STAT/MTHE 353:

6 - Convergence of Random Variables and Limit Theorems

Markov and Chebyshev Inequalities

Recall that a random variable X is called nonnegative if $P(X \geq 0)=1$.

Theorem 1 (Markov's inequality)

Let X be a nonnegative random variable with mean $E(X)$. Then for any $t>0$

$$
P(X \geq t) \leq \frac{E(X)}{t}
$$

Proof: Assume X is continuous with pdf f. Then $f(x)=0$ if $x<0$, so

$$
\begin{align*}
E(X) & =\int_{0}^{\infty} x f(x) d x \geq \int_{t}^{\infty} x f(x) d x \geq t \int_{t}^{\infty} f(x) d x \\
& =t P(X \geq t)
\end{align*}
$$

If X is discrete, replace the integrals with sums...
Example: Suppose X is nonnegative and $P(X>10)=1 / 5$; show that $E(X) \geq 2$. Also, Markov's inequality for $|X|$.
STAT/MTHE 353 : 6 - Convergence and Limit Theorem

The following result often gives a much sharper bound if the MGF of X is finite in some interval around zero.
Let X be a random variable with finite variance $\operatorname{Var}(X)$.
Then for any $t>0$

$$
P(|X-E(X)| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof: Apply Markov's inequality to the nonnegative random variable $Y=|X-E(X)|^{2}$

$$
\begin{align*}
P(|X-E(X)| \geq t) & =P\left(|X-E(X)|^{2} \geq t^{2}\right) \leq \frac{E\left(|X-E(X)|^{2}\right)}{t^{2}} \\
& =\frac{\operatorname{Var}(X)}{t^{2}}
\end{align*}
$$

Example: Chebyshev with $t=k \sqrt{\operatorname{Var}(X)} \ldots$

Theorem 3 (Chernoff's bound)

Let X be a random variable with MGF $M_{X}(t)$. Then for any $a \in \mathbb{R}$

$$
P(X \geq a) \leq \min _{t>0} e^{-a t} M_{X}(t)
$$

Proof: Fix $t>0$. Then we have

$$
\begin{aligned}
P(X \geq a) & =P(t X \geq t a)=P\left(e^{t X} \geq e^{t a}\right) \\
& \leq \frac{E\left(e^{t X}\right)}{e^{t a}} \quad \text { (Markov's inequality) } \\
& =e^{-t a} M_{X}(t)
\end{aligned}
$$

Since this holds for all $t>0$, it must hold for the t minimizing the upper bound.

Example: Suppose $X \sim N(0,1)$. Apply Chernoff's bound to upper bound $P(X \geq a)$ for $a>0$ and compare with the bounds obtained from Chebyshev's and Markov's inequalities.

Convergence of Random Variables

A probability space is a triple (Ω, \mathcal{A}, P), where Ω is a sample space, \mathcal{A} is a collection of subsets of Ω called events, and P is a probability measure on \mathcal{A}. In particular, the set of events \mathcal{A} satisfies

1) Ω is an event
2) If $A \subset \Omega$ is an event, then A^{c} is also an event
3) If $A_{1}, A_{2}, A_{3}, \ldots$ are events, then so is $\bigcup_{n=1}^{\infty} A_{n}$
P is a function from the collection of events \mathcal{A} to $[0,1]$ which satisfies the axioms of probability:
4) $P(A) \geq 0$ for all events $A \in \mathcal{A}$.
5) $P(\Omega)=1$.
6) If $A_{1}, A_{2}, A_{3}, \ldots$ are mutually exclusive events (i.e., $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j)$, then $P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$.

Definitions (Modes of convergence) Let $\left\{X_{n}\right\}=X_{1}, X_{2}, X_{3}, \ldots$ be a sequence of random variables defined in a probability space (Ω, \mathcal{A}, P).
(i) We say that $\left\{X_{n}\right\}$ converges to a random variable X almost surely (notation: $X_{n} \xrightarrow{\text { a.s. }} X$) if

$$
P\left(\left\{\omega: X_{n}(\omega) \rightarrow X(\omega)\right\}\right)=1
$$

(i) We say that $\left\{X_{n}\right\}$ converges to a random variable X in probability (notation: $X_{n} \xrightarrow{P} X$) if for any $\epsilon>0$ we have

$$
P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(iii) If $r>0$ we say that $\left\{X_{n}\right\}$ converges to a random variable X in r th mean (notation: $X_{n} \xrightarrow{\text { r.m. }} X$) if

$$
E\left(\left|X_{n}-X\right|^{r}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(iv) Let F_{n} and F denote the cdfs of X_{n} and X, respectively. We say that $\left\{X_{n}\right\}$ converges to a random variable X in distribution (notation: $X_{n} \xrightarrow{d} X$) if

$$
F_{n}(x) \rightarrow F(x) \quad \text { as } \quad n \rightarrow \infty
$$

for any x such that F is continuous at x.

