
J. theor. Biol. (1998) 194, 391–407
Article No. jt980762

0022–5193/98/190391+17 $30.00/0 7 1998 Academic Press

Unifying Genetic and Game Theoretic Models of Kin Selection for
Continuous Traits

T D*  P D. T

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario,
Canada K7L 3N6

(Received on 21 November 1997, Accepted in revised form on 4 June 1998)

A framework is presented for unifying single locus genetic and game theoretic models of
continuous traits under frequency-dependent selection when there are interactions among
relatives. This framework serves two purposes. First, it is used to determine how ‘‘games
between relatives’’ must be modeled to be genetically valid. There are two commonly
employed phenotypic approaches used in this setting, and we demonstrate that, although
some of their predictions are always genetically valid, others are invalid in general, and this
is true for both haploid asexual and diploid sexual organisms. In particular, we show that
both approaches obtain the correct equilibrium and convergence stability conditions, but
neither obtains the correct condition for evolutionary stability. Unlike earlier results for
discrete trait matrix games (Hines & Maynard Smith, 1979), there is no simple
correspondence between phenotypic and genetic predictions, and we provide two examples
to illustrate this point. It is possible however, to obtain these earlier results within the present
setting by restricting attention to a particular class of fitness functions. These results
demonstrate that, even when selection is weak, phenotypic models can fail if fitness is
frequency-dependent. The second purpose is to determine when population mean inclusive
fitness effect provides an adaptive topography in games between relatives. Our results show
that the fitness function must have a special form for this to be true, and this form differs
between haploid and diploid organisms.
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1. Introduction

A simplistic classification scheme for evolution-
ary models might place them along a continuum
of genetic detail. Explicitly genetic models of one
or a few loci would be at one end, being most
faithful to genetics. Optimization and pheno-
typic game-theoretic models would be at the

other, presumably sacrificing genetic detail to
include other biological factors.

At first glance, models of kin selection would
appear to enjoy a rather unique status,
occupying both ends of this hypothesized
spectrum. Many kin selection models are
explicitly genetic and track allele frequency
changes over time (e.g. Gayley, 1993 and
references therein). In particular, many of these
are single locus, diallelic models and are used to
model the evolution of discrete traits with two
possible states (e.g. altruism or not). Also placed
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at this end of the spectrum might be the so-called
inclusive fitness models for discrete traits based
on Hamilton’s Rule (Hamilton, 1964; Michod,
1982; Bulmer, 1994). Although these usually do
not use population genetic arguments, they are
founded on the realization that, under appropri-
ate assumptions, the same results are obtained as
those from more explicit genetic treatments
(Taylor, 1996a and references therein). Nearer
the other end of the spectrum however, might lie
most kin selection models of continuous traits
(e.g. sex ratio, dispersal probability; Bulmer,
1994). In most such cases the fitness of any
individual depends on what other individuals in
the population are doing (i.e. it is frequency-de-
pendent) and therefore these models are often
allied more closely with phenotypic, continuous-
trait game theory than with single locus genetics.

As a result, the literature on kin selection is
divided. It is not obvious how the findings of
single locus genetic models for discrete traits tie
in with kin selection models of continuous traits.
In particular, for single locus genetic models of
discrete characters, an adaptive topography can
often be defined such that population mean
inclusive fitness effect increases as allele frequen-
cies change (Hamilton, 1964; Michod & Abugov,
1980; Gayley, 1993 and references therein). This
provides an important unifying concept for such
models, but its relationship to continuous trait
models and their reliance on game theoretic
notions such as evolutionary stability (ES) and
convergence stability (CS) is unclear.

On the other hand, because many models of
kin selection on continuous traits are purely
phenotypic game theory models, it is not obvious
when these are genetically valid. Progress
towards answering this question has been made
for discrete character, matrix games using
haploid genetic models (Grafen, 1979; Hines &
Maynard Smith, 1979, see also Queller, 1984),
but the applicability of these results is somewhat
restricted. Many fitness functions cannot be
specified in matrix form, particularly fitness
functions for continuous traits, and it would be
useful to have results for diploid, sexual
organisms as well.

This paper therefore has three aims. The first
is to present a unified conceptual framework for
single locus genetic and phenotypic models of

kin selection on continuous traits, when fitness is
frequency-dependent. There are two main
approaches to constructing such phenotypic
models of kin selection, both of which are
founded in continuous-trait game theory (May-
nard Smith, 1978; Oster et al., 1977; Mirmirani
& Oster, 1978; Hines & Maynard Smith, 1979
and Taylor & Frank, 1996, respectively). We
bring both approaches as well as a single locus
genetic approach into a common, game theoretic
context.

Our second objective is to use this common
framework to determine when the phenotypic
approaches are genetically valid. Although it is
known that factors such as strong selection can
cause phenotypic models of kin selection to fail
(Charnov, 1977; Charlesworth, 1980; Michod &
Hamilton, 1980; Seger, 1981; Bulmer, 1994;
Taylor, 1996a), it is not clear that phenotypic
models are valid even when selection is weak if
fitness is frequency-dependent. In fact we show
that, when fitness is frequency-dependent, some
predictions of the phenotypic models are always
valid but some are not. In particular, special care
is needed when evaluating the game theoretic
stability conditions, and we provide an example
to illustrate this point.

The third aim is to use this common
framework to illuminate the relationship be-
tween the adaptive topography results of
single-locus genetic models for discrete traits and
the game-theoretic results. In particular we ask,
When does mean inclusive fitness effect provide
an adaptive topography for frequency-depen-
dent models with continuous traits?

2. Quantitative Trait Game Theory

Game theoretic models for quantitative traits
usually begin by specifying a fitness function,
W(x, x0), that gives the fitness of an individual
using strategy x in a population monomorphic
for the strategy x0 (see Appendix A for notation).
It is usually assumed that mutant individuals
form a small enough part of the population that
they do not affect the population-wide average
strategy (Maynard Smith & Price, 1973; May-
nard Smith, 1982; Bulmer, 1994 reviewed in
Taylor, 1996a). An evolutionarily stable value of
x (an ESS) say x*, is then specified as a value
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such that if all members of the population adopt
that value, then any mutant value x= x*+Dx
in that population has a lower fitness, i.e.

