.

Example: Sequence {X,,} such that F),(z) = F(z) for all z € R and
n=12,..,but P(|X, — X|>1/2)=1foralln ...
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The following implications hold:

Xn 225 X
X, 2 x|l— X, L x
Xn rT.m. X

Remark: We will show that in general, X,, =25 X does not imply that
X, 2™ X, and also that X,, =+ X does not imply X,, = X.
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Convergence in rth mean implies convergence in probability; i.e., if
m. P
X, 22 X, then X, — X.

Proof: Assume X,, = X for some r > 0; i.e., B(|X,, — X|") — 0 as
n — oo. Then for any € > 0,

P(IX, - X|>¢) = P(X,-X|">¢")
E(Xn — X|)

67”

—0asn— o

where the inequality follows from Markov's inequality applied to the

nonnegative random variable |X,, — X|". O
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Almost sure convergence implies convergence in probability; i.e., if
5. P
X, £ X, then X,, — X.

Proof: Assume X,, =%+ X . We want to show that for any € > 0 we have
P(|X,, — X| > €) = 0 as n — oco. Thus, defining the event

Aa(9) = {0 1 Xnlw) = X ()| > ¢}
we want to show that P (A, (e)) — 0 for any € > 0.
Define
Afe) = {w : | X, (w) — X (w)| > € for infinitely many n}

Then for any w € A(e) we have that X, (w) 4 X(w). Since X,, =% X
we must have that
P(A(e)) =0
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Proof cont’d: Now define the event

By(€) = {w : | Xm(w) — X (w)| > € for some m > n}
Proof cont’d: We clearly have
Notice that By(e) D Ba(€) D -+ D By—1(€) D By(€) D ---; i.e.,

{B,(€)} is a decreasing sequence of events, satisfying An(e) C By(e) foralln

Al) = ﬁ B. (0 so P(An(e)) < P(By(e)), so P(Ay(€)) — 0 as n — co. We obtain

lim P(|X, — X|>¢) =0
Therefore by the continuity of probability
for any € > 0 as claimed. a

P(a0) = P( () Bale)) = Jim P(8.(0)

n=1

But since P(A(¢)) = 0, we obtain that lim P(B,(e)) = 0.

n—oo
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Lemma 7 (Sufficient condition for a.s. convergence)

oo
Suppose > P(|X,, — X| > €) < co for all e > 0. Then X,, 225 X.
n=1

Example: (X, - X does not imply X,, %% X.) Let X1, Xa,... be

independent random variables with distribution
P Proof: Recall the event

1 1
P(Xn=0)=1- n P(Xn=1) = n Ale) = {w : | Xn(w) — X(w)| > € for infinitely many n}
and show that there is a random variable X such that X, £, X, but Then

P({w: X, (w) = X(w)}) =0.
A(e)® = {w: there exists N such that | X, (w)—X(w)| <€ foralln> N}
Solution: ...

For e = 1/k we obtain a decreasing sequence of events {A(l/k)c},jil.

Example: (X, =™ X does not imply X,, =*% X.) Use the previous L
et

example. ..

C= ﬁ A(1/k)°

and notice that if w € C, then X,,(w) — X (w) as n — co. Thus if
P(C) =1, then X,, 2% X.
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Proof cont’'d: But from the continuity of probability
P(C) = P(DlA(l/k) ) = lim P(A(1/k)°)

so if P(A(1/k)¢) =1 for all k, then P(C) =1 and we obtain
X, =25 X. Thus P(A(e)) = 0 for all € > 0 implies X,, == X.

As before, let A, (€) = {w : [ X, (w) — X (w)| > €} and
Bu(e) = {w: | Xm(w) — X(w)| > € for some m > n}
We have seen in the proof of Theorem 6 that
P(A(©) = lim P(B,(0)

Thus if we can show that lim P(B,(¢)) = 0 for all ¢ > 0, then

n—oo
Xn a.s. X
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Proof cont’d: Note that
Bu(e) = |J Am(e)

and that the condition Y07 | P(A,(€)) = > ° | P(| X, — X[ > €) < o0

implies

lim > P(An(e) =0

We obtain
P(Bn(e)) = P( U Am(€)>
(union bound)
= ZP(Am(G)) —0asn— o
so lim P(By(e)) =0 for all € > 0. Thus X, == X. 0
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Example: (X, =25 X does not imply X,, =% X.) Let X1, Xo, ...

random variables with marginal distributions given by

1 1
P(X,=n%) = — P(ano):1—ﬁ

Show that there is a random variable X such that X,, %3 X, but
X, X ifr > 2/3.
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be

Convergence in probability implies convergence in distribution; i.e., if
X, 25 X, then X, -4 X.

