
STAT/MTHE 353:

6 – Convergence of Random Variables

and Limit Theorems

T. Linder

Queen’s University

Winter 2017

STAT/MTHE 353: 6 – Convergence and Limit Theorems 1 / 34

Markov and Chebyshev Inequalities

Recall that a random variable X is called nonnegative if P (X ≥ 0) = 1.

Theorem 1 (Markov’s inequality)

Let X be a nonnegative random variable with mean E(X). Then for any

t > 0

P (X ≥ t) ≤ E(X)

t

Proof: Assume X is continuous with pdf f . Then f(x) = 0 if x < 0, so

E(X) =

∫ ∞

0
xf(x) dx ≥

∫ ∞

t
xf(x) dx ≥ t

∫ ∞

t
f(x) dx

= tP (X ≥ t)

If X is discrete, replace the integrals with sums. . . !

Example: Suppose X is nonnegative and P (X > 10) = 1/5; show that

E(X) ≥ 2. Also, Markov’s inequality for |X|.
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Theorem 2 (Chebyshev’s inequality)

Let X be a random variable with finite variance Var(X). Then for any

t > 0

P
(

|X − E(X)| ≥ t
)

≤ Var(X)

t2

Proof: Apply Markov’s inequality to the nonnegative random variable

Y = |X − E(X)|2

P (|X − E(X)| ≥ t) = P (|X − E(X)|2 ≥ t2) ≤
E
(

|X − E(X)|2
)

t2

=
Var(X)

t2
!

Example: Chebyshev with t = k
√

Var(X) . . .
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The following result often gives a much sharper bound if the MGF of X

is finite in some interval around zero.

Theorem 3 (Chernoff’s bound)

Let X be a random variable with MGF MX(t). Then for any a ∈ R

P (X ≥ a) ≤ min
t>0

e−atMX(t)

Proof: Fix t > 0. Then we have

P (X ≥ a) = P (tX ≥ ta) = P
(

etX ≥ eta
)

≤
E
(

etX
)

eta
(Markov’s inequality)

= e−taMX(t)

Since this holds for all t > 0 such that MX(t) < ∞, it must hold for the

t minimizing the upper bound. !
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Example: Suppose X ∼ N(0, 1). Apply Chernoff’s bound to upper

bound P (X ≥ a) for a > 0 and compare with the bounds obtained from

Chebyshev’s and Markov’s inequalities.
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Convergence of Random Variables

A probability space is a triple (Ω,A, P ), where Ω is a sample space, A is

a collection of subsets of Ω called events, and P is a probability measure

on A. In particular, the set of events A satisfies

1) Ω is an event

2) If A ⊂ Ω is an event, then Ac is also an event

3) If A1, A2, A3, . . . are events, then so is
⋃∞

n=1 An.

P is a function from the collection of events A to [0, 1] which satisfies

the axioms of probability:

1) P (A) ≥ 0 for all events A ∈ A.

2) P (Ω) = 1.

3) If A1, A2, A3, . . . are mutually exclusive events (i.e., Ai ∩Aj = ∅ for

all i ̸= j), then P
(
⋃∞

i=1 Ai

)

=
∑∞

i=1 P (Ai).
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Recall that a random variable X is a function X : Ω → R that maps

any point ω in the sample space Ω to a real number X(ω).

A random variable X must satisfy the following: any subset A of Ω

in the form

A = {ω ∈ Ω : X(ω) ∈ B}

for any “reasonable” B ⊂ R is an event. For example B can be any

set obtained by a countable union and intersection of intervals.

Recall that a sequence of real numbers {xn}∞n=1 is said to converge

to a limit x ∈ R (notation: xn → x) if for any ϵ > 0 there exists N

such that |xn − x| < ϵ for all n ≥ N .

STAT/MTHE 353: 6 – Convergence and Limit Theorems 7 / 34

Definitions (Modes of convergence) Let {Xn} = X1, X2, X3, . . . be a

sequence of random variables defined in a probability space (Ω,A, P ).