W(x*+Dx, x*)−W(x*, x*)E 0 (1)

for all Dx. Condition (1) says that fitness, W, is
globally maximized in the individual’s strategy
value at x= x*. This means that x* is an ESS
with respect to mutational jumps of any size (i.e.
it is a global ESS). Using the subscripts 1 and 2
in reference to partial derivatives of W with
respect to its first and second argument, local
sufficient conditions corresponding to (1) are

W1=x= x0 = x* =0 (2)

and

W1,1=x= x0 = x* Q 0. (3)

Any x* satisfying (2) and (3) is an ESS with
respect to small mutational jumps because the
use of local conditions only considers mutants
that deviate from the population value by a small
amount. Notice however, that if x* is a global
ESS than it is also a local ESS; therefore
conditions (2) and (3) are usually employed to
find values, x*, that satisfy (1). We refer to
condition (2) as the equilibrium condition and
(3) as the ESS condition since (2) holds whether
mutants have a higher or a lower fitness than x*
whereas (3) requires that they have a lower
fitness.

There is an additional stability criterion,
sometimes termed convergence or continuous
stability (CS; Eshel & Motro, 1981; Eshel, 1983;
Taylor, 1989; Christiansen, 1991). This condition
is meant to ensure the evolutionary attainability
of x*. In particular, it requires that when the
population value is slightly perturbed from an
ESS (i.e. x0 $ x*), mutants with a strategy
slightly closer to x* than x0 will have a larger
than average fitness, whereas those slightly
farther from x* will have a smaller than average
fitness. This is necessary for a population
sufficiently close to x* to actually evolve towards
x*. An ESS with this property is then also

termed a CSS. Therefore for population values
x0 Q x* we require
if x0 Q xQ x* then W(x, x0)−W(x0, x0)q 0

(4a)

if xQ x0 Q x* then W(x, x0)−W(x0, x0)Q 0

(4b)

or, for small values of Dx,

if x0 Q x* then W1=x= x0 q 0. (5)

Analogous conditions must hold for x*Q x0

which, for small values of Dx, requires that

if x*Q x0 then W1=x= x0 Q 0. (6)

Conditions (5) and (6) are usually encapsulated
in the single, local sufficient condition,

$dW1=x= x0

dx0 %x0 = x*

Q 0. (7)

In general there is no global version of (7)
because the phenomenon captured by the CS
condition is a local phenomenon. To produce a
global condition, the evolutionary dynamics of
the trait would need to be explicitly specified,
and classical ESS models do not specify
evolutionary dynamics (see Vincent & Brown,
1988; Iwasa et al., 1991; Abrams et al., 1993;
Taylor, 1996b; Taylor & Day, 1997 for useful
heuristic evolutionary dynamics in ESS models).

The above results hold for all fitness functions,
W. To proceed further we now need to determine
how W is specified. The first step in doing so is
to specify the form of frequency-dependent
interaction. In the remainder of this article we
focus on pairwise interactions. Specifically, we
suppose that the payoff to an actor using strategy
x when interacting with an individual using
strategy y is given by the payoff function F(x, y).
Although our results can be presented in a more
general context, having a specific example at
hand clarifies matters. Pairwise interactions have
received a lot of attention in the literature and
therefore this is probably a good choice. We also
present results for a patch-structured population
in which individuals play the field in Appendix
E (Maynard Smith, 1982).

Given a function F(x, y) we can then define W
in terms of this payoff function and use this W
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in the above stability conditions to generate
predictions from the model. The crux of the issue
at hand, however, is determining how W should
be defined in terms of the payoff function under
kin selection. When the interactants are not
related the connection is very simple (Maynard
Smith & Price, 1973; Maynard Smith, 1982); the
payoff function is the fitness function (i.e.
W(x, x0) , (x, x0)). When the interactants are
genetically related however, this will no longer
work. The genetic model and the two phenotypic
models mentioned earlier each define W in
different ways. The next section presents these
different definitions of W, and calculates the
stability conditions that result from each.

3. Genetic and Phenotypic Models of Kin
Selection

First we examine how the genetic model
defines fitness, W, because it provides the proper
benchmark for evaluating the phenotypic ap-
proaches.

3.1.     

Our genetic model is a diallelic, haploid model
where one of the alleles (the mutant) is rare. The
rarity assumption corresponds to the conceptual
framework of the game theoretic approach, and
the haploidy assumption is made for simplicity.
A generalization to diploidy is presented in
Appendix C.

The conceptual basis for using single locus
genetics to model the evolution of a continuous
trait is sometimes unfamiliar (see Taylor, 1996a
for a review). The central idea in doing so is a
separation of short and long-term evolutionary
change (Eshel, 1996). Short-term evolutionary
change is described by the standard population
genetic equation for the allele frequency dynam-
ics, with two alleles and no mutation. On a
longer time scale, however, there is mutation. It
is assumed that mutational events are infrequent
so that the evolutionary dynamics of the two
allele system reach an equilibrium before another
mutational event occurs. Thus the overall
evolutionary process is viewed as a cyclic process
whereby a new mutation enters the population,
the standard allele frequency equation describes
the evolutionary dynamics until an equilibrium is

reached, and then another mutation enters the
population. This cycle repeats itself until some
ultimate evolutionary equilibrium is reached at
which presumably no new mutant can invade
(Hammerstein, 1996). Notice that this process
implicitly assumes that, during each selective
sweep, one allele spreads to fixation so that there
are only two alleles present at any time. Clearly
not all mutants that invade will spread to
fixation, particularly in diploid, sexual popu-
lations. Additionally, it is conceivable that no
ultimate evolutionary equilibrium exists. Recent
work on a general cyclic evolutionary process
considers these phenomena (Hammerstein, 1996;
Eshel et al., 1997).

Denote the mutant allele by ‘‘A’’ and the
normal (resident) allele by ‘‘a’’. Thus, allele ‘‘a’’
codes for a particular value of the trait, x0, while
the mutant allele, ‘‘A’’, codes for a different
value, x= x0 +Dx where Dx is the mutant’s
deviation from normal. The equation for allele
frequency change is

Dḡ
ḡ

=
1
W�

(Wm −W� ) (8)

where Wm is the fitness of the mutant allele, and
W� is the mean fitness (Crow & Kimura, 1970).
In general Wm will depend on x0, x, and allele
frequency, ḡ. We have divided the standard
population genetic equation by ḡ because we are
interested in the limiting case where the mutant
allele is rare. In the limit as ḡ : 0, eqn (8)
becomes

Dḡ
ḡ

=
1

Wa(x0)
(WA(x, x0)−Wa(x0)) (9)

where the functions WA and Wa are the
genotypic fitnesses when the mutant is rare;
i.e. limḡ : 0Wm =WA(x, x0) and Wa(x0) =
WA(x0, x0). Because we are assuming the mutant
is rare, WA is a function of both the mutant
strategy and the normal strategy, whereas Wa is
a function of the normal strategy only.

