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Markov and Chebyshev Inequalities

Recall that a random variable X is called nonnegative if P(X > 0) = 1.

Theorem 1 (Markov's inequality)

Let X be a nonnegative random variable with mean E(X). Then for any

t>0
E(X)

P(X 2t) < —

Proof: Assume X is continuous with pdf f. Then f(z) =0 if z <0, so
EX) = / xf(x)de/ xf(x)dxzt/ flx)dx
0 ¢ ¢
= tP(X >1)

If X is discrete, replace the integrals with sums. .. O

Example: Suppose X is nonnegative and P(X > 10) = 1/5; show that
E(X) > 2. Also, Markov's inequality for | X|.

STAT/MTHE 353: 6 — Convergence and Limit Theorems 1/34 STAT/MTHE 353: 6 — Convergence and Limit Theorems 2 /34
isian 2 (@idaaieds fis o) .Th-e .follc-)wing res.,ult often gives a much sharper bound if the MGF of X
_ o ) is finite in some interval around zero.
Let X be a random variable with finite variance Var(X). Then for any
>0 Theorem 3 (Chernoff’s bound)
P(X — B(X)| > 1) < Vang) Let X be a random variable with MGF Mx (t). Then for any a € R
P(X >a) < mi(r)le_“tMX(t)
Proof: Apply Markov's inequality to the nonnegative random variable =
Y =|X - E(X))?
| (X)] Proof: Fix t > 0. Then we have
E(IX - E(X)*
P(IX -EX)|>t) = P(X-EX)]?>¢)< ( - ) P(X >a) = P(tX >ta)=P(c!X > ¢'?)
Var(X E tX
= a;g ) O < % (Markov's inequality)
= e_mMX (t)
Example: Chebyshev with ¢t = ky/Var(X) ... Since this holds for all £ > 0 such that Mx () < oo, it must hold for the
t minimizing the upper bound. ]
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Example: Suppose X ~ N(0,1). Apply Chernoff’'s bound to upper
bound P(X > a) for a > 0 and compare with the bounds obtained from
Chebyshev's and Markov's inequalities.

Convergence of Random Variables

A probability space is a triple (2, A, P), where ) is a sample space, A is
a collection of subsets of () called events, and P is a probability measure
on A. In particular, the set of events A satisfies

1) Qs an event

2) If A C Qis an event, then A€ is also an event

3) If Ay, Az, As, ... are events, then so is [ ;- | A,.

P is a function from the collection of events A to [0, 1] which satisfies
the axioms of probability:
1) P(A) > 0 for all events A € A.
2) P(Q) =1.
3) If Ay, Ay, As, ... are mutually exclusive events (i.e., A;NA; =0 for
all i # j), then P(U;2; A;) = Yooy P(A).
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Definitions (Modes of convergence) Let {X,,} = X7, X5, X3,... bea
sequence of random variables defined in a probability space (2, A, P).
(i) We say that {X,,} converges to a random variable X almost surely
@ Recall that a random variable X is a function X : 2 — R that maps (notation: X, %55 X) if
any point w in the sample space (2 to a real number X (w).
PHw: X,(w) = X(w)}) =1
@ A random variable X must satisfy the following: any subset A of ) . ) . ..
_ y & any (i) We say that {X,,} converges to a random variable X in probability
in the form . P .
(notation: X,, — X) if for any € > 0 we have
A={weN: X(w) € B}
P(|X,—X[>€¢) =0 as n— o0
for any “reasonable” B C R is an event. For example B can be an ) )
y ] } ] ) P ) y (i) If » > 0 we say that {X,,} converges to a random variable X in rth
set obtained by a countable union and intersection of intervals. . om. .
mean (notation: X,, — X) if
@ Recall that a sequence of real numbers {x,,}°2; is said to converge ,
. q _ _ (o oz nvere E(|X,—X|") =0 as n— oo
to a limit € R (notation: x,, — ) if for any € > 0 there exists N
such that |z, — 2| < ¢ for all n > N. (iv) Let F,, and F denote the cdfs of X, and X, respectively. We say
that {X,,} converges to a random variable X in distribution
(notation: X, N X)if
F.(z) > F(z) as n— oo
for any x such that F'is continuous at x.
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Remarks:

@ A very important case of convergence in rth mean is when r = 2. In
this case E(|X,, — X|?) — 0 as n — oo and we say that {X,,}
converges in mean square to X.

@ Almost sure convergence is often called convergence with
probability 1.

@ Almost sure convergence, convergence in rth mean, and
convergence in probability all state that X, is eventually close to X
(in different senses) as n increases.

@ In contrast, convergence in distribution is only a statement about
the closeness of the distribution of X, to that of X for large n.