(i) We say that {Xn} converges to a random variable X almost surely

(notation: Xn
a.s.−−→ X) if

P ({ω : Xn(ω) → X(ω)}) = 1

(i) We say that {Xn} converges to a random variable X in probability

(notation: Xn
P−−→ X) if for any ϵ > 0 we have

P
(

|Xn −X| > ϵ
)

→ 0 as n → ∞

(iii) If r > 0 we say that {Xn} converges to a random variable X in rth

mean (notation: Xn
r.m.−−−→ X) if

E
(

|Xn −X|r
)

→ 0 as n → ∞

(iv) Let Fn and F denote the cdfs of Xn and X, respectively. We say

that {Xn} converges to a random variable X in distribution

(notation: Xn
d−→ X) if

Fn(x) → F (x) as n → ∞

for any x such that F is continuous at x.
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Remarks:

A very important case of convergence in rth mean is when r = 2. In

this case E
(

|Xn −X|2
)

→ 0 as n → ∞ and we say that {Xn}
converges in mean square to X.

Almost sure convergence is often called convergence with

probability 1.

Almost sure convergence, convergence in rth mean, and

convergence in probability all state that Xn is eventually close to X

(in different senses) as n increases.

In contrast, convergence in distribution is only a statement about

the closeness of the distribution of Xn to that of X for large n.

Example: Sequence {Xn} such that Fn(x) = F (x) for all x ∈ R and

n = 1, 2, . . ., but P (|Xn −X| > 1/2) = 1 for all n . . .
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Theorem 4

The following implications hold:

Xn
a.s.−−→ X

!!
▼▼

▼▼
▼▼

▼▼
▼

▼▼
▼▼

▼▼
▼▼

▼

Xn
P−−→ X "" Xn

d−→ X

Xn
r.m.−−−→ X

##
""""""""""

""""""""""

##
""""""""""

""""""""""

Remark: We will show that in general, Xn
a.s.−−→ X does not imply that

Xn
r.m.−−−→ X, and also that Xn

r.m.−−−→ X does not imply Xn
a.s.−−→ X.
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Theorem 5

Convergence in rth mean implies convergence in probability; i.e., if

Xn
r.m.−−−→ X, then Xn

P−−→ X.

Proof: Assume Xn
r.m.−−−→ X for some r > 0; i.e., E(|Xn −X|r) → 0 as

n → ∞. Then for any ϵ > 0,

P (|Xn −X| > ϵ) = P (|Xn −X|r > ϵr)

≤ E(|Xn −X|r)
ϵr

→ 0 as n → ∞

where the inequality follows from Markov’s inequality applied to the

nonnegative random variable |Xn −X|r. !
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Theorem 6

Almost sure convergence implies convergence in probability; i.e., if

Xn
a.s.−−→ X, then Xn

P−−→ X.

Proof: Assume Xn
a.s.−−→ X. We want to show that for any ϵ > 0 we have

P (|Xn −X| > ϵ) → 0 as n → ∞. Thus, defining the event

An(ϵ) =
{

ω : |Xn(ω)−X(ω)| > ϵ
}

we want to show that P
(

An(ϵ)
)

→ 0 for any ϵ > 0.

Define

A(ϵ) =
{

ω : |Xn(ω)−X(ω)| > ϵ for infinitely many n
}

Then for any ω ∈ A(ϵ) we have that Xn(ω) ̸→ X(ω). Since Xn
a.s.−−→ X

we must have that

P
(

A(ϵ)
)

= 0
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Proof cont’d: Now define the event

Bn(ϵ) =
{

ω : |Xm(ω)−X(ω)| > ϵ for some m ≥ n
}

Notice that B1(ϵ) ⊃ B2(ϵ) ⊃ · · · ⊃ Bn−1(ϵ) ⊃ Bn(ϵ) ⊃ · · · ; i.e.,
{

Bn(ϵ)
}

is a decreasing sequence of events, satisfying

A(ϵ) =
∞
⋂

n=1

Bn(ϵ)

