Markov and Chebyshev Inequalities

Recall that a random variable \(X \) is called nonnegative if \(P(X \geq 0) = 1 \).

Theorem 1 (Markov’s inequality)

Let \(X \) be a nonnegative random variable with mean \(E(X) \). Then for any \(t > 0 \)

\[
P(X \geq t) \leq \frac{E(X)}{t}
\]

Proof: Assume \(X \) is continuous with pdf \(f \). Then \(f(x) = 0 \) if \(x < 0 \), so

\[
E(X) = \int_{0}^{\infty} xf(x) \, dx \geq \int_{t}^{\infty} xf(x) \, dx \geq t \int_{t}^{\infty} f(x) \, dx
\]

\[
= tP(X \geq t)
\]

If \(X \) is discrete, replace the integrals with sums. \(\square \)

Example: Suppose \(X \) is nonnegative and \(P(X > 10) = 1/5 \); show that \(E(X) \geq 2 \). Also, Markov’s inequality for \(|X| \).

The following result often gives a much sharper bound if the MGF of \(X \) is finite in some interval around zero.

Theorem 3 (Chernoff’s bound)

Let \(X \) be a random variable with MGF \(M_X(t) \). Then for any \(a \in \mathbb{R} \)

\[
P(X \geq a) \leq \min_{t > 0} e^{-at} M_X(t)
\]

Proof: Fix \(t > 0 \). Then we have

\[
P(X \geq a) = P(tX \geq ta) = P(e^{tx} \geq e^{ta}) \leq \frac{E(e^{tx})}{e^{ta}} \quad \text{(Markov’s inequality)}
\]

\[
= e^{-ta} M_X(t)
\]

Since this holds for all \(t > 0 \) such that \(M_X(t) < \infty \), it must hold for the \(t \) minimizing the upper bound. \(\square \)

Theorem 2 (Chebyshev’s inequality)

Let \(X \) be a random variable with finite variance \(\text{Var}(X) \). Then for any \(t > 0 \)

\[
P(|X - E(X)| \geq t) \leq \frac{\text{Var}(X)}{t^2}
\]

Proof: Apply Markov’s inequality to the nonnegative random variable

\[
Y = |X - E(X)|^2
\]

\[
P(|X - E(X)| \geq t) = P(|X - E(X)|^2 \geq t^2) \leq \frac{E(|X - E(X)|^2)}{t^2}
\]

\[
= \frac{\text{Var}(X)}{t^2} \quad \square
\]

Example: Chebyshev with \(t = k\sqrt{\text{Var}(X)} \) . . .
Example: Suppose $X \sim N(0, 1)$. Apply Chernoff’s bound to upper bound $P(X \geq a)$ for $a > 0$ and compare with the bounds obtained from Chebyshev’s and Markov’s inequalities.

- Recall that a random variable X is a function $X : \Omega \to \mathbb{R}$ that maps any point ω in the sample space Ω to a real number $X(\omega)$.
- A random variable X must satisfy the following: any subset A of Ω in the form
 \[A = \{ \omega \in \Omega : X(\omega) \in B \} \]
 for any “reasonable” $B \subset \mathbb{R}$ is an event. For example B can be any set obtained by a countable union and intersection of intervals.
- Recall that a sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ is said to converge to a limit $x \in \mathbb{R}$ (notation: $x_n \to x$) if for any $\epsilon > 0$ there exists N such that $|x_n - x| < \epsilon$ for all $n \geq N$.

Convergence of Random Variables

A *probability space* is a triple (Ω, \mathcal{A}, P), where Ω is a *sample space*, \mathcal{A} is a collection of subsets of Ω called *events*, and P is a probability measure on \mathcal{A}. In particular, the set of events \mathcal{A} satisfies

1. Ω is an event
2. If $A \subset \Omega$ is an event, then A^c is also an event
3. If A_1, A_2, A_3, \ldots are events, then so is $\bigcup_{n=1}^{\infty} A_n$.

