1. (15 marks)

(a) (6 marks) If f_r denotes the probability mass function of the family size in the modified branching process with parameter r then

$$f_r(0) = r + (1 - r)f(0) \quad \text{and} \quad f_r(k) = (1 - r)f(k) \quad \text{for } k \geq 1$$

The generating function of this distribution is

$$G_r(s) = rs + \sum_{k=0}^{\infty} s^k(1 - r)f(k) = r + (1 - r)G(s).$$

If η_r denotes the probability of ultimate extinction for the modified process, then η_r is the smallest nonnegative solution to

$$\eta_r = G_r(\eta_r) \quad \text{or} \quad \eta_r = r + (1 - r)G(\eta_r).$$

Since η satisfies $\eta = G(\eta)$ and $\eta < 1$, we have that the RHS above at η satisfies

$$r + (1 - r)G(\eta) = r + (1 - r)\eta > r\eta + (1 - r)\eta = \eta.\quad \text{The generating function } G_r \quad \text{is convex on } [0, 1] \quad \text{so if } G_r(\eta) > \eta \quad \text{the equation } \eta_r = G_r(\eta_r) \quad \text{can have no solution smaller than } \eta \quad \text{(draw a picture). Since } \eta \text{ is also not a solution the solution must be larger than } \eta.$$

(b) (9 marks) With $f(k) = \left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^k$ for $k = 0, 1, \ldots$ we have

$$G(s) = \sum_{k=0}^{\infty} s^k \left(\frac{1}{4}\right) \left(\frac{3}{4}\right)^k = \frac{1/4}{1 - 3s/4} = \frac{1}{4 - 3s}.$$

Then

$$G_r(s) = r + \frac{1 - r}{4 - 3s}$$

and the probability of ultimate extinction, η_r, is the smallest nonnegative solution to

$$\eta_r = r + \frac{1 - r}{4 - 3\eta_r} \quad \text{or} \quad \eta_r(4 - 3\eta_r) = r(4 - 3\eta_r) + 1 - r$$

or

$$3\eta_r^2 - (3r + 4)\eta_r + 3r + 1 = 0.$$
The solution to the above quadratic equation is

\[\eta_r = \frac{3r + 4 \pm \sqrt{(3r + 4)^2 - 12(3r + 1)}}{6} \]

\[= \frac{3r + 4 \pm \sqrt{9r^2 + 24r + 16 - 36r - 12}}{6} \]

\[= \frac{3r + 4 \pm \sqrt{9r^2 - 12r + 4}}{6} \]

\[= \frac{3r + 4 \pm \sqrt{(3r - 2)^2}}{6} \]

\[= \frac{3r + 4 \pm |3r - 2|}{6}. \]

For \(r \geq \frac{2}{3} \) the smallest solution is \(\eta_r = 1 \). For \(r < \frac{2}{3} \) the smallest solution is

\[\eta_r = \frac{3r + 4 - (2 - 3r)}{6} = \frac{6r + 2}{6} = r + \frac{1}{3}. \]

2. (15 marks)

(a) (4 marks) Note that the sum over all entries of \(P \) is \(M \) (since all the row sums are equal to 1). Therefore, if all the column sums are equal to \(c \) we must have \(Mc = M \), which implies \(c = 1 \).

(b) (4 marks) The vector \(\pi = (\frac{1}{M}, \ldots, \frac{1}{M}) \) (of dimension \(M \)) will satisfy \(\pi = \pi P \) (since all the column sums are equal to 1, by part(a)). Since this is a proper distribution it is a stationary distribution.

(c) (5 marks) Let \(\pi_1 \) and \(\pi_2 \) denote the unique stationary distributions corresponding to the transition matrices \(A \) and \(B \), respectively. Then check that

\[\pi_\alpha = (\alpha \pi_1, (1 - \alpha) \pi_2), \]

where \(\alpha \in [0,1] \) satisfies \(\pi_\alpha = \pi_\alpha P \) and \(\pi_\alpha \) is a probability vector for each \(\alpha \).

(d) (2 marks) The Markov chain with transition matrix

\[
P = \begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

is irreducible and positive recurrent and has stationary distribution \(\pi = (\frac{1}{2}, \frac{1}{2}) \), but has period 2.
3. (15 marks) The basic equation to set up is (2) below, with the conditional pdf of the most recent event time given by (1). Let A_t denote the event that the last event before time t was a type 1 event and let $L(t)$ denote the time of the last event before time t. As the hint indicates we want to condition on $N(t)$, which has a Poisson(λt) distribution, and then conditioned on $N(t) = n$ further condition on $L(t)$, which conditioned on $N(t) = n$ is distributed as max(U_1, \ldots, U_n), where U_1, \ldots, U_n are independent Uniform(0, t) random variables. Before proceeding, let us obtain the probability density function of $L(t)$ conditioned on $N(t) = n$. The conditional cdf of $L(t)$ satisfies

$$P(L(t) \leq s \mid N(t) = n) = P(\max(U_1, \ldots, U_n) \leq s) = P(U_1 \leq s, \ldots, U_n \leq s) = P(U_1 \leq s)^n = \left(\frac{s}{t}\right)^n,$$

for $s \in [0, t]$ (and the conditional cdf is 0 for $s < 0$ and 1 for $s > t$). Differentiating this we get the conditional pdf of $L(t)$ to be

$$f_{L(t)}(s) = \begin{cases} \frac{ns^{n-1}}{t^n} & \text{for } s \in [0, t] \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