Therefore by the continuity of probability

P
(

A(ϵ)
)

= P

( ∞
⋂

n=1

Bn(ϵ)

)

= lim
n→∞

P
(

Bn(ϵ)
)

But since P
(

A(ϵ)
)

= 0, we obtain that lim
n→∞

P
(

Bn(ϵ)
)

= 0.
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Proof cont’d: We clearly have

An(ϵ) ⊂ Bn(ϵ) for all n

so P
(

An(ϵ)
)

≤ P
(

Bn(ϵ)
)

, so P
(

An(ϵ)
)

→ 0 as n → ∞. We obtain

lim
n→∞

P
(

|Xn −X| > ϵ
)

= 0

for any ϵ > 0 as claimed. !
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Example: (Xn
P−−→ X does not imply Xn

a.s.−−→ X.) Let X1, X2, . . . be

independent random variables with distribution

P (Xn = 0) = 1− 1

n
, P (Xn = 1) =

1

n

and show that there is a random variable X such that Xn
P−−→ X, but

P ({ω : Xn(ω) → X(ω)}) = 0.

Solution: . . .

Example: (Xn
r.m.−−−→ X does not imply Xn

a.s.−−→ X.) Use the previous

example. . .
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Lemma 7 (Sufficient condition for a.s. convergence)

Suppose
∞
∑

n=1
P (|Xn −X| > ϵ) < ∞ for all ϵ > 0. Then Xn

a.s.−−→ X.

Proof: Recall the event

A(ϵ) =
{

ω : |Xn(ω)−X(ω)| > ϵ for infinitely many n
}

Then

A(ϵ)c =
{

ω : there exists N such that |Xn(ω)−X(ω)| ≤ ϵ for all n ≥ N
}

For ϵ = 1/k we obtain a decreasing sequence of events
{

A(1/k)c
}∞

k=1
.

Let

C =
∞
⋂

k=1

A(1/k)c

and notice that if ω ∈ C, then Xn(ω) → X(ω) as n → ∞. Thus if

P (C) = 1, then Xn
a.s.−−→ X.
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Proof cont’d: But from the continuity of probability

P (C) = P

( ∞
⋂

k=1

A(1/k)c
)

= lim
k→∞

P
(

A(1/k)c
)

so if P
(

A(1/k)c
)

= 1 for all k, then P (C) = 1 and we obtain

Xn
a.s.−−→ X. Thus P

(

A(ϵ)
)

= 0 for all ϵ > 0 implies Xn
a.s.−−→ X.

As before, let An(ϵ) =
{

ω : |Xn(ω)−X(ω)| > ϵ
}

and

Bn(ϵ) =
{

ω : |Xm(ω)−X(ω)| > ϵ for some m ≥ n
}

We have seen in the proof of Theorem 6 that

P (A(ϵ)) = lim
n→∞

P (Bn(ϵ))

Thus if we can show that lim
n→∞

P (Bn(ϵ)) = 0 for all ϵ > 0, then

Xn
a.s.−−→ X.
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Proof cont’d: Note that

Bn(ϵ) =
∞
⋃

m=n

Am(ϵ)

and that the condition
∑∞

n=1 P
(

An(ϵ)
)

=
∑∞

n=1 P (|Xn −X| > ϵ) < ∞
implies

lim
n→∞

∞
∑

m=n

P
(

An(ϵ)
)

= 0

We obtain

P
(

Bn(ϵ)
)

= P

( ∞
⋃

m=n

Am(ϵ)

)

(union bound)

≤
∞
∑

m=n

P
(

Am(ϵ)
)

→ 0 as n → ∞

so lim
n→∞

P (Bn(ϵ)) = 0 for all ϵ > 0. Thus Xn
a.s.−−→ X. !
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Example: (Xn
a.s.−−→ X does not imply Xn

r.m.−−−→ X.) Let X1, X2, . . . be

random variables with marginal distributions given by

P (Xn = n3) =
1

n2
, P (Xn = 0) = 1− 1

n2

Show that there is a random variable X such that Xn
a.s.−−→ X, but

Xn ̸r.m.−−−→ X if r ≥ 2/3.
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Theorem 8

Convergence in probability implies convergence in distribution; i.e., if

Xn
P−−→ X, then Xn

d−→ X.