Proof: Let F,, and F' be the cdfs of X,, and X, respectively and let
x € R be such that F is continuous at 2. We want to show that
X, =5 X implies F,,(z) — F(z) as n — oo.

For any given € > 0 we have

Fn(x) P(Xngm)
P(Xn§x7X§m+e)+P(X"§w,X>x+6)
P(X <z+e€)+P(|X,—X|>¢)

F(z+e¢)+ P(| X, — X]| >¢)

IN
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Proof cont’d: Similarly,

Flzx—¢) = P(X<z-—¢
PX<z-€6X,<z)+P(X<z-¢ X, >u)
P(Xy <a)+ P(IX, — X| > ¢)

Fy(w) + P(|Xn = X| > ¢)

VAN

We obtain
F(z—¢)— P(|Xn — X[ >€) < Fo(z) < F(z+¢€) + P(|X, — X| >¢)

Since X,, =+ X, we have P(|X, — X|>¢€) = 0 as n — co. Choosing
N (e) large enough so that P(|X,, — X| > ¢€) < € for all n > N{(e), we
obtain

Flx—e)—e<Fp(z) < F(z+e€) +e

for all n > N(e). Since F' is continuous at z, letting ¢ — 0 we obtain
lim,, o0 B (z) = F(2). O
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If X is a constant random variable, then the converse also holds:

Let c €R. If X, L5 ¢, then X,, 2 c.
Proof: For X with P(X = ¢) let F}, and F' be as before and note that

0 fz<e

F(z) =
1 fz>c¢

Then F'is continuous at all « # ¢, so F,,(z) — F(z) as n — oo for all
x #c. Foranye>0

P(|X, —c| >¢) P(X,<c—¢€)+P(X,>c+e)
P(X,<c—¢€)+ P(X,>c+e)

F.lc—e)+1—F,(c+e)

IN

Since F,,(c —€) — 0 and F,,(c+¢€) — 1 as n — 00, we obtain
P(|X, —c|>¢€) = 0asn— oc. a
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Laws of Large Numbers

Let X1, Xo,... be a sequence of independent and identically distributed
(i.i.d.) random variables with finite mean = E(X;) and variance
0% = Var(X;). The sample mean X,, is defined by

L

3\*—‘

Theorem 10 (Weak law of large numbers)

We have X, £, u; ie., forall e >0

nlLII;OP(|Xn —pul>€¢)=0
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Proof: Since the X; are independent,

Var(X, Var( ZX) —~ iZ";Vanz) =—

Since E(X,,) = u, Chebyshev's inequality implies for any ¢ > 0

- Var(X,,) o
P(|Xn_ﬂ|>5)§672=%
Thus P(|X,, — | > €) — 0 as n — oo for any € > 0. a
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Theorem 11 (Strong law of large numbers)

If X1,Xo,... s an i.i.d. sequence with finite mean u = E(X;) and
variance Var(X;) = o2, then X,, =% u; i.e.,

RS
P 5> xi=u) =1

Proof: First we show that the subsequence X2, X52, X532, ... converges

a.s. to p.

Let S, = > i, Xi. Then E(S,2) = n?u and Var(S,2) = ns?. For any
€ > 0 we have by Chebyshev's inequality

P(|Xn2 — pl > ¢)

P(|:2Sn2 — u’ > 6) = P(|Snz —n?u| > n2<—:)
Var(S,2)  o?

nte? n2e2

o) — —
Thus 3 P(|X,2 — p| > €) < 0o and Lemma 7 gives X,,2 = p.

n=1
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Proof cont’d: Next suppose that X; > 0 for all i. Then
Sp(w) = X1(w) + -+ + Xy (w) is a nondecreasing sequence. For any n
there is a unique i, such that i2 < n < (i, + 1)2. Thus

Siz Sn _ Stint1)?
Siz <50 <SG, 412 = (i +1)2 < o < T2

This is equivalent to
i )'Sg  Su_ (41 Sy
int+1l) 2 — n — in (in +1)?

. 2 . 2
7 S S in+1 -
<Zni ) Xiz < X, < ( nin > X(ip+1)?