Remarks:

- A very important case of convergence in r th mean is when $r=2$. In this case $E\left(\left|X_{n}-X\right|^{2}\right) \rightarrow 0$ as $n \rightarrow \infty$ and we say that $\left\{X_{n}\right\}$ converges in mean square to X.
- Almost sure convergence is often called convergence with probability 1.
- Almost sure convergence, convergence in r th mean, and convergence in probability all state that X_{n} is eventually close to X (in different senses) as n increases.
- In contrast, convergence in distribution is only a statement about the closeness of the distribution of X_{n} to that of X for large n.

Example: Sequence $\left\{X_{n}\right\}$ such that $F_{n}(x)=F(x)$ for all $x \in \mathbb{R}$ and $n=1,2, \ldots$, but $P\left(\left|X_{n}-X\right|>1 / 2\right)=1$ for all $n \ldots$

Theorem 4
The following implications hold:

Remark: We will show that in general, $X_{n} \xrightarrow{\text { a.s. }} X$ does not imply that $X_{n} \xrightarrow{\text { r.m. }} X$, and also that $X_{n} \xrightarrow{\text { r.m. }} X$ does not imply $X_{n} \xrightarrow{\text { a.s. }} X$.

Theorem 6

Almost sure convergence implies convergence in probability; i.e., if $X_{n} \xrightarrow{\text { a.s. }} X$, then $X_{n} \xrightarrow{P} X$.

Proof: Assume $X_{n} \xrightarrow{\text { a.s. }} X$. We want to show that for any $\epsilon>0$ we have $P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, defining the event

$$
A_{n}(\epsilon)=\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}
$$

we want to show that $P\left(A_{n}(\epsilon)\right) \rightarrow 0$ for any $\epsilon>0$.
Define

$$
A(\epsilon)=\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon \text { for infinitely many } n\right\}
$$

Then for any $\omega \in A(\epsilon)$ we have that $X_{n}(\omega) \nrightarrow X(\omega)$. Since $X_{n} \xrightarrow{\text { a.s. }} X$ we must have that

$$
P(A(\epsilon))=0
$$

Proof cont'd: Now define the event

$$
B_{n}(\epsilon)=\left\{\omega:\left|X_{m}(\omega)-X(\omega)\right|>\epsilon \text { for some } m \geq n\right\}
$$

Notice that $B_{1}(\epsilon) \supset B_{2}(\epsilon) \supset \cdots \supset B_{n-1}(\epsilon) \supset B_{n}(\epsilon) \supset \cdots$; i.e., $\left\{B_{n}(\epsilon)\right\}$ is a decreasing sequence of events, satisfying

$$
A(\epsilon)=\bigcap_{n=1}^{\infty} B_{n}(\epsilon)
$$

Therefore by the continuity of probability

$$
P(A(\epsilon))=P\left(\bigcap_{n=1}^{\infty} B_{n}(\epsilon)\right)=\lim _{n \rightarrow \infty} P\left(B_{n}(\epsilon)\right)
$$

But since $P(A(\epsilon))=0$, we obtain that $\lim _{n \rightarrow \infty} P\left(B_{n}(\epsilon)\right)=0$.

Example: $\left(X_{n} \xrightarrow{P} X\right.$ does not imply $X_{n} \xrightarrow{\text { a.s. }} X$.) Let X_{1}, X_{2}, \ldots be independent random variables with distribution

$$
P\left(X_{n}=0\right)=1-\frac{1}{n}, \quad P\left(X_{n}=1\right)=\frac{1}{n}
$$

and show that there is a random variable X such that $X_{n} \xrightarrow{P} X$, but $P\left(\left\{\omega: X_{n}(\omega) \rightarrow X(\omega)\right\}\right)=0$.
Solution: ...
Example: $\left(X_{n} \xrightarrow{\text { r.m. }} X\right.$ does not imply $X_{n} \xrightarrow{\text { a.s. }} X$.) Use the previous example...