P is a function from the collection of events \mathcal{A} to $[0, 1]$ which satisfies the *axioms of probability*:

1. $P(A) \geq 0$ for all events $A \in \mathcal{A}$.
2. $P(\Omega) = 1$.
3. If A_1, A_2, A_3, \ldots are mutually exclusive events (i.e., $A_i \cap A_j = \emptyset$ for all $i \neq j$), then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

Definitions (Modes of convergence)

Let $\{X_n\} = X_1, X_2, X_3, \ldots$ be a sequence of random variables defined in a probability space (Ω, \mathcal{A}, P).

(i) We say that $\{X_n\}$ converges to a random variable X *almost surely* (notation: $X_n \xrightarrow{a.s.} X$) if

\[P(\{\omega : X_n(\omega) \to X(\omega)\}) = 1 \]

(ii) We say that $\{X_n\}$ converges to a random variable X *in probability* (notation: $X_n \xrightarrow{P} X$) if for any $\epsilon > 0$ we have

\[P(|X_n - X| > \epsilon) \to 0 \text{ as } n \to \infty \]

(iii) If $r > 0$ we say that $\{X_n\}$ converges to a random variable X *in rth mean* (notation: $X_n \xrightarrow{r.m.} X$) if

\[E(|X_n - X|^r) \to 0 \text{ as } n \to \infty \]

(iv) Let F_n and F denote the cdfs of X_n and X, respectively. We say that $\{X_n\}$ converges to a random variable X *in distribution* (notation: $X_n \xrightarrow{d} X$) if

\[F_n(x) \to F(x) \text{ as } n \to \infty \]

for any x such that F is continuous at x.
Remarks:

- A very important case of convergence in rth mean is when \(r = 2 \). In this case, \(E(|X_n - X|^2) \to 0 \) as \(n \to \infty \) and we say that \(\{X_n\} \) converges in mean square to \(X \).
- Almost sure convergence is often called convergence with probability 1.
- Almost sure convergence, convergence in rth mean, and convergence in probability all state that \(X_n \) is eventually close to \(X \) (in different senses) as \(n \) increases.
- In contrast, convergence in distribution is only a statement about the closeness of the distribution of \(X_n \) to that of \(X \) for large \(n \).

Example: Sequence \(\{X_n\} \) such that \(F_n(x) = F(x) \) for all \(x \in \mathbb{R} \) and \(n = 1, 2, \ldots \), but \(P(|X_n - X| > 1/2) = 1 \) for all \(n \ldots \)

- Theorem 4

The following implications hold:

\[
\begin{align*}
X_n & \xrightarrow{a.s.} X \\
X_n & \xrightarrow{p} X \\
X_n & \xrightarrow{d} X
\end{align*}
\]

Remark: We will show that in general, \(X_n \xrightarrow{a.s.} X \) does not imply that \(X_n \xrightarrow{r.m.} X \), and also that \(X_n \xrightarrow{r.m.} X \) does not imply \(X_n \xrightarrow{a.s.} X \).

- Theorem 5

Convergence in rth mean implies convergence in probability; i.e., if \(X_n \xrightarrow{r.m.} X \), then \(X_n \xrightarrow{p} X \).

Proof: Assume \(X_n \xrightarrow{r.m.} X \) for some \(r > 0 \); i.e., \(E(|X_n - X|^r) \to 0 \) as \(n \to \infty \). Then for any \(\epsilon > 0 \),

\[
P(|X_n - X| > \epsilon) = P(|X_n - X|^r > \epsilon^r) \leq \frac{E(|X_n - X|^r)}{\epsilon^r} \to 0 \text{ as } n \to \infty
\]

where the inequality follows from Markov’s inequality applied to the nonnegative random variable \(|X_n - X|^r \).

- Theorem 6

Almost sure convergence implies convergence in probability; i.e., if \(X_n \xrightarrow{a.s.} X \), then \(X_n \xrightarrow{p} X \).