Proof: Let Fn and F be the cdfs of Xn and X, respectively and let

x ∈ R be such that F is continuous at x. We want to show that

Xn
P−−→ X implies Fn(x) → F (x) as n → ∞.

For any given ϵ > 0 we have

Fn(x) = P (Xn ≤ x)

= P
(

Xn ≤ x, X ≤ x+ ϵ
)

+ P
(

Xn ≤ x, X > x+ ϵ
)

≤ P
(

X ≤ x+ ϵ
)

+ P
(

|Xn −X| > ϵ
)

= F (x+ ϵ) + P
(

|Xn −X| > ϵ
)
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Proof cont’d: Similarly,

F (x− ϵ) = P (X ≤ x− ϵ)

= P
(

X ≤ x− ϵ, Xn ≤ x
)

+ P
(

X ≤ x− ϵ, Xn > x
)

≤ P
(

Xn ≤ x
)

+ P
(

|Xn −X| > ϵ
)

= Fn(x) + P
(

|Xn −X| > ϵ
)

We obtain

F (x− ϵ)− P
(

|Xn −X| > ϵ
)

≤ Fn(x) ≤ F (x+ ϵ) + P
(

|Xn −X| > ϵ
)

Since Xn
P−−→ X, we have P

(

|Xn −X| > ϵ
)

→ 0 as n → ∞. Choosing

N(ϵ) large enough so that P
(

|Xn −X| > ϵ
)

< ϵ for all n ≥ N(ϵ), we

obtain

F (x− ϵ)− ϵ ≤ Fn(x) ≤ F (x+ ϵ) + ϵ

for all n ≥ N(ϵ). Since F is continuous at x, letting ϵ → 0 we obtain

limn→∞ Fn(x) = F (x). !
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If X is a constant random variable, then the converse also holds:

Theorem 9

Let c ∈ R. If Xn
d−→ c, then Xn

P−−→ c.

Proof: For X with P (X = c) let Fn and F be as before and note that

F (x) =

⎧

⎨

⎩

0 if x < c

1 if x ≥ c

Then F is continuous at all x ̸= c, so Fn(x) → F (x) as n → ∞ for all

x ̸= c. For any ϵ > 0

P
(

|Xn − c| > ϵ
)

= P (Xn < c− ϵ) + P (Xn > c+ ϵ)

≤ P (Xn ≤ c− ϵ) + P (Xn > c+ ϵ)

= Fn(c− ϵ) + 1− Fn(c+ ϵ)

Since Fn(c− ϵ) → 0 and Fn(c+ ϵ) → 1 as n → ∞, we obtain

P
(

|Xn − c| > ϵ
)

→ 0 as n → ∞. !
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Laws of Large Numbers

Let X1, X2, . . . be a sequence of independent and identically distributed

(i.i.d.) random variables with finite mean µ = E(Xi) and variance

σ2 = Var(Xi). The sample mean X̄n is defined by

X̄n =
1

n

n
∑

i=1

Xi

Theorem 10 (Weak law of large numbers)

We have X̄n
P−−→ µ; i.e., for all ϵ > 0

lim
n→∞

P
(

|X̄n − µ| > ϵ
)

= 0
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Proof: Since the Xi are independent,

Var(X̄n) = Var

(

1

n

n
∑

i=1

Xi

)

=
1

n2

n
∑

i=1

Var(Xi) =
σ2

n

Since E(X̄n) = µ, Chebyshev’s inequality implies for any ϵ > 0

P
(

|X̄n − µ| > ϵ
)

≤ Var(X̄n)

ϵ2
=

σ

ϵ2n

Thus P
(

|X̄n − µ| > ϵ
)

→ 0 as n → ∞ for any ϵ > 0. !
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Theorem 11 (Strong law of large numbers)

If X1, X2, . . . is an i.i.d. sequence with finite mean µ = E(Xi) and

variance Var(Xi) = σ2, then X̄n
a.s.−−→ µ; i.e.,

P

(

lim
n→∞

1

n

n
∑

i=1

Xi = µ

)

= 1

Proof: First we show that the subsequence X̄12 , X̄22 , X̄32 , . . . converges

a.s. to µ.

