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ABSTRACT: It is quite common in studies of life-history plasticity
to find a negative relationship between the age at which various life-
history transitions occur and the growth conditions under which
individuals develop. In particular, high growth typically results in
earlier transitions, often at a larger size. Here, we use a relatively
general optimization model for age and size at life-history transitions
to argue that current life-history theory cannot adequately explain
these results. Specifically, most such theory requires key assumptions
that are unlikely to be generally met. This suggests that some im-
portant component of the biology of many organisms must be miss-
ing from many of the models in life-history theory. We suggest that
this missing component might be the phenomenon of developmental
thresholds. There are at least two different types of developmental
thresholds possible, and we incorporate these into our general op-
timality model to demonstrate how they can cause a negative rela-
tionship between growth conditions and age at a transition. If de-
velopmental thresholds are common throughout taxa, then this
might explain the empirical results. Our model formulation and
analysis also formalizes the popular Wilbur-Collins hypothesis for
age and size at metamorphosis in amphibians. The results demon-
strate that optimal combinations of age and size, and the slope of
the reaction norm connecting them, depend on the existence and
type of threshold assumed. Our results also provide an evolutionary
framework that can be used to view the data and many of the prox-
imate submodels derived from the Wilbur-Collins hypothesis.

Keywords: maturity, metamorphosis, plasticity, developmental thresh-
olds, Wilbur-Collins model.

The ontogeny of most organisms is marked by a series of
transitions between stages (e.g., hatch, metamorphosis,
maturation), each of which can be characterized by the
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age and size at which it occurs. One of the principle goals
of life-history theory is to explain intra- and interspecific
patterns in the age and size of individuals at such tran-
sitions. Explanations are often sought through a consid-
eration of potential trade-offs between making the tran-
sition earlier and at a smaller size versus doing so later at
a larger size. For example, an earlier age at maturity will
increase the probability of surviving to reproductive age,
but it might do so at a cost of reduced size and, thereby,
fecundity (Roff 1992; Stearns 1992; Charlesworth 1994).
Similar arguments involving trade-offs have been con-
structed to explain other life-history transitions such as
metamorphosis (e.g., Werner 1989).

One of the more conspicuous features of life-history
transitions is that the combinations of age and size at
which they occur often change plastically in response to
environmental conditions (Roff 1992; Stearns 1992; Nylin
1998). Temperature (Atkinson 1994), growth rate (Berri-
gan and Charnov 1994), risk of predation (Crowl and
Covich 1990; Peckarsky et al. 1993; Ball and Baker 1996),
and time of season (Nylin et al. 1989; Blanckenhorn 1998;
Johansson and Rowe 1999; Johansson et al. 2001) can all
have important influences on the age and size at maturity.
Most theoretical work that attempts to explain the evo-
lution of these reaction norms in life-history transitions
does so by considering how the form of the trade-off be-
tween an early versus a late transition changes with en-
vironmental conditions (e.g., Stearns and Koella 1986;
Rowe and Ludwig 1991; Berrigan and Koella 1994; Sibly
and Atkinson 1994).

Perhaps the most studied reaction norm in the life-
history literature is the response of age and size at a tran-
sition to changes in growth rate. For example, there are
many studies on the effects of food level on age and size
at metamorphosis (or maturity) in a variety of taxa (re-
views in Berrigan and Charnov 1994; Twombly 1996;
Hentschel and Emlet 2000; Morey and Reznick 2000). A
priori, there is no obvious reason to expect any regularity
in response across different species. Indeed, of the several
optimization models that have been developed, any pattern
of response by both age and size appears to be possible



given the appropriate specific assumptions (e.g., Stearns
and Koella 1986; Stearns 1992; Berrigan and Koella 1994).
Yet, the vast majority of taxa examined to date do exhibit
a surprising regularity. In particular, most species display
areduced age at maturity or metamorphosis with increased
growth conditions (reviews in Stearns and Koella 1986;
Berrigan and Charnov 1994; Gotthard and Nylin 1995).
Moreover, this is often accompanied by a larger size at the
transition.