Proof: Assume \(X_n \xrightarrow{a.s.} X \). We want to show that for any \(\epsilon > 0 \) we have \(P(|X_n - X| > \epsilon) \to 0 \) as \(n \to \infty \). Thus, defining the event

\[
A_n(\epsilon) = \{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \}
\]

we want to show that \(P(A_n(\epsilon)) \to 0 \) for any \(\epsilon > 0 \).

Define

\[
A(\epsilon) = \{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \text{ for infinitely many } n \}
\]

Then for any \(\omega \in A(\epsilon) \) we have that \(X_n(\omega) \not\rightarrow X(\omega) \). Since \(X_n \xrightarrow{a.s.} X \) we must have that

\[
P(A(\epsilon)) = 0
\]
Proof cont’d: Now define the event

$$B_n(\epsilon) = \{ \omega : |X_m(\omega) - X(\omega)| > \epsilon \text{ for some } m \geq n \}$$

Notice that $$B_1(\epsilon) \supset B_2(\epsilon) \supset \cdots \supset B_{n-1}(\epsilon) \supset B_n(\epsilon) \supset \cdots$$; i.e., $$\{B_n(\epsilon)\}$$ is a decreasing sequence of events, satisfying

$$A(\epsilon) = \bigcap_{n=1}^{\infty} B_n(\epsilon)$$

Therefore by the continuity of probability

$$P(A(\epsilon)) = P\left(\bigcap_{n=1}^{\infty} B_n(\epsilon)\right) = \lim_{n \to \infty} P(B_n(\epsilon))$$

But since $$P(A(\epsilon)) = 0$$, we obtain that $$\lim_{n \to \infty} P(B_n(\epsilon)) = 0$$.

Example: ($$X_n \overset{p}{\to} X$$ does not imply $$X_n \overset{a.s.}{\to} X$$.) Let $$X_1, X_2, \ldots$$ be independent random variables with distribution

$$P(X_n = 0) = 1 - \frac{1}{n}, \quad P(X_n = 1) = \frac{1}{n}$$

and show that there is a random variable $$X$$ such that $$X_n \overset{p}{\to} X$$, but

$$P(\{\omega : X_n(\omega) \to X(\omega)\}) = 0.$$

Solution: …

Example: ($$X_n \overset{r.m.}{\to} X$$ does not imply $$X_n \overset{a.s.}{\to} X$$.) Use the previous example…

Proof cont’d: We clearly have

$$A_n(\epsilon) \subset B_n(\epsilon)$$ for all $$n$$

so $$P(A_n(\epsilon)) \leq P(B_n(\epsilon))$$, so $$P(A_n(\epsilon)) \to 0$$ as $$n \to \infty$$. We obtain

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0$$

for any $$\epsilon > 0$$ as claimed. □

Lemma 7 (Sufficient condition for a.s. convergence)

Suppose $$\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty$$ for all $$\epsilon > 0$$. Then $$X_n \overset{a.s.}{\to} X$$.

Proof: Recall the event

$$A(\epsilon) = \{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \text{ for infinitely many } n \}$$

Then

$$A(\epsilon)^c = \{ \omega : \text{ there exists } N \text{ such that } |X_n(\omega) - X(\omega)| \leq \epsilon \text{ for all } n \geq N \}$$

For $$\epsilon = 1/k$$ we obtain a decreasing sequence of events $$\{A(1/k)^c\}_{k=1}^{\infty}$$. Let

$$C = \bigcap_{k=1}^{\infty} A(1/k)^c$$

and notice that if $$\omega \in C$$, then $$X_n(\omega) \to X(\omega)$$ as $$n \to \infty$$. Thus if

$$P(C) = 1$$, then $$X_n \overset{a.s.}{\to} X$$.
We have seen in the proof of Theorem 6 that random variables with marginal distributions given by

\[P(C) = P\left(\bigcap_{k=1}^{\infty} A(1/k)^c \right) = \lim_{k \to \infty} P(A(1/k)^c) \]

so if \(P(A(1/k)^c) = 1 \) for all \(k \), then \(P(C) = 1 \) and we obtain \(X_n \overset{a.s.}{\to} X \). Thus \(P(A(\epsilon)) = 0 \) for all \(\epsilon > 0 \) implies \(X_n \overset{a.s.}{\to} X \).