Let Sn =
∑n

i=1 Xi. Then E(Sn2) = n2µ and Var(Sn2) = n2σ2. For any

ϵ > 0 we have by Chebyshev’s inequality

P
(

|X̄n2 − µ| > ϵ
)

= P

(

∣

∣

1

n2
Sn2 − µ

∣

∣ > ϵ

)

= P
(

|Sn2 − n2µ| > n2ϵ
)

≤ Var(Sn2)

n4ϵ2
=

σ2

n2ϵ2

Thus
∞
∑

n=1
P
(

|X̄n2 − µ| > ϵ
)

< ∞ and Lemma 7 gives X̄n2

a.s.−−→ µ.
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Proof cont’d: Next suppose that Xi ≥ 0 for all i. Then

Sn(ω) = X1(ω) + · · ·+Xn(ω) is a nondecreasing sequence. For any n

there is a unique integer in such that i2n ≤ n < (in + 1)2. Thus

Si2
n
≤ Sn ≤ S(in+1)2 =⇒

Si2
n

(in + 1)2
≤ Sn

n
≤

S(in+1)2

i2n

This is equivalent to

(

in
in + 1

)2Si2
n

i2n
≤ Sn

n
≤

(

in + 1

in

)2 S(in+1)2

(in + 1)2

i.e.
(

in
in + 1

)2

X̄i2
n
≤ X̄n ≤

(

in + 1

in

)2

X̄(in+1)2

Letting A = {ω : X̄n2(ω) → µ}, we know that P (A) = 1. Since

in/(in + 1) → 1 and (in + 1)/in → 1 as n → ∞, and for all ω ∈ A,

X̄i2
n
(ω) → µ and X̄(in+1)2(ω) → µ as n → ∞, we obtain

X̄n(ω) → µ for all ω ∈ A
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Proof cont’d: Now we remove the restriction Xi ≥ 0. Define

X+
i = max(Xi, 0), X−

i = max(−Xi, 0)

and note that Xi = X+
i −X−

i and X+
i ≥ 0, X−

i ≥ 0. Letting

µ+ = E(X+
i ), µ− = E(X−

i ) and

A1 =

{

ω :
1

n

n
∑

i=1

X+
i (ω) → µ+

}

, A2 =

{

ω :
1

n

n
∑

i=1

X−
i (ω) → µ−

}

we know that P (A1) = P (A2) = 1. Thus P (A1 ∩A2) = 1. But for all

ω ∈ A1 ∩A2 we have

lim
n→∞

1

n

n
∑

i=1

Xi(ω) = lim
n→∞

1

n

n
∑

i=1

X+
i (ω)− lim

n→∞

1

n

n
∑

i=1

X−
i (ω)

= µ+ − µ− = µ

We conclude that 1
n

∑n
i=1 Xi

a.s.−−→ µ. !
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Remark: The condition Var(Xi) < ∞ is not needed. The strong law of

large numbers (SLLN) holds for any i.i.d. sequence X1, X2, . . . with finite

mean µ = E(X1).

Example: Simple random walk . . .

Example: (Single server queue) Customers arrive one-by-one at a service

station.

The time between the arrival of the (i− 1)th and ith customer is Yi,

and Y1, Y2, . . . are i.i.d. nonnegative random variables with finite

mean E(Y1) and finite variance.

The time needed to service the ith customer is Ui, and U1, U2, . . .

are i.i.d. nonnegative random variables with finite mean E(U1) and

finite variance.