Letting A = {w : X,;2(w) — u}, we know that P(A) = 1. Since
in/(in +1) = 1 and (i, + 1) /i, — 1 as n — oo, and for all w € A,
X2 (w) = pand X(;, 11)2(w) — p as n — oo, we obtain

Xp(w) = pforallwe A
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Proof cont'd: Now we remove the restriction X; > 0. Define
X;F = max(X;,0), X, =max(—X;,0)

and note that X; = X;" — X, and X;" >0, X;” > 0. Letting

pt=EX]) n~ =E(X;) and

A ={os igxrw) suth ={o: igmm )

we know that P(A;) = P(A3) = 1. Thus P(4; N Ag) = 1. But for all
w € A; N Ay we have

1 1 1
lim — ) X; lim — ) Xf(w)— lim =) X
Ji 2 K = i S XEw) - lim 5D X ()

=1 =1
= pr—p =p

We conclude that %Zlﬂzl X; &, _
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Remark: The condition Var(X;) < oo is not needed. The strong law of
large numbers (SLLN) holds for any i.i.d. sequence X7, Xs,... with finite
mean p = E(Xq).

Example: Simple random walk ...

Example: (Single server queue) Customers arrive one-by-one at a service
station.

@ The time between the arrival of the (i — 1)th and ith customer is Y,
and Y7, Ys, ... are i.i.d. nonnegative random variables with finite
mean E(Y7) and finite variance.

@ The time needed to service the ith customer is U;, and Uy, Us, ...
are i.i.d. nonnegative random variables with finite mean E(U;) and
finite variance.

Show that if E(U;) < E(Y1), then (after the first customer arrives) the
queue will eventually become empty with probability 1.
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Central Limit Theorem

o If X1, X5,... are Bernoulli(p) random variables, then

Sp = X1 + -+ + X, is a Binomial(n, p) random variable with mean
E(S,) = np and variance Var(S,,) = np(1 — p).

@ Recall the De Moivre-Laplace theorem:

lim P<Snnp < x)— D(z)
oo np(1 —p)

where ®(z) = [*_ \/%e_tz/z dt is the cdf of a N (0, 1) random
variable X.

@ Since ®(x) is continuous at every z, the above is equivalent to

Sn —np d
— — X
ovn

where = E(X;) =p and 0 = \/Var(X;) = p(1 — p).
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The De Moivre-Laplace theorem is a special case of the following general
result:

Theorem 12 (Central Limit Theorem)

Let X1, Xo,... be i.i.d. random variables with mean p and finite

variance 2. Then for S, = X1 + - -- + X,, we have

Snonpt d,
o\v/n

where X ~ N(0,1).

Remark: Note that SZ;\/%”‘ = 4()2” — ). The SLLN implies that with
probability 1, X,, —  — 0 as n — oo The central limit theorem (CLT)
tells us something about the speed at which X,, — i converges to zero.
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To prove the CLT we will assume that each X; has MGF M, (t) that is
defined in an open interval around zero. The key to the proof is the

following result which we won't prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Zy, Zs, ... are random variables such that the MGF M, (t) is
defined for all t € (—a,a) for some a > 0 and alln = 1,2,... Suppose X
is a random variable with MGF Mx (t) defined fort € (—a,a). If

lim My, (t) = Mx(t) forallt € (—a,a)

n—o0

then Z,, 4, x.
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Proof of CLT: Let Y;, = X,, — yu. Then E(Y,,) = 0 and Var(Y,,) = o2
Note that N
> i1 Yi _ Sp —np —7
ov/n oy/n "

Letting My (t) denote the (common) moment generating function of the

Y;, we have by the independence of Y7,Y5,...
My () =y ()"
Zn ") = Y ovn
If X ~ N(0,1), then Mx (t) = e*’/2. Thus if we show that

Mz, (t) — e'/2, or equivalently

t2
lim In(Mgz, (1)) = =

n—00 2

then Levy's continuity theorem implies the CLT.
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. _t
Proof cont'd: Let h = ovn’ Then Proof cont’d: Apply I'Hospital’s rule again:

n
. . t \" . 2 InMy(h)
Jim (0 0) =t (0 (7)) A, Mz (1) = 3 iy =
t2 M. (h)
. t =  lim —Y\
2 "
2 () S SO
o2 h50 h2 0% h—0 QMY(h) + QhMY(h)
N : 2 My _t o®
It can be shown that My (h) and all its derivatives are continuous at = - == 5
0'2 2My(0) 02 2
h = 0. Since My (0) = E(e”Y) = 1, the above limit is indeterminate. .2
Applying I'Hospital's rule, we consider the limit Y
t2 . My (h)/My(h) _ ¢ . M (h) Sp—np d
P }ili% — 9, — 2 %lg}] My (h) Thus Mz, (t) — €'*/2 and therefore Z,, = Tn’u 5 X, where

o L , X ~N(,1). O
Again, since M'(0) = E(Y) = 0, the limit is indeterminate.
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