As before, let \(A_n(\epsilon) = \{ \omega : |X_n(\omega) - X(\omega)| > \epsilon \} \) and

\[B_n(\epsilon) = \{ \omega : |X_m(\omega) - X(\omega)| > \epsilon \text{ for some } m \geq n \} \]

We have seen in the proof of Theorem 6 that

\[P(A(\epsilon)) = \lim_{n \to \infty} P(B_n(\epsilon)) \]

Thus if we can show that \(\lim_{n \to \infty} P(B_n(\epsilon)) = 0 \) for all \(\epsilon > 0 \), then \(X_n \overset{a.s.}{\to} X \).

Example: \((X_n \overset{a.s.}{\to} X \text{ does not imply } X_n \overset{r.m.}{\to} X. \) Let \(X_1, X_2, \ldots \) be random variables with marginal distributions given by

\[P(X_n = n^3) = \frac{1}{n^2}, \quad P(X_n = 0) = 1 - \frac{1}{n^2} \]

Show that there is a random variable \(X \) such that \(X_n \overset{a.s.}{\to} X \), but \(X_n \overset{r.m.}{\to} X \) if \(r \geq 2/3 \).

Proof cont’d: Note that

\[B_n(\epsilon) = \bigcup_{m=n}^{\infty} A_m(\epsilon) \]

and that the condition \(\sum_{n=1}^{\infty} P(A_n(\epsilon)) = \sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty \) implies

\[\lim_{n \to \infty} \sum_{m=n}^{\infty} P(A_n(\epsilon)) = 0 \]

We obtain

\[P(B_n(\epsilon)) = P\left(\bigcup_{m=n}^{\infty} A_m(\epsilon) \right) \]

(by union bound)

\[\leq \sum_{m=n}^{\infty} P(A_m(\epsilon)) \to 0 \text{ as } n \to \infty \]

so \(\lim_{n \to \infty} P(B_n(\epsilon)) = 0 \) for all \(\epsilon > 0 \). Thus \(X_n \overset{a.s.}{\to} X \). \(\square \)

Theorem 8

Convergence in probability implies convergence in distribution; i.e., if \(X_n \overset{P}{\to} X \), then \(X_n \overset{d}{\to} X \).

Proof: Let \(F_n \) and \(F \) be the cdfs of \(X_n \) and \(X \), respectively and let \(x \in \mathbb{R} \) be such that \(F \) is continuous at \(x \). We want to show that \(X_n \overset{P}{\to} X \) implies \(F_n(x) \to F(x) \) as \(n \to \infty \).

For any given \(\epsilon > 0 \) we have

\[F_n(x) = P(X_n \leq x) \]

\[= P(X_n \leq x, X \leq x + \epsilon) + P(X_n \leq x, X > x + \epsilon) \]

\[\leq P(X \leq x + \epsilon) + P(|X_n - X| > \epsilon) \]

\[= F(x + \epsilon) + P(|X_n - X| > \epsilon) \]
Laws of Large Numbers

Let \(X_1, X_2, \ldots \) be a sequence of independent and identically distributed (i.i.d.) random variables with finite mean \(\mu = E(X_i) \) and variance \(\sigma^2 = \text{Var}(X_i) \). The sample mean \(\bar{X}_n \) is defined by

\[
\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

Theorem 10 (Weak law of large numbers)

We have \(\bar{X}_n \xrightarrow{p} \mu \); i.e., for all \(\epsilon > 0 \)

\[
\lim_{n \to \infty} P(\{\bar{X}_n - \mu| > \epsilon\}) = 0
\]

Proof: Since the \(X_i \) are independent,

\[
\text{Var}(\bar{X}_n) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_i\right) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) = \frac{\sigma^2}{n}
\]

Since \(E(\bar{X}_n) = \mu \), Chebyshev’s inequality implies for any \(\epsilon > 0 \)

\[
P(\{\bar{X}_n - \mu| > \epsilon\}) \leq \frac{\text{Var}(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{\epsilon^2 n}
\]