Proof cont'd: We clearly have

$$
A_{n}(\epsilon) \subset B_{n}(\epsilon) \quad \text { for all } n
$$

so $P\left(A_{n}(\epsilon)\right) \leq P\left(B_{n}(\epsilon)\right)$, so $P\left(A_{n}(\epsilon)\right) \rightarrow 0$ as $n \rightarrow \infty$. We obtain

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\epsilon\right)=0
$$

for any $\epsilon>0$ as claimed.

Lemma 7 (Sufficient condition for a.s. convergence)

Suppose $\sum_{n=1}^{\infty} P\left(\left|X_{n}-X\right|>\epsilon\right)<\infty$ for all $\epsilon>0$. Then $X_{n} \xrightarrow{\text { a.s. }} X$.

Proof: Recall the event

$$
A(\epsilon)=\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon \text { for infinitely many } n\right\}
$$

Then
$A(\epsilon)^{c}=\left\{\omega\right.$: there exists N such that $\left|X_{n}(\omega)-X(\omega)\right| \leq \epsilon$ for all $\left.n \geq N\right\}$
For $\epsilon=1 / k$ we obtain a decreasing sequence of events $\left\{A(1 / k)^{c}\right\}_{k=1}^{\infty}$. Let

$$
C=\bigcap_{k=1}^{\infty} A(1 / k)^{c}
$$

and notice that if $\omega \in C$, then $X_{n}(\omega) \rightarrow X(\omega)$ as $n \rightarrow \infty$. Thus if $P(C)=1$, then $X_{n} \xrightarrow{\text { a.s. }} X$.

Proof cont'd: But from the continuity of probability

$$
P(C)=P\left(\bigcap_{k=1}^{\infty} A(1 / k)^{c}\right)=\lim _{k \rightarrow \infty} P\left(A(1 / k)^{c}\right)
$$

so if $P\left(A(1 / k)^{c}\right)=1$ for all k, then $P(C)=1$ and we obtain $X_{n} \xrightarrow{\text { a.s. }} X$. Thus $P(A(\epsilon))=0$ for all $\epsilon>0$ implies $X_{n} \xrightarrow{\text { a.s. }} X$.
As before, let $A_{n}(\epsilon)=\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}$ and

$$
B_{n}(\epsilon)=\left\{\omega:\left|X_{m}(\omega)-X(\omega)\right|>\epsilon \text { for some } m \geq n\right\}
$$

We have seen in the proof of Theorem 6 that

$$
P(A(\epsilon))=\lim _{n \rightarrow \infty} P\left(B_{n}(\epsilon)\right)
$$

Thus if we can show that $\lim _{n \rightarrow \infty} P\left(B_{n}(\epsilon)\right)=0$ for all $\epsilon>0$, then $X_{n} \xrightarrow{\text { a.s. }} X$.

Example: $\left(X_{n} \xrightarrow{\text { a.s. }} X\right.$ does not imply $X_{n} \xrightarrow{\text { r.m. }} X$.) Let X_{1}, X_{2}, \ldots be random variables with marginal distributions given by

$$
P\left(X_{n}=n^{3}\right)=\frac{1}{n^{2}}, \quad P\left(X_{n}=0\right)=1-\frac{1}{n^{2}}
$$

Show that there is a random variable X such that $X_{n} \xrightarrow{\text { a.s. }} X$, but $X_{n} \xrightarrow{\text { r.m. }} X$ if $r \geq 2 / 3$.

Proof cont'd: Note that

$$
B_{n}(\epsilon)=\bigcup_{m=n}^{\infty} A_{m}(\epsilon)
$$

and that the condition $\sum_{n=1}^{\infty} P\left(A_{n}(\epsilon)\right)=\sum_{n=1}^{\infty} P\left(\left|X_{n}-X\right|>\epsilon\right)<\infty$ implies

$$
\lim _{n \rightarrow \infty} \sum_{m=n}^{\infty} P\left(A_{n}(\epsilon)\right)=0
$$

We obtain

$$
\begin{aligned}
P\left(B_{n}(\epsilon)\right) & =P\left(\bigcup_{m=n}^{\infty} A_{m}(\epsilon)\right) \\
& \leq \sum_{m=n}^{\infty} P\left(A_{m}(\epsilon)\right) \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} P\left(B_{n}(\epsilon)\right)=0$ for all $\epsilon>0$. Thus $X_{n} \xrightarrow{\text { a.s. }} X$.