Example: Sequence {X,} such that F,,(x) = F(z) for all z € R and
n=12,..,but P(|X,, - X|>1/2)=1foralln ...
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Theorem 4
The following implications hold:

X, 5 X

~

X, — X

Remark: We will show that in general, X,, = X does not imply that
X,, “™5 X, and also that X,, =™ X does not imply X,, =23 X.
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Theorem 5

Convergence in rth mean implies convergence in probability; i.e., if
X, ™5 X, then X, — X.

Proof: Assume X,, 5 X for some r > 0; i.e., E(|X,, — X|") — 0 as
n — 0o. Then for any € > 0,

P(|X, —X|>¢) = P(X,—X|">¢)
E(|Xn — X|")

67”

—0asn— o0

where the inequality follows from Markov's inequality applied to the

nonnegative random variable | X,, — X|". O
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Theorem 6

Almost sure convergence implies convergence in probability; i.e., if
X, %% X, then X,, 2 X.

Proof: Assume X, =2 X. We want to show that for any ¢ > 0 we have
P(|X,, — X| >¢€) = 0 as n — oo. Thus, defining the event

Ap(e) = {w: | Xn(w) — X (w)| > €}

we want to show that P(A,(€)) — 0 for any € > 0.

Define
Ale) = {w | Xn(w) — X(w)| > € for infinitely many n}

Then for any w € A(¢) we have that X,,(w) % X(w). Since X,, £ X
we must have that

P(A(e)) =0
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Proof cont'd: Now define the event
By(€) = {w: | Xm(w) — X(w)| > € for some m > n}

Notice that Bi(e) D Ba(€) D -+ D By—1(€) D Bp(€) D - i.e.,
{Bn(e)} is a decreasing sequence of events, satisfying

Proof cont’d: We clearly have
Ap(e) C By(e) foralln
so P(A,(€)) < P(By(e)), so P(A,(€)) — 0 as n — oo. We obtain

lim P(|X, — X|>¢€) =0

n—oo
Therefore by the continuity of probability
for any € > 0 as claimed. O
(o)
P(A(e) = p( Ol Bn(@) — lim P(B,(0)
But since P(A(e)) = 0, we obtain that lim P(B,(e)) = 0.
n—oo
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Lemma 7 (Sufficient condition for a.s. convergence)
Suppose Y. P(|X,, — X|>¢€) < o for all e > 0. Then X,, == X.
Example: (X, P4 X does not imply X,, =% X.) Let X1, Xo,... be =t
ind dent rand iables with distributi
independent random variables with distribution Proof: Recall the event
1 1
P(Xn=0)=1- n’ P(Xn=1)= n Ale) = {w : [ X, (w) — X (w)| > € for infinitely many n}
and show that there is a random variable X such that X, L X, but Then
PH{w: X,(w) = X(w)}) =0.
A(e)® = {w: there exists N such that | X, (w)—X(w)| < € foralln> N}
Solution: ...
Example (X, Z% X does not imply X, = X.) Use the previous Eor € = 1/k we obtain a decreasing sequence of events { A(1/k)°},” .
example. .. et S
C=()AQ1/k)"
k=1
and notice that if w € C, then X, (w) — X (w) as n — co. Thus if
P(C) =1, then X,, *25 X.
STAT/MTHE 353: 6 — Convergence and Limit Theorems 15 / 34 STAT/MTHE 353: 6 — Convergence and Limit Theorems 16 / 34




Proof cont’d: But from the continuity of probability
=P A(1/k)¢ ) = lim P(A(1/k)°
(ﬂ (1/0°) = Jim P(A(1/K))

so if P(A(1/k)¢) =1 for all k, then P(C) =1 and we obtain

Proof cont'd: Note that

€) = U A (€)

and that the condition >0 | P(A,(e)) =307, P(| X, — X| > €) < 0

implies
X, =25 X. Thus P(A(e)) =0 for all € > 0 implies X,, =% X. ol
lim > P(An(€)) =0
As before, let Ay, (e) = {w : | X, (w) — X(w)| > €} and BT =n
We obtain
By(€) = {w: | Xm(w) — X(w)| > € for some m > n}
(oo}
We have seen in the proof of Theorem 6 that P(Bu(e) = P( L) Am<€)>
ion bound
P(A(¢)) = lim P(By(e)) (union bound)
n—oo
< Z P —> 0asn— o0
Thus if we can show that lim P(B,(¢e)) =0 for all € > 0, then o
n—oo
Xn as} X . a.s.
so lim P(B,(e)) =0 for all e > 0. Thus X,, — X. O
n—oo
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Theorem 8
Convergence in probability implies convergence in distribution; i.e., if
X, 25 X, then X,, % X.
Example: (X,, 223 X does not imply X,, =% X.) Let X1, Xo,... be
random variables with marginal distributions given by Proof: Let F,, and F be the cdfs of X,, and X, respectively and let
s 1 1 z € R be such that F' is continuous at x. We want to show that
P(X,=n ):ﬁ’ P(ano)—l*ﬁ X, 25 x implies F,(x) — F(z) as n — oo.
Show that there is a random variable X such that X, =23 X, but For any given € > 0 we have
X, X ifr>2/3.
/ Fux) = P(X, <)
= ( X<1;+e)—|—P(X <z, X>ac+e)
< P(X x+e)+P(|X —X|>e)
= F(z+e+P(|X,—X|>¢)
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Proof cont’d: Similarly,