The regularity of this form of reaction norm, across a
relatively broad range of taxa, suggests that some general
factor, common to most species, might be responsible. A
first reasonable inference might be that the particular as-
sumptions of the subset of models that predict such a
reaction norm are widely applicable. Indeed, much of the
empirical literature has often been interpreted as a veri-
fication of these assumptions (e.g., Stearns and Koella
1986; Roff 1992; Stearns 1992). A closer examination of
these models, however, reveals an interesting pattern. The
vast majority of models that consider the evolution of age
at maturity under different fixed growth conditions make
at least one of the following two assumptions (see Abrams
and Rowe 1996 and Abrams et al. 1996 for models with
flexible growth). First, growth is described by the von Ber-
talanffy (VB) equation (von Bertalanffy 1957), and second,
the appropriate measure of fitness is the intrinsic rate of
increase (e.g., Stearns and Koella 1986; Sibly and Atkinson
1994). The first assumption has been questioned on a
number of grounds (Kozlowski 1996; Day and Taylor 1997;
Czarnoleski and Kozlowski 1998; T. J. Kawecki, D. Ber-
rigan, and S. Carrol, unpublished manuscript). Although
the VB equation is often a good descriptor of lifetime
growth patterns, such patterns arise, in part, from the
timing of resource allocation events related to maturation.
Thus, such growth patterns should be derived as predic-
tions rather than assumed in optimality models (e.g., Ko-
zlowski 1996). Moreover, prereproductive growth in many
organisms does not match the VB equation (see references
in Day and Taylor 1997), and therefore additional factors
must be operating, at least some of the time, to explain
the observed reaction norms. With regard to the second
assumption, the intrinsic rate of increase is not the ap-
propriate fitness measure under many situations (Brom-
mer 2000), and therefore, again, this assumption cannot
provide the general explanation that we seek.

How then are we to explain this nearly ubiquitous pat-
tern? We suggest that one missing component might be
the phenomenon of developmental thresholds. A devel-
opmental threshold is simply a minimum size or condition
that must be attained before a life-history transition can
occur. There are currently two optimality models in the
literature that do incorporate developmental thresholds.
Rowe et al. (1994) supposed that individuals must reach

Thresholds and Life-History Plasticity 339

some threshold condition before reproduction is possible,
and T. J. Kawecki, D. Berrigan, and S. Carrol (unpublished
manuscript) suppose that individuals lose a constant
amount of mass after reaching maturity. This effectively
imposes a threshold mass that must be reached before
reproduction is possible because mass at maturation would
have to exceed this constant. These two models differ in
several other assumptions, however, and neither article
examined how the presence of a threshold size or condition
per se influences the model’s predictions.

In fact, the vast majority of research on thresholds and
their effect on age and size at life-history transitions has
been motivated by a verbal model proposed by Wilbur
and Collins (1973). Their model postulates a size threshold
for the physiological ability to metamorphose, and it sup-
poses that an organism can delay metamorphosis further
after reaching this threshold in an adaptive manner in
response to growth conditions. When growth conditions
are good, Wilbur and Collins argued, there will be a long
delay in metamorphosis; but when conditions are poor,
individuals will metamorphose quickly after reaching the
threshold. There have been a remarkable number of em-
pirical studies aimed at testing elements of the Wilbur-
Collins framework, including experiments with insects
(Bradshaw and Johnson 1995), crustaceans (Ebert 1994;
Twombly 1996), fish (Reznick 1990), and amphibians
(Travis 1984; Alford and Harris 1988; Hensley 1993; Leips
and Travis 1994; Tejedo and Reques 1994; Audo et al. 1995;
Beck 1997; Morey and Reznick 2000). The results of these
studies are somewhat mixed: some aspects of the model
appear to be supported while others do not. For example,
late increases in food supply often have no affect on de-
velopment rate, despite the fact that Wilbur and Collins
would predict a delay in the time to metamorphosis (re-
viewed in Morey and Reznick 2000). These mixed results
have led many authors to alter the Wilbur-Collins frame-
work slightly to accommodate their findings. This has re-
sulted in the proliferation of several submodels, most of
which are derived from the Wilbur-Collins framework
(e.g., Hensley 1993; Leips and Travis 1994; Bradshaw and
Johnson 1995; Twombly 1996; Hentschel 1999). For ex-
ample, the apparent insensitivity of development rate in
later-stage larval amphibians to food level has led to the
hypothesis that development is fixed after a certain stage
(e.g., Leips and Travis 1994). Most of these submodels are
directed toward providing a proximate explanation for ap-
parent deviations from the original verbal model of Wilbur
and Collins rather than toward an ultimate (i.e., evolu-
tionary) explanation. Notably, a similar threshold hypoth-
esis was proposed earlier for Drosophila melanogaster (Bak-
ker 1959) and has similarly been the subject of some
empirical tests and modification (Gebhardt and Stearns
1988; Moed et al. 1999).
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Because the Wilbur-Collins model is verbal (as is Bakker
1959), however, several of its features remain unclear. First,
it is not clear what the overall pattern of plasticity is ex-
pected to be when growth conditions are enhanced. For
example, high food levels mean that individuals will reach
the threshold sooner but that they will wait longer after
the threshold before undergoing the transition. Since these
two effects work in opposition it is not clear whether the
overall age at transition will increase or decrease. Second,
Wilbur and Collins supposed that individuals would do
best by delaying the transition once the threshold is
reached if growth conditions are good, but they did not
provide a clear argument for why this might be the case.
A more formal treatment is required to determine whether
or not this is in fact the optimal strategy.