Equation (9) describes the invasion dynamics
of a mutant allele, whatever its strategy, x, might
be. If Dḡ/ḡq 0 then the allele will invade and if
Dḡ/ḡE 0 it will not. Now if we define

W(x, x0) , WA(x, x0), (10)
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then the game theoretic stability conditions (i.e.
the ESS and CSS conditions) correspond to
dynamic stability conditions of the genetic
model. In particular, suppose that x* is an ESS
using the fitness function W(x, x0). From
condition (1) and definition (10) this implies

WA(x, x*)−Wa(x*)E 0, (11)

for all x$ x*. From eqn (9), this implies that no
mutant allele can invade a population in which
the resident allele codes for x*. Now suppose x*
is also a CSS using the fitness function W(x, x0).
Then, for population values x0 Q x*, conditions
(4a), (4b), and definition (10) imply

if x0 Q xQ x* then WA(x, x0)−Wa(x0)q 0

(12a)

if xQ x0 Q x* then WA(x, x0)−Wa(x0)Q 0

(12b)

with an analogous condition holding for
x*Q x0. From eqn (9), this implies that, when
the resident allele codes for a value slightly
different than x*, mutant alleles that code for a
value closer to x* than x0 can invade. These
results clearly spell out the notion that, for game
theoretic models to be genetically valid under
haploidy, we must define the fitness function,
W(x, x0) as in (10). While this result is probably
obvious, it is often not realized that a similar
approach can be used to determine the definition
of W that makes game theoretic models
genetically valid under diploidy as well [Appen-
dix C, eqn (C.4)].

For the case of pairwise interactions and
haploid genetics, the function WA is very simple.
Defining r as the probability that the recipient is
a mutant, and noting that, when the mutant
allele is rare, the relatedness of the recipient to
the actor is r̄= r, [Appendix B, eqn (B.1)] we
have

WA(x, x0)= r̄F(x, x)+ (1− r̄)F(x, x0) (13)

(Grafen, 1979).

We can now use the definition of W(x, x0)
from eqns (10) and (13) to calculate the stability
conditions. The global condition (1) is

r̄F(x, x)+ (1− r̄)F(x, x*)−F(x*, x*)E 0.

(14)
Assuming Dx is small, the local conditions (2),
(3) and (7) are

EQUIL : F1 + r̄F2 =0 (15a)

ESS : F11 +2r̄F12 + r̄F22 Q 0 (15b)

CSS : F11 + (1+ r̄)F12 + r̄F22 Q 0 (15c)

where the subscripts 1 and 2 refer to partial
derivatives with respect to the first and second
arguments of F, respectively. These results
assume that the altered behaviour of a mutant
does not alter r and therefore does not alter
relatedness. This is a common assumption for all
game theoretic kin selection models because it
then allows for simple pedigree definitions of
relatedness to be used (Bulmer, 1994). The local
conditions also assume that the alleles differ by
a small amount, as has been assumed in many
polygenic quantitative genetic models based on a
continuum of alleles (Kimura, 1965). Here
however, while there is a continuum of possible
alleles, there are at most two alleles present at
any given time.

Condition (14) is what we will call the correct
global condition and (15a), (15b), and (15c) are
what we call the correct local conditions. Under
diploidy, conditions (15a) and (15c) remain the
same (with the appropriate definition of r̄) but
conditions (14) and (15b) are somewhat more
complicated (Appendix C).

3.2.   

The two main phenotypic approaches parallel
the distinction between the inclusive and
personal fitness perspectives (Orlove, 1979;
Hines & Maynard Smith, 1979). The inclusive
fitness perspective augments an individual’s
fitness with the effect of that individual’s
behaviour on its relatives, weighted by related-
ness. In terms of mutant behaviour, this
approach considers only one mutant, the actor,
but uses a fitness measure that includes
contributions from many individuals. On the
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other hand, the personal fitness perspective
augments an individual’s fitness with the effect of
its relatives’ behaviours on itself. This approach
allows several mutant individuals, but measures
of the fitness of only one, and relatedness serves
as a measure of the probability that the other
individuals will be mutants. To bring both
approaches into the common game theoretic
framework presented above we simply need to
identify the fitness function W(x, x0) in each
case.

3.2.1. The inclusive fitness approach

The inclusive fitness approach begins by
constructing a function which is defined as an
individual’s inclusive fitness when using strategy
x= x0 +Dx in a population monomorphic at x0

(Maynard Smith, 1978; Grafen, 1979; Hines &
Maynard Smith, 1979; Oster et al., 1977;
Mirmirani & Oster, 1978). This function is
constructed in analogy with the inclusive fitness
expression found in Hamilton’s Rule (Hamilton,
1964). The actor has a payoff given by F(x, x0)
and the actor’s inclusive fitness is then obtained
by augmenting this with the payoff to the
recipient when interacting with the actor,
weighted by the relatedness of the recipient to the
actor, r̄; i.e. r̄F(x0, x) (Grafen, 1982). One then
defines

W(x, x0) , F(x, x0)+ r̄F(x0, x). (16)

This approach has been used and discussed
by several authors (Maynard Smith, 1978;
Grafen, 1979; Hines & Maynard Smith, 1979;
Oster et al., 1977; Mirmirani & Oster, 1978), but
one additional feature of expression (16) is
worth emphasizing. As given, expression (16)
is the inclusive fitness of an individual using
strategy x rather than its inclusive fitness
effect. The distinction is that the inclusive
fitness effect is the change in fitness due to
a change in behaviour whereas expression
(16) is not a change. The two become
equivalent however, if we standardize
normal fitness to be zero [i.e. F(x0, x0)=0]. In
either case the results given below remain the
same.