Theorem 8

Convergence in probability implies convergence in distribution; i.e., if $X_{n} \xrightarrow{P} X$, then $X_{n} \xrightarrow{d} X$.

Proof: Let F_{n} and F be the cdfs of X_{n} and X, respectively and let $x \in \mathbb{R}$ be such that F is continuous at x. We want to show that $X_{n} \xrightarrow{P} X$ implies $F_{n}(x) \rightarrow F(x)$ as $n \rightarrow \infty$.
For any given $\epsilon>0$ we have

$$
\begin{aligned}
F_{n}(x) & =P\left(X_{n} \leq x\right) \\
& =P\left(X_{n} \leq x, X \leq x+\epsilon\right)+P\left(X_{n} \leq x, X>x+\epsilon\right) \\
& \leq P(X \leq x+\epsilon)+P\left(\left|X_{n}-X\right|>\epsilon\right) \\
& =F(x+\epsilon)+P\left(\left|X_{n}-X\right|>\epsilon\right)
\end{aligned}
$$

Proof cont'd: Similarly,

$$
\begin{aligned}
F(x-\epsilon) & =P(X \leq x-\epsilon) \\
& =P\left(X \leq x-\epsilon, X_{n} \leq x\right)+P\left(X \leq x-\epsilon, X_{n}>x\right) \\
& \leq P\left(X_{n} \leq x\right)+P\left(\left|X_{n}-X\right|>\epsilon\right) \\
& =F_{n}(x)+P\left(\left|X_{n}-X\right|>\epsilon\right)
\end{aligned}
$$

We obtain

$$
F(x-\epsilon)-P\left(\left|X_{n}-X\right|>\epsilon\right) \leq F_{n}(x) \leq F(x+\epsilon)+P\left(\left|X_{n}-X\right|>\epsilon\right)
$$

Since $X_{n} \xrightarrow{P} X$, we have $P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$. Choosing $N(\epsilon)$ large enough so that $P\left(\left|X_{n}-X\right|>\epsilon\right)<\epsilon$ for all $n \geq N(\epsilon)$, we obtain

$$
F(x-\epsilon)-\epsilon \leq F_{n}(x) \leq F(x+\epsilon)+\epsilon
$$

for all $n \geq N(\epsilon)$. Since F is continuous at x, letting $\epsilon \rightarrow 0$ we obtain $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$.

Laws of Large Numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables with finite mean $\mu=E\left(X_{i}\right)$ and variance $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$. The sample mean \bar{X}_{n} is defined by

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Theorem 10 (Weak law of large numbers)
We have $\bar{X}_{n} \xrightarrow{P} \mu$; i.e., for all $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0
$$

If X is a constant random variable, then the converse also holds:

Theorem 9

Let $c \in \mathbb{R}$. If $X_{n} \xrightarrow{d} c$, then $X_{n} \xrightarrow{P} c$.
Proof: For X with $P(X=c)$ let F_{n} and F be as before and note that

$$
F(x)= \begin{cases}0 & \text { if } x<c \\ 1 & \text { if } x \geq c\end{cases}
$$

Then F is continuous at all $x \neq c$, so $F_{n}(x) \rightarrow F(x)$ as $n \rightarrow \infty$ for all $x \neq c$. For any $\epsilon>0$

$$
\begin{aligned}
P\left(\left|X_{n}-c\right|>\epsilon\right) & =P\left(X_{n}<c-\epsilon\right)+P\left(X_{n}>c+\epsilon\right) \\
& \leq P\left(X_{n} \leq c-\epsilon\right)+P\left(X_{n}>c+\epsilon\right) \\
& =F_{n}(c-\epsilon)+1-F_{n}(c+\epsilon)
\end{aligned}
$$

Since $F_{n}(c-\epsilon) \rightarrow 0$ and $F_{n}(c+\epsilon) \rightarrow 1$ as $n \rightarrow \infty$, we obtain $P\left(\left|X_{n}-c\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof: Since the X_{i} are independent,

$$
\operatorname{Var}\left(\bar{X}_{n}\right)=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{\sigma^{2}}{n}
$$

Since $E\left(\bar{X}_{n}\right)=\mu$, Chebyshev's inequality implies for any $\epsilon>0$

$$
P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \leq \frac{\operatorname{Var}\left(\bar{X}_{n}\right)}{\epsilon^{2}}=\frac{\sigma}{\epsilon^{2} n}
$$

Thus $P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$ for any $\epsilon>0$.