In this article, we suggest that current life-history theory
does not yet offer a satisfactory explanation for the com-
mon observation that age at maturity (or metamorphosis)
is accelerated under high-growth conditions. We begin
with a quite general model that demonstrates how, in the
absence of assumptions about VB growth or the use of
the intrinsic growth rate as a measure of fitness, age at
maturity is predicted to increase with growth conditions.
This prediction is opposite to the pattern found in nature.
We then incorporate a developmental threshold into this
general model in two different ways and explore its effect
on predictions about optimal life-history transitions. Our
analysis demonstrates that the addition of thresholds can
reverse the predictions of the simple model and bring them
into accord with the empirical observations. To the extent
that developmental thresholds are common throughout
taxa, this then provides one potential explanation for ob-
served reaction norms. Finally, although it is not our pur-
pose to review the literature directed toward testing the
Wilbur and Collins (1973) model, because we incidentally
formalize the ideas of Wilbur and Collins, we briefly com-
pare earlier results and interpretations with our model
assumptions and predictions.

The General Optimality Model

Most of the exposition is phrased in terms of age at ma-
turity, but our results might be applied to other life-history
transitions as well. We seek the age at maturity that max-
imizes an individual’s lifetime reproductive success. Al-
though some forms of density dependence can lead an
evolutionarily stable life history that does not maximize
lifetime reproductive success, we use lifetime reproductive
success for two reasons. First, it is a simple and intuitive
measure, and there are many forms of density dependence
for which it is appropriate (Charnov 1990; Mylius and
Diekmann 1995; Pasztor et al. 1996; Brommer 2000). Sec-
ond, it represents a worst-case scenario for making the

“correct” predictions. In particular, use of the intrinsic rate
of increase as a fitness measure can, in itself, result in a
negative relationship between age at maturity and growth
conditions (as seen in the empirical data). Because this is
certainly not a universally applicable fitness measure, how-
ever, it is necessary to construct a model without this
assumption to determine the factors that can give rise to
this prediction more generally.

Denoting size (or condition) at age t by w(t), we suppose
that growth occurs according to a differential equation of
the form

dw
s fw),
w(0) = w, ()

where w; is the initial size. For instance, power function
growth would have f(w) = kw”, where 0 < b< 1 and k is
a constant, whereas linear growth would have f(w) = kz.
We define an environment that increases growth condi-
tions as one that results in the per unit or relative growth
rate of individuals (i.e., (dw/df)/w) increasing at all ages.
Denoting this per unit growth rate by g and letting k be
a parameter that represents growth conditions (with larger
k corresponding to better growth conditions), this defi-
nition implies

ag(t, k)

Py 0 2
at all ages, . Note that power function growth mentioned
above satisfies this definition, as does linear growth, but
the growth parameter usually employed in models using
the von Bertalanffy equation does not (e.g., see Day and
Taylor 1997).