Using fitness function (16) in condition (1)
gives

F(x, x*)−F(x*, x*)

+ r̄(F(x*, x)−F(x*, x*))E 0. (17)

The left-hand side of (17) is the inclusive fitness
effect of the actor altering its behaviour by an
amount, Dx from x*. The inclusive fitness
approach requires that, at a globally stable
equilibrium, x*, the inclusive fitness effect of all
mutants be non-positive. For small mutational
jumps, Dx, the local conditions (2), (3), and (7)
are

EQUIL : F1 + r̄F2 =0 (18a)

ESS : F11 + r̄F22 Q 0 (18b)

CSS : F11 + (1+ r̄)F12 + r̄F22 Q 0. (18c)

The left-hand side of (18a) is the inclusive fitness
effect of the actor increasing its strategy by a
small amount.

3.2.2. The personal fitness approach

Taylor & Frank (1996) have introduced a
technical device that generates the relatedness
coefficient automatically as a derivative. In their
approach, the phenotype of the recipient, y, is
treated as a function of the actor’s phenotype
and the population-wide phenotype, y(x, x0),
and then the fitness function is defined as

W(x, x0) , F(x, y(x, x0)). (19)

Using definition (19), the global ESS condition is

F(x, y(x, x*))−F(x*, y(x*, x*))E 0 (20)

and for small Dx, the equilibrium condition (2)
is

F1 +
dy
dx

F2 =0. (21)

The next step is to notice that the derivative
dy/dx is analogous to the slope of a statistical
regression of y on x (Taylor & Frank, 1996). In
particular, the least-squares regression of y on x
has a slope of b=cov(y, x)/var(x). Assuming
additive genetic effects, this slope can be
identified as the expected relatedness of the



   397

recipient to the actor (Appendix B). Thus (21) is
written

EQUIL : F1 + r̄F2 =0. (22)

Taylor & Frank (1996) show that this
approach works for a wide variety of population
structures and types of kin interactions. What
their method did not specify clearly, however, is
how the function y(x, x0) is defined. They
identified only the derivative of y because they
only treated the equilibrium condition. For now
we will make the simplest, reasonable assump-
tion; y(x, x0)= r̄x+(1− r̄)x0. This specifies the
recipients’ phenotype as a convex combination
of the actor’s phenotype and the population-
wide phenotype where the weighting is the
relatedness coefficient. This is intuitively sensible
and it is similar to Grafen’s geometric notion of
relatedness (Grafen, 1985).

With this choice, the ESS and CSS conditions
are calculated as

ESS : F11 +2r̄F12 + r̄2F22 Q 0 (23a)

CSS : F11 + (1+ r̄)F12 + r̄F22 Q 0, (23b)

respectively.
There is actually one other approach that is

commonly used to construct phenotypic models
of kin selection. Mathematically, the model is
built by starting with the derivative W1=x= x0

rather than a fitness function, W(x, x0) (e.g. see
Taylor, 1996a). This approach then obtains the
same equilibrium condition by setting this
derivative equal to zero. Because the CSS
condition is calculated from this derivative [eqn
(7)], it obtains the same CSS condition as well.
It shortcoming, however, is that because there is
no actual fitness function, it is not possible to
calculate the ESS condition (3) and hence we do
not discuss it further.

4. When do Phenotypic Models Fail?

We can now compare the above stability
conditions to determine when the quantitative
phenotypic models fail. First, given that the
inclusive and personal fitness approaches differ
in their definition of W(x, x0), and given that
each differs from the genetic definition of
W(x, x0), we do not expect either phenotypic

method to obtain the correct global condition.
With respect to the local stability conditions, we
can see that both phenotypic approaches give the
correct equilibrium and CSS conditions [com-
pare (18a) and (22) with (15a), and (18c) and
(23b) with (15c)]. In general however, neither
phenotypic approach obtains the correct local
ESS condition [compare (18b) and (23a) with
(15b)]. In fact, it is possible to have a genetic ESS
that is not a phenotypic ESS of either phenotypic
approach and vice versa. All of these conclusions
hold under both haploid and diploid genetics.

4.1.  —  

To demonstrate how the failure of a
phenotypic approach can affect the conclusions
drawn from a particular model, we consider two
examples. The first is a model of altruism in
which we have an inclusive fitness ESS which is
not a genetic ESS. The second is a model of
selfishness in which we have a genetic ESS which
is not an inclusive fitness ESS.

Suppose that x represents the level of altruism
exhibited by an individual and the payoff to
an actor with level x when interacting with
a recipient with level y is F(x, y) =
−cx+ b(y)+ dxy. Here c and d are positive
constants and b(y) is a function of y. Therefore,
the cost of altruism to the actor is linear whereas
the benefit to the recipient is not. In particular,
we suppose that b(y) exhibits diminishing
returns. The third term represents a synergistic
effect (Queller, 1985); when both individuals are
altruistic there are additional benefits.

For example, consider the particular model

F(x, y)=−x+ y(2− y)+2xy. (24)

The equilibrium value of x in this model is
easily calculated using either a phenotypic or
genetic approach and is xx =(1−2r̄)/2. To
examine the local ESS condition for the inclusive
fitness approach [i.e. (18b)] we calculate
F11 + r̄F22 =−2r̄ which is negative; therefore,
xx is an ESS of the inclusive fitness approach.
To examine the local ESS condition for the
genetic model [i.e. (15b)] we calculate
F11 +2r̄F12 + r̄F22 =2(2− r̄) which is positive;
therefore xx is not an ESS of the genetic model.
As a result, using the inclusive fitness phenotypic
approach in this setting would lead to the
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conclusion that xx is an ESS when in fact it is not.
The easiest way to obtain an example in which

the reverse holds is simply to change the sign of
F. In particular, now suppose that x represents
the level of selfishness of an individual, and take
the payoff function to be

F(x, y)= x− y(2− y)−2xy. (25)

Here the third term represents a synergistic effect
whereby when both individuals are selfish, there
are additional costs. The equilibrium for this
model is the same as the previous model,
xx =(1−2r̄)/2, and it is easily checked that this
equilibrium is now a genetic ESS but not an ESS
of the inclusive fitness phenotypic approach.
Therefore, the inclusive fitness phenotypic
approach would lead to the conclusion that xx is
not an ESS when in fact it is.

4.2.    ?

For the simple example above, of pairwise
interactions under haploidy, it is probably easy
enough to write down the correct definition of
fitness directly from a genetic argument (e.g.
Grafen, 1979), and therefore, one would never
consider using either of the two phenotypic
approaches. When the model becomes more
complicated however, this is no longer true. For
instance, it is probably not immediately obvious
how to write down the correct fitness function
for this simple example of pairwise interactions
under diploidy. Also, in models where individ-
uals play the field (e.g. sex ratio, dispersal;
Appendix E), the exact genetic model is
sometimes impossible to analyse without resort
to numerical procedures and therefore the
phenotypic approaches become invaluable (e.g.
Bulmer, 1986; Frank, 1986; Taylor, 1988).