Theorem 11 (Strong law of large numbers)

If X_{1}, X_{2}, \ldots is an i.i.d. sequence with finite mean $\mu=E\left(X_{i}\right)$ and variance $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, then $\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu$; i.e.,

$$
P\left(\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mu\right)=1
$$

Proof: First we show that the subsequence $\bar{X}_{1^{2}}, \bar{X}_{2^{2}}, \bar{X}_{3^{2}}, \ldots$ converges a.s. to μ.

Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then $E\left(S_{n^{2}}\right)=n^{2} \mu$ and $\operatorname{Var}\left(S_{n^{2}}\right)=n^{2} \sigma^{2}$. For any $\epsilon>0$ we have by Chebyshev's inequality

$$
\begin{aligned}
P\left(\left|\bar{X}_{n^{2}}-\mu\right|>\epsilon\right) & =P\left(\left|\frac{1}{n^{2}} S_{n^{2}}-\mu\right|>\epsilon\right)=P\left(\left|S_{n^{2}}-n^{2} \mu\right|>n^{2} \epsilon\right) \\
& \leq \frac{\operatorname{Var}\left(S_{n^{2}}\right)}{n^{4} \epsilon^{2}}=\frac{\sigma^{2}}{n^{2} \epsilon^{2}}
\end{aligned}
$$

Thus $\sum_{n=1}^{\infty} P\left(\left|\bar{X}_{n^{2}}-\mu\right|>\epsilon\right)<\infty$ and Lemma 7 gives $\bar{X}_{n^{2}} \xrightarrow{\text { a.s. }} \mu$.

Proof cont'd: Now we remove the restriction $X_{i} \geq 0$. Define

$$
X_{i}^{+}=\max \left(X_{i}, 0\right), \quad X_{i}^{-}=\max \left(-X_{i}, 0\right)
$$

and note that $X_{i}=X_{i}^{+}-X_{i}^{-}$and $X_{i}^{+} \geq 0, X_{i}^{-} \geq 0$. Letting $\mu^{+}=E\left(X_{i}^{+}\right), \mu^{-}=E\left(X_{i}^{-}\right)$and
$A_{1}=\left\{\omega: \frac{1}{n} \sum_{i=1}^{n} X_{i}^{+}(\omega) \rightarrow \mu^{+}\right\}, \quad A_{2}=\left\{\omega: \frac{1}{n} \sum_{i=1}^{n} X_{i}^{-}(\omega) \rightarrow \mu^{-}\right\}$
we know that $P\left(A_{1}\right)=P\left(A_{2}\right)=1$. Thus $P\left(A_{1} \cap A_{2}\right)=1$. But for all $\omega \in A_{1} \cap A_{2}$ we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}(\omega) & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{+}(\omega)-\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{-}(\omega) \\
& =\mu^{+}-\mu^{-}=\mu
\end{align*}
$$

We conclude that $\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{\text { a.s. }} \mu$.

Proof cont'd: Next suppose that $X_{i} \geq 0$ for all i. Then $S_{n}(\omega)=X_{1}(\omega)+\cdots+X_{n}(\omega)$ is a nondecreasing sequence. For any n there is a unique i_{n} such that $i_{n}^{2} \leq n<\left(i_{n}+1\right)^{2}$. Thus

$$
S_{i_{n}^{2}} \leq S_{n} \leq S_{\left(i_{n}+1\right)^{2}} \quad \Longrightarrow \quad \frac{S_{i_{n}^{2}}}{\left(i_{n}+1\right)^{2}} \leq \frac{S_{n}}{n} \leq \frac{S_{\left(i_{n}+1\right)^{2}}}{i_{n}^{2}}
$$