We write the lifetime reproductive output of an indi-
vidual with age at maturity t as

Fw()V(1), 3)

where F(w(t)) is the expected lifetime reproductive output
of an individual of size w(t) at maturity and where V(f) is
the probability of surviving to age . In the more general
treatment of the appendix, V(f) simply represents the value
of reproducing at age t, which might incorporate the prob-
ability of surviving to age t as well as any seasonal change
in the value of offspring. Note that for semelparous organ-
isms the definition of F is straightforward and equal to
fecundity. If the organism in question is iteroparous, then
for simplicity we assume that reproduction occurs contin-
uously in time, and in this case, F will also depend on adult
mortality rate. Our results are valid in either case provided



that adult mortality rate is age and size independent. If the
above is applied to other life-history transitions (e.g., age
at metamorphosis), then F is the expected lifetime repro-
ductive output of an individual at metamorphosis.

Here, for the sake of simplicity we assume that repro-
ductive output, F, is proportional to size (see appendix for
more general assumptions). Since V(f) is the probability that
the parent survives to maturity, we have V(f) = e *, where
w is a constant, prereproductive mortality rate. From these
assumptions, it follows that the optimal age at maturity,
t*, satisfies

g k) = p )

with t = ¢*. The left-hand side of condition (4) gives the
benefit that results from postponing maturity by a small
increment at age t (which is an increase in size and, there-
fore, fecundity), and the right-hand side gives the cost
(which is mortality). At early ages we expect the left-hand
side to be larger than the right because a small delay in
reproduction results in a large proportional increase in
fecundity when individuals are small. At late ages, we ex-
pect the reverse because the proportional gain in fecundity
from delaying reproduction is expected to be quite small
for large individuals. It is optimal to mature when the two
sides exactly balance (fig. 1).

To determine how the optimal age at maturity, ¢,
changes when growth conditions increase, we implicitly
differentiate condition (4) with respect to k, giving

dt*  —aglok 5
dk — aglat ©
From the second derivative condition for a maximum, the
denominator of equation (5) is negative. Therefore, the
optimal age at maturity changes in a direction given by
the sign of dg/ok (see appendix for a more general con-
dition), and from definition (2), this is positive. Thus, age
at maturity increases with growth conditions. Graphically,
the relative growth rate curve, g(t, k), increases at all ages
as growth conditions increase, and therefore the point at
which it crosses the mortality rate curve moves to the right
(fig. 1). Increasing growth conditions increases the benefit
to delaying maturity without altering the cost, thereby fa-
voring a delay. This conclusion remains true if mortality
rate decreases with size, if there is a time horizon due to
seasonality, or if reproductive output, F, is proportional
to some power of size (appendix).

Notice that the above results are valid only if the optimal
age at maturity is >0. Mathematically, the analysis assumes
that the optimum does not fall on the boundary of per-
missible ages at maturity. In some situations, however, it
can be optimal to mature immediately because the costs
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Figure 1: A graphical depiction of optimality condition (4) for two
different levels of growth conditions. Curve g, is the per unit growth rate
for high-growth conditions, whereas curve g, is for low-growth condi-
tions. (In general, we expect the per unit growth rate to decline as an
individual gets older.) Definition (2) implies that g lies above g, at all
ages. Dashed line is mortality rate. The costs and benefits balance at the
age where the lines intersect. Notice that, for low-growth conditions, the
per unit growth rate, g, lies below the mortality rate at all ages, and
therefore it is optimal to mature immediately (i.e., t* = 0). As growth
conditions increase, the per unit growth rate curve moves upward, and
therefore the intersection point (i.e., the optimal age at maturity) gets
larger.

on the right-hand side of condition (4) are larger than the
benefits on the left-hand side for all ages (fig. 1, curve
g,). In particular, this can occur if growth conditions are
low enough or if the mortality rate is high enough. In
such cases, equation (5) is not valid, but these conditions
are unlikely to be met in nature.

The Effect of Thresholds

We now determine how including a maturation threshold
in the above model alters its predictions. From a mathe-
matical perspective, there are at least two different ways
in which a threshold might operate. For each of these, we
present an example of the kind of biological mechanism
that gives rise to the threshold, but there are undoubtedly
other mechanisms that give rise to thresholds that are
mathematically identical.