Thus \(P(\{\bar{X}_n - \mu| > \epsilon\}) \to 0 \) as \(n \to \infty \) for any \(\epsilon > 0 \). □
Theorem 11 (Strong law of large numbers)

If X_1, X_2, \ldots is an i.i.d. sequence with finite mean $\mu = E(X_i)$ and variance $\text{Var}(X_i) = \sigma^2$, then $\bar{X}_n \xrightarrow{a.s.} \mu$; i.e.,

$$P\left(\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu\right) = 1$$

Proof: First we show that the subsequence $\bar{X}_{1^2}, \bar{X}_{2^2}, \bar{X}_{3^2}, \ldots$ converges a.s. to μ.

Let $S_n = \sum_{i=1}^{n} X_i$. Then $E(S_n^2) = n^2 \mu$ and $\text{Var}(S_n) = n^2 \sigma^2$. For any $\epsilon > 0$ we have by Chebyshev’s inequality

$$P\left(|\bar{X}_{n^2} - \mu| > \epsilon\right) = P\left(|\frac{1}{n^2} S_{n^2} - \mu| > \epsilon\right) = P\left(|S_{n^2} - n^2 \mu| > n^2 \epsilon\right) \leq \frac{\text{Var}(S_{n^2})}{n^4 \epsilon^2} = \frac{\sigma^2}{n^2 \epsilon^2}$$

Thus $\sum_{n=1}^{\infty} P\left(|\bar{X}_{n^2} - \mu| > \epsilon\right) < \infty$ and Lemma 7 gives $\bar{X}_{n^2} \xrightarrow{a.s.} \mu$.

Proof cont’d: Now we remove the restriction $X_i \geq 0$. Define

$$X_i^+ = \max(X_i, 0), \quad X_i^- = \max(-X_i, 0)$$

and note that $X_i = X_i^+ - X_i^-$ and $X_i^+ \geq 0$, $X_i^- \geq 0$. Letting $\mu^+ = E(X_i^+)$, $\mu^- = E(X_i^-)$ and

$$A_1 = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} X_i^+(\omega) \to \mu^+ \right\}, \quad A_2 = \left\{ \omega : \frac{1}{n} \sum_{i=1}^{n} X_i^-(\omega) \to \mu^- \right\}$$

we know that $P(A_1) = P(A_2) = 1$. Thus $P(A_1 \cap A_2) = 1$. But for all $\omega \in A_1 \cap A_2$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^+(\omega) - \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i^-(\omega) = \mu^+ - \mu^- = \mu$$

We conclude that $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mu$. □

Remark: The condition $\text{Var}(X_i) < \infty$ is not needed. The strong law of large numbers (SLLN) holds for any i.i.d. sequence X_1, X_2, \ldots with finite mean $\mu = E(X_1)$.

Example: Simple random walk …

Example: (Single server queue) Customers arrive one-by-one at a service station.

- The time between the arrival of the $(i-1)$th and ith customer is Y_i, and Y_1, Y_2, \ldots are i.i.d. nonnegative random variables with finite mean $E(Y_1)$ and finite variance.

- The time needed to service the ith customer is U_i, and U_1, U_2, \ldots are i.i.d. nonnegative random variables with finite mean $E(U_1)$ and finite variance.

Show that if $E(U_1) < E(Y_1)$, then (after the first customer arrives) the queue will eventually become empty with probability 1.
Central Limit Theorem

- If X_1, X_2, \ldots are Bernoulli(p) random variables, then $S_n = X_1 + \cdots + X_n$ is a Binomial(n, p) random variable with mean $E(S_n) = np$ and variance $\text{Var}(S_n) = np(1 - p)$.

- Recall the De Moivre-Laplace theorem:
 $$\lim_{n \to \infty} P \left(\frac{S_n - np}{\sqrt{np(1-p)}} \leq x \right) = \Phi(x)$$
 where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt$ is the cdf of a $N(0, 1)$ random variable.