This is equivalent to

$$
\left(\frac{i_{n}}{i_{n}+1}\right)^{2} \frac{S_{i_{n}^{2}}^{2}}{i_{n}^{2}} \leq \frac{S_{n}}{n} \leq\left(\frac{i_{n}+1}{i_{n}}\right)^{2} \frac{S_{\left(i_{n}+1\right)^{2}}}{\left(i_{n}+1\right)^{2}}
$$

i.e.

$$
\left(\frac{i_{n}}{i_{n}+1}\right)^{2} \bar{X}_{i_{n}^{2}} \leq \bar{X}_{n} \leq\left(\frac{i_{n}+1}{i_{n}}\right)^{2} \bar{X}_{\left(i_{n}+1\right)^{2}}
$$

Letting $A=\left\{\omega: \bar{X}_{n^{2}}(\omega) \rightarrow \mu\right\}$, we know that $P(A)=1$. Since
$i_{n} /\left(i_{n}+1\right) \rightarrow 1$ and $\left(i_{n}+1\right) / i_{n} \rightarrow 1$ as $n \rightarrow \infty$, and for all $\omega \in A$,
$\bar{X}_{i_{n}^{2}}(\omega) \rightarrow \mu$ and $\bar{X}_{\left(i_{n}+1\right)^{2}}(\omega) \rightarrow \mu$ as $n \rightarrow \infty$, we obtain

$$
\bar{X}_{n}(\omega) \rightarrow \mu \text { for all } \omega \in A
$$

Remark: The condition $\operatorname{Var}\left(X_{i}\right)<\infty$ is not needed. The strong law of large numbers (SLLN) holds for any i.i.d. sequence X_{1}, X_{2}, \ldots with finite mean $\mu=E\left(X_{1}\right)$.

Example: Simple random walk...
Example: (Single server queue) Customers arrive one-by-one at a service station.

- The time between the arrival of the $(i-1)$ th and i th customer is Y_{i}, and Y_{1}, Y_{2}, \ldots are i.i.d. nonnegative random variables with finite mean $E\left(Y_{1}\right)$ and finite variance.
- The time needed to service the i th customer is U_{i}, and U_{1}, U_{2}, \ldots are i.i.d. nonnegative random variables with finite mean $E\left(U_{1}\right)$ and finite variance.

Show that if $E\left(U_{1}\right)<E\left(Y_{1}\right)$, then (after the first customer arrives) the queue will eventually become empty with probability 1 .

Central Limit Theorem

- If X_{1}, X_{2}, \ldots are $\operatorname{Bernoulli}(p)$ random variables, then $S_{n}=X_{1}+\cdots+X_{n}$ is a $\operatorname{Binomial}(n, p)$ random variable with mean $E\left(S_{n}\right)=n p$ and variance $\operatorname{Var}\left(S_{n}\right)=n p(1-p)$.
- Recall the De Moivre-Laplace theorem:

$$
\lim _{n \rightarrow \infty} P\left(\frac{S_{n}-n p}{\sqrt{n p(1-p)}} \leq x\right)=\Phi(x)
$$

where $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$ is the cdf of a $N(0,1)$ random variable X.

- Since $\Phi(x)$ is continuous at every x, the above is equivalent to

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{d} X
$$

where $\mu=E\left(X_{1}\right)=p$ and $\sigma=\sqrt{\operatorname{Var}\left(X_{1}\right)}=p(1-p)$.

To prove the CLT we will assume that each X_{i} has MGF $M_{X_{i}}(t)$ that is defined in an open interval around zero. The key to the proof is the following result which we won't prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Z_{1}, Z_{2}, \ldots are random variables such that the MGF $M_{Z_{n}}(t)$ is defined for all $t \in(-a, a)$ for some $a>0$ and all $n=1,2, \ldots$ Suppose X is a random variable with MGF $M_{X}(t)$ defined for $t \in(-a, a)$. If

$$
\lim _{n \rightarrow \infty} M_{Z_{n}}(t)=M_{X}(t) \text { for all } t \in(-a, a)
$$

then $Z_{n} \xrightarrow{d} X$.