Following the conceptual framework of Wilbur and Col-
lins (1973), it will be useful to decompose the optimal age
at maturity, t*, into the time until the critical size or thresh-
old is reached, ¢, and the optimal time to delay maturity
after reaching the threshold, ¢, with t* = ¢, + . If w_ is
the threshold size, then ¢, is defined by w(t.) = w.. Only
t* can be adjusted adaptively in response to different
growth conditions. This conforms to the model of Wilbur
and Collins (1973), and it highlights the constraints im-
posed by a threshold.
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Physical Thresholds

The first type of threshold explored occurs if an individ-
ual’s reproductive potential increases continuously with
size (or condition), but this reproductive potential cannot
be realized until some critical size is exceeded. This might
occur if an individual must reach a critical size before it
is physically able to fit any reproductive output (e.g., live
offspring or eggs) in its body. Alternatively, it might occur
if there is another “state variable” in addition to size (e.g.,
physiological state) that must reach a critical value before
reproduction is possible but that has no effect on fecundity.
This then imposes a critical time, f., and thereby a critical
size, w., that must be attained before reproduction can
occur.

In either case, optimality condition (4) still gives the
age at which the costs and benefits of delaying maturation
are balanced. The threshold simply imposes a constraint
on the lowest possible age at maturity. Graphically, we
illustrate the outcome in the age-size plane by first drawing
the reaction norm that would result across a range of
growth conditions in the absence of a threshold and then
drawing a horizontal line across these growth trajectories
at the threshold (fig. 2). Slow-growing individuals that
would mature at a small size in the absence of a threshold
now must wait until the threshold is reached. Notice that
they then mature after the age at which the cost and ben-
efits are balanced because the presence of a threshold forces
them to mature beyond that point. Fast-growing individ-
uals that would mature at large sizes in the absence of a
threshold are unaffected by its presence (fig. 2).

The results reveal that a physical threshold can cause
the optimal age at maturity to decrease as growth con-
ditions increase (fig. 2). In particular, as growth conditions
increase, the age at which the threshold is reached (i.e.,
t.) decreases. Because this is also the age at maturity for
slow-growing individuals (fig. 2), age at maturity for these
individuals thereby decreases. Notice, however, that this
type of threshold cannot explain observations of an in-
crease in size at transition with growth conditions. More-
over, fast-growing individuals mature at some point after
reaching the threshold, and therefore age at maturity in-
creases with an increase in growth conditions for these
individuals, in opposition to most empirical evidence (fig.
2).

Overhead Thresholds

In the second type of threshold, an individual’s potential
fecundity starts from 0 once the threshold is reached and
increases thereafter as size or condition increases. This can
occur if the amount of resources that an individual has at
its disposal is size dependent and if some amount of energy

Size

Age

Figure 2: A plot of four hypothetical growth trajectories under a range
of growth conditions. Bold curve represents the optimal switching curve
(i.e., reaction norm) from growth to reproduction. The horizontal portion
results from a lower bound on the size at which reproduction is possible
from a physical threshold. Dotted dark curve is the extension of the bold
switching curve that would result in the absence of a physical threshold.
In the absence of a physical threshold, age at maturity increases with
growth conditions. The horizontal line representing the threshold size is
dashed in the portion of the age-size plane where the threshold has no
effect (i.e., for high-growth conditions). Low enough growth conditions
result in maturation immediately on reaching the threshold (and at a
constant size). Larger growth rates exhibit a pattern of increased age at
maturity with growth conditions.

is required simply to become reproductively active, but
this energy is not translated into fecundity. Any available
resources over and above this overhead cost are then trans-
lated into fecundity. This imposes an “overhead” threshold
size for reproduction since individuals smaller than this
size cannot pay the overhead costs involved with repro-
ducing (let alone pay for any reproductive output).