Now conditioned on $L(t) = s$ and $N(t) = n$ the probability that the last event before time t was a type 1 event is $p_1(s)$. That is, $P(A_t \mid L(t) = s, N(t) = n) = e^{-as}$. Putting this all together using the law of total probability, we have

$$P(A_t) = \sum_{n=0}^{\infty} \int_0^t P(A_t \mid L(t) = s, N(t) = n) f_{L(t)}(s) ds \times P(N(t) = n) \quad (2)$$

$$= \sum_{n=1}^{\infty} \int_0^t e^{-as} \frac{ns^{n-1}}{t^n} (\lambda t)^n e^{-\lambda t} \frac{1}{n!} e^{-\lambda t} \frac{s^n}{t^n} ds$$

$$= \lambda e^{-\lambda t} \int_0^t e^{-as} \sum_{n=1}^{\infty} \frac{(\lambda s)^n}{(n-1)!} ds$$

$$= \lambda e^{-\lambda t} \int_0^t e^{-as} e^{\lambda s} ds$$

$$= \lambda e^{-\lambda t} e^{t(\lambda - a)} - 1$$

$$= \frac{\lambda}{\lambda - a} (e^{-at} - e^{-\lambda t}) \quad (3)$$

The solution (4) holds if $a \neq \lambda$. If $a = \lambda$ then the solution above remains valid until (3). From there, if $a = \lambda$, it is easy to see that we get $P(A_t) = \lambda te^{-\lambda t}$.

$$= \frac{\lambda}{\lambda - a} (e^{-at} - e^{-\lambda t}) \quad (4)$$
4. (15 marks)

(a) (7 marks) The transition matrix for the embedded chain is

\[
P = \begin{pmatrix}
0 & p_1 & p_2 & p_3 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix}
\]

and the stationary distribution is \(\psi = (\frac{1}{2}, \frac{p_1}{2}, \frac{p_2}{2}, \frac{p_3}{2}) \) (this is easily checked, and is intuitively arrived at since the embedded chain spends half its time in state 0 and for the rest of the time a proportion \(p_i \) is spent in state \(i \)).

(b) (8 marks) The generator matrix for the continuous time chain is

\[
G = \begin{pmatrix}
-\lambda_0 & \lambda_0 p_1 & \lambda_0 p_2 & \lambda_0 p_3 \\
\lambda_1 & -\lambda_1 & 0 & 0 \\
\lambda_2 & 0 & -\lambda_2 & 0 \\
\lambda_3 & 0 & 0 & -\lambda_3 \\
\end{pmatrix}
\]

and the stationary distribution satisfies \(\pi_i = C\psi_i / \lambda_i \), for \(i = 0, 1, 2, 3 \), where \(C \) is a normalizing constant. Thus,

\[
\pi_0 = \frac{C}{2\lambda_0} \quad \text{and} \quad \pi_i = \frac{Cp_i}{2\lambda_i} \quad \text{for} \quad i = 1, 2, 3
\]

where

\[
C = \left[\frac{1}{2\lambda_0} + \frac{p_1}{2\lambda_1} + \frac{p_2}{2\lambda_2} + \frac{p_3}{2\lambda_3} \right]^{-1}.
\]

5. (15 marks)

(a) (10 marks) The number of subintervals of length \(h \) in the interval \([0,t)\) is \(\lfloor t/h \rfloor \) (\(\lfloor \cdot \rfloor \) is the floor function). So the probability that there are \(k \) events is

\[
P(N_h(t) = k) = \binom{\lfloor t/h \rfloor}{k} (\lambda h)^k (1 - \lambda h)^{\lfloor t/h \rfloor - k}
\]

We wish to see what happens to this as \(h \to 0 \). Write this as

\[
\frac{\lambda^k}{k!} \left(\lfloor t/h \rfloor \right) \left(\lfloor t/h \rfloor - 1 \right) \ldots \left(\lfloor t/h \rfloor - k + 1 \right) h^k \left(1 - \lambda h \right)^{\lfloor t/h \rfloor} \left(1 - \lambda h \right)^{t/h - k},
\]
where $\epsilon_h \in [0, 1)$ for any h. The product $(\lfloor t/h \rfloor)(\lfloor t/h \rfloor - 1)\ldots(\lfloor t/h \rfloor - k + 1)$ has k terms so multiplying this by h^k gives $t(t-h)(t-2h)\ldots(t-(k-1)h)$. Letting $h \to 0$ this goes to t^k. Also, clearly $(1 - \lambda h)^{\epsilon_h - k} \to 1$ as $h \to 0$. So now we have
\[
\lim_{h \to 0} P(N_h(t) = k) = \frac{(\lambda t)^k}{k!} \lim_{h \to 0} (1 - \lambda h)^{t/h}.
\]
For the last part write
\[
(1 - \lambda h)^{t/h} = \left(1 - \frac{\lambda t}{t/h}\right)^{t/h}
\]
from which it can be seen that $(1 - \lambda h)^{t/h} \to e^{-\lambda t}$ as $h \to 0$. So, finally, we see that
\[
\lim_{h \to 0} P(N_h(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}
\]
for $k \geq 0$, which shows that the limiting distribution of $N_h(t)$ is Poisson(λt).

(b) (5 marks) First, note that $T_h > t$ if and only if $N_h(t) = 0$. Therefore,
\[
\lim_{h \to 0} P(T_h > t) = \lim_{h \to 0} P(N_h(t) = 0) = e^{-\lambda t}
\]
from part(a) with $k = 0$. From this we can see that the limiting distribution of T_h is Exponential(λ).