Show that if E(U1) < E(Y1), then (after the first customer arrives) the

queue will eventually become empty with probability 1.
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Central Limit Theorem

If X1, X2, . . . are Bernoulli(p) random variables, then

Sn = X1 + · · ·+Xn is a Binomial(n, p) random variable with mean

E(Sn) = np and variance Var(Sn) = np(1− p).

Recall the De Moivre-Laplace theorem:

lim
n→∞

P

(

Sn − np
√

np(1− p)
≤ x

)

= Φ(x)

where Φ(x) =
∫ x
−∞

1√
2π

e−t2/2 dt is the cdf of a N(0, 1) random

variable X.

Since Φ(x) is continuous at every x, the above is equivalent to

Sn − nµ

σ
√
n

d−→ X

where µ = E(X1) = p and σ =
√

Var(X1) = p(1− p).
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The De Moivre-Laplace theorem is a special case of the following general

result:

Theorem 12 (Central Limit Theorem)

Let X1, X2, . . . be i.i.d. random variables with mean µ and finite

variance σ2. Then for Sn = X1 + · · ·+Xn we have

Sn − nµ

σ
√
n

d−→ X

where X ∼ N(0, 1).

Remark: Note that Sn−nµ
σ
√
n

=
√
n
σ

(

X̄n − µ
)

. The SLLN implies that with

probability 1, X̄n − µ → 0 as n → ∞ The central limit theorem (CLT)

tells us something about the speed at which X̄n − µ converges to zero.
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To prove the CLT we will assume that each Xi has MGF MXi
(t) that is

defined in an open interval around zero. The key to the proof is the

following result which we won’t prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Z1, Z2, . . . are random variables such that the MGF MZn
(t) is

defined for all t ∈ (−a, a) for some a > 0 and all n = 1, 2, . . . Suppose X

is a random variable with MGF MX(t) defined for t ∈ (−a, a). If

lim
n→∞

MZn
(t) = MX(t) for all t ∈ (−a, a)

then Zn
d−→ X.
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Proof of CLT: Let Yn = Xn − µ. Then E(Yn) = 0 and Var(Yn) = σ2.

Note that
∑n

i=1 Yi

σ
√
n

=
Sn − nµ

σ
√
n

= Zn

Letting MY (t) denote the (common) moment generating function of the

Yi, we have by the independence of Y1, Y2, . . .

MZn
(t) = MY

(

t

σ
√
n

)n

If X ∼ N(0, 1), then MX(t) = et
2/2. Thus if we show that

MZn
(t) → et

2/2, or equivalently

lim
n→∞

ln
(

MZn
(t)

)

=
t2

2

then Levy’s continuity theorem implies the CLT.
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Proof cont’d: Let h =
t

σ
√
n
. Then

lim
n→∞

ln
(

MZn
(t)

)

= lim
n→∞

ln

(

MY

(

t

σ
√
n

)n)

= lim
n→∞

n ln

(

MY

(

t

σ
√
n

))

=
t2

σ2
lim
h→0

lnMY (h)

h2

It can be shown that MY (h) and all its derivatives are continuous at

h = 0. Since MY (0) = E(e0·Y ) = 1, the above limit is indeterminate.

Applying l’Hospital’s rule, we consider the limit

t2

σ2
lim
h→0

M ′
Y (h)/MY (h)

2h
=

t2

σ2
lim
h→0

M ′
Y (h)

2hMY (h)

Again, since M ′(0) = E(Y ) = 0, the limit is indeterminate.
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Proof cont’d: Apply l’Hospital’s rule again:

lim
n→∞

ln
(

MZn
(t)

)

=
t2

σ2
lim
h→0

lnMY (h)

h2

=
t2

σ2
lim
h→0

M ′
Y (h)

2hMY (h)

=
t2

σ2
lim
h→0

M ′′
Y (h)

2MY (h) + 2hM ′
Y (h)

=
t2

σ2
· M ′′

Y (0)

2MY (0)
=

t2

σ2
· σ

2

2

=
t2

2

Thus MZn
(t) → et

2/2 and therefore Zn =
Sn − nµ

σ
√
n

d−→ X, where

X ∼ N(0, 1). !
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