The strength of the phenotypic approaches are
their simplicity. Neither approach requires any
consideration of genetics and therefore their
analysis is usually easier. Additionally, dispens-
ing with the genetic details often makes the
underlying biological factors at play more
transparent. Since both phenotypic approaches
obtain the correct equilibrium conditions, both
are useful for characterizing the values of x that
are candidates for an ESS. Additionally, both
allow us to correctly analyse the convergence
stability of all equilibria. This is true for other

forms of interaction in addition to pairwise
interactions (Appendix E) and applies regardless
of whether the genetic system under study is
haploid or diploid. The personal fitness ap-
proach has the additional feature that the fitness
function evaluated in a monomorphic popu-
lation takes on the correct value. In other words,
expressions (10) and (19) both equal F(x0, x0)
when they are evaluated in a monomorphic
population, whereas expression (16) from the
inclusive fitness approach does not. This is
particularly useful in models of dynamic
characters where often one is required to know
the value of this function in a monomorphic
population (Day & Taylor, 1997).

The main shortcoming of the phenotypic
approaches, however, is that they do not obtain
the correct global or local ESS conditions. It is
possible to characterize the relationship between
the two phenotypic approaches and the genetic
approach for various special cases of payoff
function F. This allows a determination of when
each phenotypic approach is completely valid
(Table 1). Unfortunately, however, it is not
possible to make any general statements, and if
the form of the interaction among individuals
is not pairwise (e.g. patch-structured inter-
actions and playing the field; Appendix E),
another tabulation of various special cases is
required.

4.3.  ––  

  

Our results also tie in with previous results
from matrix games between relatives with
discrete characters (Grafen, 1979). Grafen (1979)
demonstrated that, in this setting, the inclusive

T 1
The correspondence between the ESS condition
from inclusive fitness, personal fitness, and genetic
models of kin selection with pairwise interactions

(1) F12 =0 Genetic ESS\ Inclusive Fitness ESS
A. (2) F12 q 0 Genetic ESSc Inclusive Fitness ESS

(3) F12 Q 0 Inclusive Fitness ESSc Genetic ESS

(1) F22 =0 Genetic ESS\ Personal Fitness ESS
B. (2) F22 q 0 Genetic ESSc Personal Fitness ESS

(3) F22 Q 0 Personal Fitness ESSc Genetic ESS
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fitness approach does not predict the same ESSs
as a ‘‘correct’’ approach [note that Hines &
Maynard Smith (1979) termed Grafen’s correct
approach, a personal fitness approach although
it is really a haploid genetic approach. It is true
however, that genetic models treat fitness in a
personal rather than inclusive manner]. It was
shown, however, that in this setting a genetic
ESS (i.e. Grafen’s method) is always an inclusive
fitness ESS but the reverse is not true (Hines &
Maynard Smith, 1979). These previous results
can be related to the present framework as
follows. First, in matrix games the fitness
function has the special form, xTAy where x and
y are vectors specifying the frequency with which
each of the possible discrete behaviours is used
(Bulmer, 1994). The case of two discrete
behaviours and mixed ESSs corresponds to our
results. In particular, if we define x and y as
xT =[x 1− x] and yT =[y 1− y], then the
payoff function is

F(x, y)= xTAy (26)

where A is the so-called 2×2 payoff matrix.
Now for a mixed ESS, we calculate

F11 =F22 =0 and F12 q 0. From Table 1 this
corresponds to A2 and B1. Therefore, all genetic
ESSs are inclusive fitness ESSs but not vice versa
(from A2). Additionally, the personal fitness
approach and the genetic approach correspond
exactly (from B1).

Therefore, the results of Grafen (1979) and
Hines & Maynard Smith (1979) for mixed ESSs
are special cases within the setting of continuous
trait game theory. Not all game theoretic models
of interest will be matrix games, and not all
interactions of interest will be pairwise. This is
especially true for continuous traits, and
therefore, the only general approach to obtaining
the correct predictions is to define the fitness
function as done in the genetic approach. In fact,
the genetic approach presented here is a
generalization of Grafen’s (1979) approach that
applies for any fitness function of continuous
traits. Notice as well that, while the results for
matrix games were formulated in terms of
haploid, asexual genetics, the general results
presented here apply equally well to diploid
sexual populations.

5. Adaptive Topography and Population Mean
Inclusive Fitness Effect

Now we look at the adaptive topography
results for haploid, discrete genetic models. For
all our results, a similar analysis can be
conducted for diploid genetics unless otherwise
stated. Allele frequency dynamics are described
by eqn (8). Wright’s (1969) notion of an adaptive
topography is obtained by first expressing (8) as

Dḡ
ḡ

=
(1− ḡ)

W�
dV( ḡ)

dḡ
(27)

where the function V( ḡ) is defined by

V( ḡ)=g (Wm −W� )
(1− ḡ)

dḡ (28)

with a condition V(0)=V0. Equation (27)
reveals that Dḡ and dV/dḡ always have the same
sign. This suggests that, as allele frequencies
change, the function V( ḡ) increases because the
change in V in one generation is approximately
(dV/dḡ)Dḡ which is always positive. Thus, as
allele frequencies change, the population climbs
to higher values of V( ḡ).

For this adaptive topography to be of use
however, the equation defining V( ḡ) must be
given a biological interpretation. For classical,
constant selection models it turns out to be
population mean fitness (Wright, 1969). For
certain models of kin selection on discrete traits,
it has been shown that V( ḡ) can be interpreted
as population mean inclusive fitness effect
(Hamilton, 1964; Michod & Abugov, 1980;
Gayley, 1993 and references therein). The
question of interest here is, When can this be
done for models of continuous traits and
frequency-dependent selection?

To answer this question we require the limiting
case of the above equations when one allele is
rare. In this case (8) becomes eqn (9) and eqn (27)
becomes,

Dḡ
ḡ

=
1

Wa(x0)
dV( ḡ)

dḡ
. (29)

A comparison of (29) with (9) reveals that, under
rarity, we can define

V( ḡ)= (WA(x, x0)−Wa(x0))ḡ (30)
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where we have taken the constant of integration
to be zero. Of course as allele frequencies change,
again V increases, but now this result is valid
only when the mutant is rare.