Flx—e) = P(X<z—¢

(X<:r—e X,L§$)+P(X<x—e Xn>a:)
P(X, <z)+P(|X, — X| > ¢)

Fo(z) + P(|X, — X| > ¢)

IN

We obtain

F(z—€)— P(|X,— X|>€) < Fy(z) < F(z+e€) + P(|X, — X[ >¢)
Since X,, == X, we have P(|X, — X| >€) — 0 as n — co. Choosing
N (e) large enough so that P(|X,, — X| > €) < for all n > N(e), we
obtain

Fla—e)—e<F,(z)<F(zx+e€)+e

for all n > N(e). Since F is continuous at z, letting e — 0 we obtain

If X is a constant random variable, then the converse also holds:
Theorem 9

Letce R. If X, i> ¢, then X,, L c.

Proof: For X with P(X = ¢) let F,, and F be as before and note that

0 fxz<e

F(x) =
1 ifz>c

Then F'is continuous at all z # ¢, so F,(x) — F(z) as n — oo for all
x # c. Forany e >0

P(1X,, —c|>¢) P(X,<c—e€)+P(X,>c+e)
P(X,<c—¢)+P(X,>c+e)

F.(c—€)+1—F,(c+e)

IN

Since F,(¢c—€) = 0 and F,,(c+¢€) — 1 as n — oo, we obtain

lim F,(x) = F(x). (]
noo Fu(2) (=) P(|Xy —¢| >€) = 0asn— oo. O
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Laws of Large Numbers
Let X1, Xo,... be a sequence of independent and identically distributed Proof: Since the X; are independent,
(i i.d.) random variables with finite mean y = E(X;) and variance n o2
0?2 = Var(X;). The sample mean X,, is defined by Var(X, Var( ZX> n2 ZVar(Xi) B
i=1
Iy o
fl Z Since E(X,,) = u, Chebyshev's inequality implies for any € > 0
n
- - Var(X,,) o
P(an_/J|>€>§762 :E
Theorem 10 (Weak law of large numbers) _
L Thus P(| X, — u| > €) — 0 as n — oo for any € > 0. O
We have X,, — pu; i.e., for all e > 0
lim P(|X, —p| >€) =0
n—r oo
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Theorem 11 (Strong law of large numbers)

If X1,X5,... s an i.i.d. sequence with finite mean u = E(X;) and
variance Var(X;) = o2, then X,, *>5 p; ie.,

1 n
Pl lim =S X;=pn) =1
(i 5> =n)

Proof: First we show that the subsequence X2, X2, X32, ... converges
a.s. to pu.

Let S, = > i, X;. Then E(S,2) = n?u and Var(S,2) = n?s?. For any
€ > 0 we have by Chebyshev's inequality

P(|Xn2 — > e) P<|n125”2 — u| > e) = P(|Sn2 —n2u > ’/l26)

Var(S,2) o2

nte2  n2e2
Thus > P(|X,2 — p| > €) < 0o and Lemma 7 gives X,,2 == p.
n=1
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Proof cont’d: Next suppose that X; > 0 for all i. Then
Sp(w) = X1(w) + -+ + X, (w) is a nondecreasing sequence. For any n
there is a unique integer i,, such that i2 < n < (i, + 1)%. Thus

S’i %
2 o Sn o Sty

Sz <5, <8 == -
n e = Pl (Zn + 1)2 on Z%

This is equivalent to

25}% < Sn < in +1) S(in+1)?
2~ n ~ in (in, +1)2
ie.
- in + 1
(Zn+1) i2 X ( Zn > X(l +1)2
Letting A = {w : X,,2(w) — u}, we know that P(A) = 1. Since

in/(in +1) = 1 and (ip, +1)/in — 1 as n — oo, and for all w € A4,
X2 (w) = pand X(;, 41y2(w) = p as n — oo, we obtain

Xp(w) > pforallwe A
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Proof cont'd: Now we remove the restriction X; > 0. Define