The De Moivre-Laplace theorem is a special case of the following general result:

Theorem 12 (Central Limit Theorem)

Let X_{1}, X_{2}, \ldots be i.i.d. random variables with mean μ and finite variance σ^{2}. Then for $S_{n}=X_{1}+\cdots+X_{n}$ we have

$$
\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{d} X
$$

where $X \sim N(0,1)$.

Remark: Note that $\frac{S_{n}-n \mu}{\sigma \sqrt{n}}=\frac{\sqrt{n}}{\sigma}\left(\bar{X}_{n}-\mu\right)$. The SLLN implies that with probability $1, \bar{X}_{n}-\mu \rightarrow 0$ as $n \rightarrow \infty$ The central limit theorem (CLT) tells us something about the speed at which $\bar{X}_{n}-\mu$ converges to zero.

Proof of CLT: Let $Y_{n}=X_{n}-\mu$. Then $E\left(Y_{n}\right)=0$ and $\operatorname{Var}\left(Y_{n}\right)=\sigma^{2}$. Note that

$$
\frac{\sum_{i=1}^{n} Y_{i}}{\sigma \sqrt{n}}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}=Z_{n}
$$

Letting $M_{Y}(t)$ denote the (common) moment generating function of the Y_{i}, we have by the independence of Y_{1}, Y_{2}, \ldots

$$
M_{Z_{n}}(t)=M_{Y}\left(\frac{t}{\sigma \sqrt{n}}\right)^{n}
$$

If $X \sim N(0,1)$, then $M_{X}(t)=e^{t^{2} / 2}$. Thus if we show that $M_{Z_{n}}(t) \rightarrow e^{t^{2} / 2}$, or equivalently

$$
\lim _{n \rightarrow \infty} \ln \left(M_{Z_{n}}(t)\right)=\frac{t^{2}}{2}
$$

then Levy's continuity theorem implies the CLT.

Proof cont'd: Let $h=\frac{t}{\sigma \sqrt{n}}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(M_{Z_{n}}(t)\right) & =\lim _{n \rightarrow \infty} \ln \left(M_{Y}\left(\frac{t}{\sigma \sqrt{n}}\right)^{n}\right) \\
& =\lim _{n \rightarrow \infty} n \ln \left(M_{Y}\left(\frac{t}{\sigma \sqrt{n}}\right)\right) \\
& =\frac{t^{2}}{\sigma^{2}} \lim _{h \rightarrow 0} \frac{\ln M_{Y}(h)}{h^{2}}
\end{aligned}
$$

It can be shown that $M_{Y}(h)$ and all its derivatives are continuous at $h=0$. Since $M_{Y}(0)=E\left(e^{0 \cdot Y}\right)=1$, the above limit is indeterminate.
Applying l'Hospital's rule, we consider the limit

$$
\frac{t^{2}}{\sigma^{2}} \lim _{h \rightarrow 0} \frac{M_{Y}^{\prime}(h) / M_{Y}(h)}{2 h}=\frac{t^{2}}{\sigma^{2}} \lim _{h \rightarrow 0} \frac{M_{Y}^{\prime}(h)}{2 h M_{Y}(h)}
$$

Again, since $M^{\prime}(0)=E(Y)=0$, the limit is indeterminate.

Proof cont'd: Apply l'Hospital's rule again:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \ln \left(M_{Z_{n}}(t)\right) & =\frac{t^{2}}{\sigma^{2}} \lim _{h \rightarrow 0} \frac{\ln M_{Y}(h)}{h^{2}} \\
& =\frac{t^{2}}{\sigma^{2}} \lim _{h \rightarrow 0} \frac{M_{Y}^{\prime}(h)}{2 h M_{Y}(h)} \\
& =\frac{t^{2}}{\sigma^{2}} \lim _{h \rightarrow 0} \frac{M_{Y}^{\prime \prime}(h)}{2 M_{Y}(h)+2 h M_{Y}^{\prime}(h)} \\
& =\frac{t^{2}}{\sigma^{2}} \cdot \frac{M_{Y}^{\prime \prime}(0)}{2 M_{Y}(0)}=\frac{t^{2}}{\sigma^{2}} \cdot \frac{\sigma^{2}}{2} \\
& =\frac{t^{2}}{2}
\end{aligned}
$$

Thus $M_{Z_{n}}(t) \rightarrow e^{t^{2} / 2}$ and therefore $Z_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \xrightarrow{d} X$, where $X \sim N(0,1)$.