Mathematically, we can specify an overhead threshold
by supposing that reproductive output is proportional to
size minus the threshold size, w,; that is,

Focw(t) — w. ©)
Therefore, the optimality condition (4) becomes

_wy _
) SE R = s 7)

at t = t”. Similar results can be obtained if fecundity has
the form F oc [w(t) — w,]° or F oc w(t)® — w® (an example
of the latter is considered below). Again, the left-hand side
of equation (7) represents the benefit of postponing mat-
uration, and the right-hand side represents the cost. The
difference between this condition and condition (4) is the
presence of w, in the denominator of the left-hand side.

To determine how the optimal age at maturity changes
when growth conditions increase, it is easiest to consider



the effect of increasing k on ¢, and ¢, separately. An increase
in k will decrease the time until the threshold is reached
just as with a physical threshold. To determine how ¢
changes, we note that an individual that has just reached
the threshold at age . faces the same decision as one that
starts at size w, at age 0. Therefore, 7 must satisfy con-
dition (7), where w(t) is determined by equation (1) but
with w(0) = w,.. At t, = 0, the denominator on the left-
hand side of condition (7) is 0, and thus the benefit to
delaying maturity past the time at which the threshold is
reached is infinite; fecundity starts from 0 at the threshold,
and therefore it always pays to delay maturity past the
threshold to some extent.

A small increase in growth conditions, k, therefore
changes #, according to

i, @ok)wglw — w,)

o

dk aglot

(8)

Again, dg/dt < 0 because we are dealing with a maximum,
and therefore the direction in which # changes as growth
conditions increase is given by the sign of

918
Bk(p ’ ©)

where we have defined p = (w — w,)/w as the ratio of the
above-threshold size to the actual size. Figuratively speak-
ing, this can be thought of as the proportion of an indi-
vidual’s size that “counts” toward actual reproductive out-
put. We have p = 1 if there is no overhead threshold, but
with a threshold, p < 1, and this increases the benefit to
postponing maturity. Also notice that as an individual
grows, p eventually approaches unity; as size increases be-
yond the threshold, it is “felt” less and less. Also note that,
for any given age, p increases as growth conditions, k,
increase. Again, figuratively speaking, for any given age, a
greater proportion of an individual’s size counts toward
reproductive output if it was raised under good growth
conditions than if it was raised under poor growth con-
ditions. The reason is simply that both will have the same
threshold, but the individual raised under good conditions
will be larger. Notice, though, that an individual’s per unit
growth rate, g at this age will also increase with growth
conditions, and therefore the sign of expression (9) will
be determined by which of these has the biggest increase.
As a result, for some growth models, #; will increase with
growth conditions, and under others, it will decrease. This
is in marked contrast to physical thresholds in which #;
always increases with growth conditions if it changes at
all.

This simple result demonstrates that the presence of an
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overhead threshold can cause an overall negative relation-
ship between age at maturity and growth conditions in
two different ways. First, if the optimal length of time to
delay maturity after the threshold is reached (i.e., t;) de-
creases with growth conditions (i.e., dt;/dk < 0), then the
overall age at maturity will certainly decrease because the
time it takes to reach the threshold (i.e., t.) decreases with
growth conditions as well (i.e., dt./dk < 0). Second, even
if ¢ increases with growth conditions (as Wilbur and Col-
lins [1973] supposed), then the overall age at maturity can
still decrease if the decrease in ., more than compensates.
In the examples that follow, size at maturity also increases
with growth conditions, although it is conceivable that a
growth model could be chosen so that the opposite occurs.

Examples

To illustrate the above results, we consider two examples
of overhead thresholds. The first uses linear growth; and
the second, power function growth. Under linear growth
we have w(t) = w, + kt, and we assume that F is given by
equation (6). In this case, optimality condition (7) solves
to give

w.— w

= (10)