When is V( ḡ) the population mean inclusive
fitness effect? For the case of pairwise inter-
actions, putting eqn (13) into (30) gives

V( ḡ)= (F(x, x0)−F(x0, x0)

+ r̄(F(x, x)−F(x, x0)))ḡ. (31)

Now, the population mean inclusive fitness effect
is

[F(x, x0)−F(x0, x0)

+ r̄(F(x0, x)−F(x0, x0))]ḡ (32)

since the inclusive fitness effect of a mutant is the
effect of altering an individual’s strategy from x0

to x and inclusive fitness effect of the resident
allele is zero by definition. Thus when the
difference between (32) and (31) is zero,
population mean inclusive fitness effect will
provide an adaptive topography. This difference
is zero whenever

F(x, x0)+F(x0, x)=F(x, x)+F(x0, x0) (33)

for all x0 and x. It is demonstrated in Appendix
D that the payoff function F(x, y) satisfies
condition (33) if and only if it is the sum of a
function that is skew-symmetric plus a function
of x and a function of y [S is skew-symmetric if
S(x, y)=−S(y, x) for all x, y]. That is, F(x, y)
must have the form

F(x, y)=S(x, y)+A(x)+B(y). (34)

This has an interesting biological interpretation.
If the payoff function is skew-symmetric, then
the two individuals are playing a constant-sum
game; a benefit to one player is a cost to the other
(Weibull, 1995). Put another way, the interaction
involves a net one-way transfer of some quantity.
If the payoff function consists of a function of x
plus a function of y, then the effect of one player
altering its strategy does not depend on the other
player’s strategy. This corresponds to the
familiar case of additive costs and benefits in
an interaction. Therefore, population mean
inclusive fitness effect provides an adaptive
topography for quantitative trait models of kin
selection if and only if the payoff function is a

sum of these two types of interaction. This result
is valid for haploid organisms; however, it seems
that population mean inclusive fitness effect
provides an adaptive topography for diploid
organisms only when the payoff function is of the
form F(x, y)= ax+ by, which is a special case
of (34). Interestingly, it also provides an adaptive
topography for any payoff function, F(x, y),
when Dx is small because both (31) and (32)
become

(F1 + r̄F2)Dxḡ (35)

which is the population mean inclusive fitness
effect of a small change in strategy when the
mutant allele is rare. This is true for both haploid
and diploid organisms.

6. Summary

The framework presented here helps to
illuminate the interrelationship between single
locus genetic and phenotypic models of kin
selection on continuous traits. In particular, we
have used this framework to address two broad
issues. First, When are phenotypic game theory
models of kin selection on continuous traits
genetically valid?, and second, How do the
adaptive topography results from single locus
genetics relate to the game theoretic stability
notions of these phenotypic models? The
answer to these questions generalize and tie
together previously disparate results and
demonstrate how ‘‘games between relatives’’
must be modeled.

Although phenotypic models often lend more
insight to a problem than the corresponding
genetic model, they are only useful to the extent
that they do not provide erroneous conclusions.
It is well documented that phenotypic models of
kin selection can fail when selection is strong;
however, even when selection is weak, pheno-
typic models can still fail when fitness is
frequency-dependent. In particular, we have
shown that, in general, phenotypic models fail to
obtain the correct ESS stability condition.
Previous results for matrix games between
relatives have shown that all genetic ESSs are
also ESSs of the corresponding inclusive fitness
phenotypic model, but not vice versa. Our results
generalize these findings by demonstrating how
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they can be treated as a special case within a
broader setting. This reveals that, in general, no
simple correspondence between genetic and
phenotypic ESSs exists. Although it is possible to
tabulate the conditions required to have corre-
spondence between various models (Table 1),
different tabulations are required for different
forms of frequency-dependent interaction. As a
result, the only sure method for predicting the
correct ESS is to construct a genetic model. The
framework outlined here also allows an easy
extension to diploidy (Appendices C and E). This
has shown that the same conclusions hold under
both haploid and diploid genetics and it provides
a generalization of Grafen’s (1979) approach for
obtaining the correct ESS stability condition to
models of continuous traits in diploid organisms.

Lastly, the framework presented here allows a
better understanding of the correspondence
between previous results for single locus genetic
models of discrete characters (in particular, the
adaptive topography results) and the game
theoretic approach of continuous trait kin
selection. An important conclusion is that
population mean inclusive fitness effect provides
an adaptive topography in continuous trait kin
selection models only if the payoff function
F(x, y) has a certain form. Additionally,
population mean inclusive fitness effect provides
an adaptive topography for any payoff function
F(x, y) under either haploid or diploid genetics,
provided that change in behaviour exhibited by
the actor is small.

We thank Sally Otto for a critical review of the
manuscript. This research was funded by a grant from
the Natural Sciences and Engineering Research
Council of Canada.
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APPENDIX A

Notation

General notation

x0: the population-wide strategy
x; x= x0 +Dx: the mutant strategy; Dx is

the mutant’s deviation from
‘‘normal’’

x*: an evolutionarily stable strat-
egy value

W(x, x0): the fitness of a mutant using x
in a population using x0

F(a, b): the payoff to an individual
using a when interacting with
a recipient using b

r̄: the expected relatedness of the
recipient to the actor

y(x, x0): the recipients phenotype as a
function of x and x0; for the
PF approach

Haploid model

A, a: the two alleles; ‘‘A’’ is the mutant and
‘‘a’’ is the resident

WA, Wa: the fitness of mutant and resident
alleles when the mutants are rare

Wm: the fitness of the mutant allele
W� : the population mean fitness
ḡ: the frequency of the mutant allele
r: the probability that the recipient is a

mutant
gx : the genotype of the actor
gy : the genotype of the recipient
V( ḡ): the adaptive topography function

Diploid model

WAA, WAa, Waa: the three genotypic fitness
functions when the mutant
allele is rare

f: Wright’s inbreeding coefficient
Pk : the probability that a random

mutant homozygous actor
interacts with a recipient
having k copies of the mutant
allele. k=0, 1 or 2

pk : the probability that a random
mutant heterozygous actor in-
teracts with a recipient having
k copies of the mutant allele.
k=0, 1 or 2

APPENDIX B

Haploid Model

Here we show that

r̄= r (B.1)

is the correct definition of relatedness when the
mutant allele is rare. We start with the definition

Relatedness=
cov(gx , gy )

var(gx )
(B.2)

where gx is the genotype of the actor and gy is the
genotype of the recipient (Michod & Hamilton,
1980). The covariance is

cov(gx , gy )=E[gxgy ]−E[gx ]E[gy ]

=E[gxgy =gx =0]Pr4gx =05

+E[gxgy =gx =1]Pr4gx =15− ḡ2

= r̄Pr4gx =15− ḡ2

= r̄ḡ− ḡ2

= ḡ[r̄− ḡ] (B.3)
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and the variance is

var(gx )=E[g2
x ]−E[gx ]2 = ḡ− ḡ2 = ḡ[1− ḡ].