- Since $\Phi(x)$ is continuous at every x, the above is equivalent to
 $$\frac{S_n - np}{\sqrt{n}} \xrightarrow{d} X,$$
 where $\mu = E(X_1) = p$ and $\sigma = \sqrt{\text{Var}(X_1)} = p(1 - p)$.

To prove the CLT we will assume that each X_i has MGF $M_{X_i}(t)$ that is defined in an open interval around zero. The key to the proof is the following result which we won’t prove:

Theorem 13 (Levy continuity theorem for MGF)

Assume Z_1, Z_2, \ldots are random variables such that the MGF $M_{Z_i}(t)$ is defined for all $t \in (-a, a)$ for some $a > 0$ and all $n = 1, 2, \ldots$ Suppose X is a random variable with MGF $M_X(t)$ defined for $t \in (-a, a)$. If

$$\lim_{n \to \infty} M_{Z_n}(t) = M_X(t) \quad \text{for all } t \in (-a, a)$$

then $Z_n \xrightarrow{d} X$.

The De Moivre-Laplace theorem is a special case of the following general result:

Theorem 12 (Central Limit Theorem)

Let X_1, X_2, \ldots be i.i.d. random variables with mean μ and finite variance σ^2. Then for $S_n = X_1 + \cdots + X_n$ we have

$$\frac{S_n - np}{\sigma \sqrt{n}} \xrightarrow{d} X,$$

where $X \sim N(0, 1)$.

Remark: Note that $\frac{S_n - np}{\sigma \sqrt{n}} = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$. The SLLN implies that with probability 1, $\bar{X}_n - \mu \to 0$ as $n \to \infty$. The central limit theorem (CLT) tells us something about the speed at which $\bar{X}_n - \mu$ converges to zero.

Proof of CLT: Let $Y_n = X_n - \mu$. Then $E(Y_n) = 0$ and $\text{Var}(Y_n) = \sigma^2$. Note that

$$\frac{\sum_{i=1}^{n} Y_i}{\sigma \sqrt{n}} = \frac{S_n - np}{\sigma \sqrt{n}} = Z_n$$

Letting $M_Y(t)$ denote the (common) moment generating function of the Y_i, we have by the independence of Y_1, Y_2, \ldots

$$M_{Z_n}(t) = M_Y \left(\frac{t}{\sigma \sqrt{n}} \right)^n$$

If $X \sim N(0, 1)$, then $M_X(t) = e^{t^2/2}$. Thus if we show that $M_{Z_n}(t) \to e^{t^2/2}$, or equivalently

$$\lim_{n \to \infty} \ln(M_{Z_n}(t)) = \frac{t^2}{2}$$

then Levy’s continuity theorem implies the CLT.
Proof cont’d: Let \(h = \frac{t}{\sigma \sqrt{n}} \). Then

\[
\lim_{n \to \infty} \ln(M_Z(t)) = \lim_{n \to \infty} n \ln \left(M_Y \left(\frac{t}{\sigma \sqrt{n}} \right) \right) = \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{h^2}
\]

It can be shown that \(M_Y(h) \) and all its derivatives are continuous at \(h = 0 \). Since \(M_Y(0) = E(e^{0 \cdot Y}) = 1 \), the above limit is indeterminate. Applying l’Hospital’s rule, we consider the limit

\[
\frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{2h} = \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{2hM_Y(h)}
\]

Again, since \(M'(0) = E(Y) = 0 \), the limit is indeterminate.

Proof cont’d: Apply l’Hospital’s rule again:

\[
\lim_{n \to \infty} \ln(M_Z(t)) = \lim_{h \to 0} \frac{\ln M_Y(h)}{h^2} = \frac{t^2}{\sigma^2} \lim_{h \to 0} \frac{M_Y'(h)}{2hM_Y(h)}
\]

Thus \(M_Z(t) \to e^{t^2/2} \) and therefore \(Z_n = \frac{S_n - n\mu}{\sigma \sqrt{n}} \xrightarrow{d} X \), where \(X \sim N(0, 1) \). \(\Box \)