X" = max(X;,0), X; = max(—X;,0)

K2 ?

and note that X; = X;" — X, and X;" >0, X;” > 0. Letting

7

it = BX]), i~ = E(X]) and

={w:iixr<w>ﬂ+}, Agz{w:}émww—}

we know that P(A4;) = P(A2) = 1. Thus P(4; N Ay) = 1. But for all
w € A1 N Ay we have

1 B B N
Jim g 2 Xw) =l 2 XT() =l D)X ()
= pr—p=p
We conclude that £ 37 | X; 225 4. O
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Remark: The condition Var(X;) < oo is not needed. The strong law of
large numbers (SLLN) holds for any i.i.d. sequence X1, Xo, ... with finite
mean u = E(X7).

Example: Simple random walk ...

Example: (Single server queue) Customers arrive one-by-one at a service

station.

@ The time between the arrival of the (¢ — 1)th and ith customer is Y;,
and Y7,Y5, ... are i.i.d. nonnegative random variables with finite
mean FE(Y7) and finite variance.

@ The time needed to service the ith customer is U;, and Uy, Us, ...
are i.i.d. nonnegative random variables with finite mean E(U;) and

finite variance.

Show that if E(U;) < E(Y1), then (after the first customer arrives) the
queue will eventually become empty with probability 1.
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Central Limit Theorem

o If X1, Xo,... are Bernoulli(p) random variables, then
Sp = X1+ -+ X, is a Binomial(n, p) random variable with mean
E(S,) = np and variance Var(S,) = np(1 — p).

@ Recall the De Moivre-Laplace theorem:

lim P(Sn—np < x): d(x)
oo np(l —p)

where ®(z) = [*_ ﬁe_tz/z dt is the cdf of a N(0,1) random
variable X.

@ Since ®(x) is continuous at every z, the above is equivalent to

S —
On T ¢
ov/n

where = E(X;) =p and 0 = \/Var(X;) = p(1 — p).
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The De Moivre-Laplace theorem is a special case of the following general
result:

Theorem 12 (Central Limit Theorem)

Let X1, Xs,... be i.i.d. random variables with mean . and finite
variance o2. Then for S, = X1 + - -- + X,, we have

Sn—nu d
SUASU N o
ayn

where X ~ N(0,1).

agy/Mn o

probability 1, X,, —  — 0 as n — oo The central limit theorem (CLT)

Remark: Note that S“;\/’l“ = ‘/E()_(n - u). The SLLN implies that with

tells us something about the speed at which X,, — ;1 converges to zero.

STAT/MTHE 353: 6 — Convergence and Limit Theorems 30 /34

To prove the CLT we will assume that each X; has MGF My, (¢) that is
defined in an open interval around zero. The key to the proof is the
following result which we won't prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Zy,Zs, ... are random variables such that the MGF My, (t) is
defined for all t € (—a,a) for some a > 0 and alln =1,2,... Suppose X
is a random variable with MGF Mx (t) defined for t € (—a,a). If

lim Mg, (t) = Mx(t) forallt e (—a,a)

n—oo

then Z,, 4 x.
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Proof of CLT: Let Y,, = X,, — p. Then E(Y,,) =0 and Var(Y,,) = o2
Note that

Z?:l }/z . Sn - n.u
aoyn  oyn

Letting My (t) denote the (common) moment generating function of the

:ZYL

Y;, we have by the independence of Y7,Y5,...

My, (1) = MY(O_tﬁ)n

If X ~ N(0,1), then Mx (t) = e*’/2. Thus if we show that

My, (t) — €'"/2, or equivalently

lim In(Mz, (1)) = ﬁ

n—roo 2

then Levy's continuity theorem implies the CLT.
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Proof cont'd: Let h = L Then

a\/n Proof cont’d: Apply I'Hospital’s rule again:
. . t\" : 2 InMy(h)
Jim iz 0) =t (7)) .
; 2 M)
= nlggonln(MY(m» 02 h—0 2hMy (h)
2 "
_ P My (h) I, My (h)
= o 0% h—0 2My (h) + 2hMjy, (h)

02 h—0 h?
2 My t* o®

o2 2

It can be shown that My (h) and all its derivatives are continuous at = — =
v(h) o2 2My(0)

h = 0. Since My (0) = E(e®Y) = 1, the above limit is indeterminate.
Applying I'Hospital's rule, we consider the limit

£ My(W)/My(h) £ My(h)

Z - Ty \Y)
o2 h50 2h o2 50 2hMy ()

Again, since M'(0) = E(Y) = 0, the limit is indeterminate.
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t2
2

Sn —
Thus My, (t) — €'"/2 and therefore Z,, =

ov/n

X ~ N(0,1).
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— X, where
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