(B.4)

Therefore we have

Relatedness=
r̄− ḡ
1− ḡ

(B.5)

and for rare mutants,

lim
ḡ : 0

Relatedness= r̄. (B.6)

For rare mutants, relatedness is simply the ratio
of the expected value of the recipient’s genotype
to the expected value of the actor’s genotype
from the perspective of a mutant allele.

APPENDIX C

Diploid Model

In a diploid model of kin selection we need to
allow for the possibility of inbreeding and
therefore, the three genotypes occur with
frequencies

AA (1− f )ḡ2 + fḡ

Aa2 (1− f )ḡ(1− ḡ)

aa (1− f )(1− ḡ)2 + f(1− ḡ) (C.1)

(Crow & Kimura, 1970). The equation for allele
frequency change is

Dḡ
ḡ

=
1
W�

(Wm −W� ) (C.2)

where Wm is now the marginal fitness of the
mutant allele (Crow & Kimura, 1970). We
assume that genetic effects are additive and
taking the limit as ḡ : 0, eqn (C.2) becomes

Dḡ
ḡ

=
1

Waa(x0)
(fWAA(x, x0)

+ (1− f )WAa(x, x0)−Waa(x0)) (C.3)

where the functions WAA, WAa, and Waa are the
genotype fitnesses. As done for the haploid
genetic model, we can now see that to obtain a
genetically valid game theoretic model under

diploidy, it suffices to define the fitness function,
W(x, x0), as

W(x, x0) , fWAA(x, x0)+ (1− f )WAa(x, x0).

(C.4)
We can write the genotypic fitnesses as

WAA(x, x0)= s
2

k=0

PkF0x,
kx+(2− k)x0

2 1
(C.5a)

WAa(x, x0)= s
2

k=0

pkF0x+ x0

2
,
kx+(2− k)x0

2 1
(C.5b)

where Pk and pk are defined in Appendix A.
Using these in the fitness function (C.4) and
assuming that the altered behaviour of a mutant
does not alter the probabilities Pk and pk , the
equilibrium condition (2) is calculated as

W1(x, x0)=x= x0 = x* = f s
2

k=0

Pk0F1 +
k
2

F21
+(1− f ) s

2

k=0

pk012 F1 +
k
2

F21 (C.6a)

=01+ f
2 1F1+$f0 s

2

k=0

Pk
k
21

+(1− f )0 s
2

k=0

pk
k
21%F2 (C.6b)

which has the same sign as

F1 + r̄F2 (C.7)

where

r̄=

f0SkPk
k
21+(1− f )0Skpk

k
21

(1+ f )/2
(C.8)

is the relatedness of the recipient to the actor (see
overleaf).
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The ESS condition (3) is calculated as

W11(x, x0)=x= x0 = x* = f s
2

k=0

Pk0F11 +2
k
2

F12 +0k21
2

F221
+(1− f ) s

2

k=0

pk014 F11 +
k
2

F12 +0k21
2

F221
(C.9a)

=01+3f
4 1F11+02f s

2

k=0

Pk
k
2
+(1− f ) s

2

k=0

pk
k
21F12

+0f s
2

k=0

Pk0k21
2

+ (1− f ) s
2

k=0

pk0k21
2

1F22.

(C.9b)

The CSS condition (7) is calculated as

d
dx0[W1(x, x0)=x= x0]b

x0= x*

=01+ f
2 1(F11 +F12)

+$f0 s
2

k=0

Pk
k
21+(1− f )0 s

2

k=0

pk
k
21%(F12 +F22)

which has the same sign as

F11 + (1+ r̄)F12 + r̄F22 (C.10)

where r̄ is defined in (C.8).
To see that (C.8) is the correct definition of

relatedness, we proceed as in the haploid case.
Under additive gene action relatedness is defined
as

Relatedness =
cov(gx , gy )

var(gx )
(C.11)

where gx is the genotype of the actor and gy is the
genotype of the recipient (Michod & Hamilton,
1980). Using the shorthand

P
 = s
2

k=0

Pk
k
2

(C.12a)

px = s
2

k=0

pk
k
2

(C.12b)

the covariance is

cov(gx , gy )=E[gxgy ]−E[gx ]E[gy ]

=E[gxgy =gx =1/2]Pr4gx =1/25

+E[gxgy =gx =1]Pr4gx =15− ḡ2

=
1
2

px Pr4gx =1/25+P
 Pr4gx =15− ḡ2

=px (1− f )ḡ(1− ḡ)+P
 ((1− f )ḡ2 + ḡf )− ḡ2

=ḡ[px (1− f )(1− ḡ)+P
 ((1− f )ḡ+ f )− ḡ]

(C.13)

and the variance is

var(gx )=E[g2
x ]−E[gx ]2

=
1
4

2ḡ(1− ḡ)(1− f )+ (1− f )ḡ2 + ḡf− ḡ2

=ḡ$12(1− ḡ)(1− f )+ f+(1− f )ḡ− ḡ%.
(C.14)

Therefore we have

Relatedness=

px (1− f )(1− ḡ)+P
 (1− f )ḡ+ f )− ḡ
1
2(1− ḡ)(1− f )+ f+(1− f )ḡ− ḡ

(C.15)

and for rare mutants,

lim
ḡ : 0

Relatedness=
px (1− f )+P
 f

1
2
(1+ f )

(C.16)

which is eqn (C.8). Again, for rare mutants,
relatedness is the ratio of the expected value of
the recipient’s genotype to the expected value of
the actor’s genotype from the perspective of a
mutant allele.

APPENDIX D

The Form of F(x, y) Satisfying Condition (33)

Here we demonstrate that the payoff function
F(x, y) satisfies

F(a, b)+F(b, a)=F(a, a)+F(b, b) (D.1)



   405

for all a, b [i.e. condition (33) of the text] if and
only if it is of the form

F(a, b)=S(a, b)+A(a)+B(b) (D.2)

where S(a, b) is skew-symmetric [i.e.
S(a, b)=−S(b, a) for all a, b]. If F(x, y)
satisfies (D.1) then

2F(a, b)= (F(a, b)−F(b, a))

+ (F(a, b)+F(b, a)). (D.3)

The first set of terms in (D.3) is a function that
is skew-symmetric and the second set of terms is
a function of a plus a function of b from (D.1).
Therefore, if F(x, y) satisfies (D.1), then it has
the form (D.2).

Now, if F(x, y) has the form (D.2), then
F(b, a)=S(b, a)+A(b)+B(a), and adding
this to (D.2) gives

F(a, b)+F(b, a)

=A(a)+B(b)+A(b)+B(a) (D.4)

since S is skew-symmetric. Now, from (D.2) we
can also see that

F(a, a)=A(a)+B(a) (D.5)

and

F(b, b)=A(b)+B(b) (D.6)

and therefore

F(a, a)+F(b, b)

=A(a)+B(b)+A(b)+B(a). (D.7)

Substituting (D.7) into (D.4) then shows that if
F(x, y) has the form (D.2), then it satisfies (D.1).

APPENDIX E

Results for Path-structured Populations—
Playing the Field

Here we present the analogous results for the
genetic model and the two phenotypic models
assuming a patch-structured population in which
individuals play the field. Specifically, we assume
that the payoff to an individual using strategy x
in a patch where the average strategy is z is given
by the function, G(x, z).

  

Haploidy

Let n denote the number of individuals per
patch, and rk the probability that the patch has
a total of k copies of the mutant allele where k
runs from 1 through n. Therefore we have

WA(x, x0)= s
k

rkG0x,
k
n

x+
n− k

n
x01. (E.1)

Using (E.1) in definition (10) we can calculate
the equilibrium, ESS, and CSS conditions.
Equilibrium condition (2) is

W1(x, x0)=x= x0 = x* = s
k

rk0G1 +
k
n

F21 (E.2a)

=G1 + r̄G2 (E.2b)

where we have defined r= k/n and

r̄= s
k

rk
k
n

(E.3)

is the relatedness of two randomly chosen patch
members with replacement. That this is the
correct definition of relatedness when the mutant
allele is rare can be demonstrated using
calculations similar to those in Appendix B. ESS
condition (3) is

W11(x, x0)=x= x0 = x*

= s
k

rk0G11 +2
k
n

G12 +0kn1
2

G221 (E.4a)

=G11 +2r̄G12 + r̄2G22, (E.4b)

and CSS condition (7) is

d
dx0 [W1(x, x0)=x= x0]bx0 = x*

=G11 + (1+ r̄)G12 + r̄G22. (E.5)

Again, these results all assume that the altered
behaviour of the mutant does not affect the
probability distribution rk and consequently
does not affect the relatedness, r̄.
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Diploidy

Under diploidy we have

WAA(x, x0)= s
k

PkG0x,
k
2

x+
2n− k

2n
x01 (E.6a)

WAa(x, x0)

= s
k

pkG0x+ x0

2
,

k
2n

x+
2n− k

2n
x01 (E.6b)

where Pk and pk are the probabilities that a
random mutant homozygote and heterozygote,
respectively, is in a patch with a total of k mutant
alleles where k runs from 1 to 2n. Using these in
the fitness function (C.4), and assuming that the
altered behaviour of a mutant does not alter the
probability distributions Pk and pk , the equi-
librium condition (2) is calculated as

W1(x, x0)=x= x0 = x* = f s
k

Pk0G1 +
k
2n

G21
+(1− f ) s

k

pk012 G1 +
k
2n

G21 (E.7a)

=01+ f
2 1G1

+$f0sk Pk
k
2n1+(1− f )0sk pk

k
2n1%G2 (E.7b)

which has the same sign as

G1 + r̄G2 (E.8)

where

r̄=

f0SkPk
k
2n1+(1− f )0 Skpk

k
2n1

(1+ f )/2
(E.9)

is the relatedness of the recipient to the actor.
This can be demonstrated using the approach
from Appendix C.

ESS condition (3) is calculated as
W11(x, x0)=x= x0 = x*

= f s
k

Pk0G11 +2
k
2n

G12 +0 k
2n1

2

G221
+(1− f ) s

k

pk014 G11 +
k
2n

G12 +0 k
2n1

2

G221
(E.10a)

=01+3f
4 1G11

+02f s
k

Pk
k
2n

+(1− f )s
k

pk
k
2n1G12

+0f s
k

Pk0 k
2n1

2

+ (1− f )s
k

pk0 k
2n1

2

1G22

(E.10b)

CSS condition (7) is calculated as

d
dx0[W1(x, x0)=x= x0]bx0 = x*

=01+ f
2 1(G11 +G12)

+$f0sk Pk
k
2n1−(1− f )0sk pk

k
2n1%(G12 +G22)

(E.11)

which has the same sign as

G11 + (1− r̄)G12 + r̄G22 (E.12)

where r̄ is defined in (E.9).

   

The inclusive fitness approach makes the
definition

W(x, x0) , G(x, y)+ (n−1)RG(x0, y), (E.13)

where R is the expected relatedness of a
randomly chosen one of the n−1 remaining
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group members to the actor. Conditions (2), (3),
and (7) are

EQUIL : G1 + r̄G2 =0 (E.14a)

ESS : G11 +
2
n

G12 +
r̄
n

G22 Q 0 (E.14b)

CSS : G11 + (1− r̄)G12 + r̄G22 Q 0 (E.14c)

where r̄ is now the expected relatedness between
two randomly chosen patch mates with replace-
ment.

   

The personal fitness approach uses the
definition

W(x, x0) , G(x, z(x, x0)) (E.15)

where we define z(x, x0)= r̄x+(1− r̄)x0, and
again r̄ is the expected relatedness between two
randomly chosen patch mates with replacement.
Conditions (2), (3), and (7) are then

EQUIL : G1 + r̄G2 =0 (E.16)

ESS : G1 +2r̄G12 + r̄2G22 Q 0 (E.17)

CSS : G11 + (1+ r̄)G12 + r̄G22 Q 0. (E.18)

Again we can see both phenotypic models
obtain the correct equilibrium and CSS con-
ditions but they fail to obtain the correct ESS
condition.