"t =

==

This can be decomposed into the two components, t. =
(w, — w)/k and ¢t = 1/u, which represent the time to
reach the threshold and the optimal delay thereafter. Equa-
tion (10) shows that, in this example, age at maturity
always decreases as growth conditions increase. The anal-
ogous model without a threshold is obtained by setting
w. = 0 in equation (10), which demonstrates that the
presence of an overhead threshold is critical in reversing
the prediction for how optimal age at maturity responds
to growth conditions.
For power function growth, size as a function of age is
given by
w(t) = [k — byt + w7770, (11)
As do many authors using power function growth, we
assume that the amount of energy available for repro-
duction at age t is proportional to the size at that age
raised to the power b (T. J. Kawecki, D. Berrigan, and S.
Carrol, unpublished manuscript). Therefore, if there is a
threshold level of energy that is required to pay the over-
head costs of reproduction, we have F cc w(t)’ — w, where
w, is the size that provides this threshold level of energy.
With this formulation, the optimal age at maturity must
be obtained numerically.
As with linear growth, an overhead threshold can result
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in age at maturity decreasing as growth conditions in-
crease. The top two panels of figure 3 (fig. 3a, 3b) dem-
onstrate that as the threshold size decreases the reaction
norm becomes more L-shaped. In fact, as the threshold
becomes even smaller (fig. 3¢), the curve bends further,
and then has a slightly positive slope for high growth rates.
This is expected since, in the extreme case where there is
no threshold, we expect a positive relationship between
age at maturity and growth conditions. We note that, in
this example, the length of the postthreshold delay until
the transition increases with growth conditions, but the
decrease in the time until the threshold is reached more
than compensates for this. Interestingly, if the exponent,
b, is <1/2, then the length of the postthreshold delay ac-
tually decreases with an increase in growth conditions.
Most evidence suggests that b = 2/3 to 3/4 for power func-
tion growth, however, and therefore this case might be of
less interest.

Predictions for Food Manipulation Experiments

Many studies, motivated by Wilbur and Collins (1973),
have been conducted to look for maturation (or meta-
morphosis) thresholds as well as to explore how individ-
uals’ developmental programs respond to altered growth
conditions (reviewed in Twombly 1996; Hentschel and
Emlet 2000; Morey and Reznick 2000). One typical ap-
proach (following Alford and Harris 1988) is to alter
growth conditions at various stages during an individual’s
development and then to examine how the age and size
at maturity of these individuals compares with those whose
growth conditions have remained constant (e.g., fig. 1 in
Twombly 1996). Our formal model presented above pro-
vides an optimality framework within which we can con-
duct similar manipulations and compare them to results
obtained from these previous experiments.

We focus solely on a model of an “overhead” threshold
because physical thresholds cannot explain why size at the
transition increases with growth conditions (in addition
to age decreasing). We imagine that an experiment is con-
ducted in which individuals are kept under either high-
or low-growth conditions (H and L, respectively) through-
out development. From the above model, we predict that
high-growth individuals will mature earlier and at a larger
size than low-growth individuals. This result is in accord
with the most common empirical pattern for age and size
at amphibian metamorphosis (Morey and Reznick 2000)
and for maturation in many other taxa (Berrigan and
Charnov 1994). We then need to examine the model’s
predictions when some high-growth individuals are
switched to low growth at various stages of development
(and vice versa). Experimenters have typically switched
food levels at various stages, in an attempt to identify
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Figure 3: An example of the growth trajectories under two different
growth conditions for power function growth and with an overhead
threshold. Bold curves are the resulting switching curves (i.e., reaction
norms). Dashed line is the threshold size. b = 0.66, o = 0.86, w; =
01, 8=1, p =04, k=0.5, and k = 0.85 in a-c. a, w. = 1.25. b,
w. = 0.5.¢ w. = 0.2.

periods when development rate is and is not sensitive to
growth conditions and to test the Wilbur and Collins
(1973) prediction that low-growth conditions after the
threshold will accelerate development (Travis 1984; Alford
and Harris 1988; Hensley 1993; Ebert 1994; Leips and



Travis 1994; Tejedo and Reques 1994; Audo et al. 1995;
Bradshaw and Johnson 1995; Twombly 1996; Beck 1997;
Hentschel and Emlet 2000; Morey and Reznick 2000). We
mimic such a manipulation with our model.

Consider a group of individuals that start out under
high-growth conditions. If, at size w , we switch half of
these individuals to the low-growth treatment, what pat-
tern of maturation do we expect between these two treat-
ments (i.e., between HH and HL)? This question can be
answered most easily by noting that, as far as the model’s
predictions are concerned, this experiment is equivalent
to one in which we start with individuals of size w and
simply initiate and maintain a high- and low-growth treat-
ment for the remainder of development. Therefore, to pre-
dict what will happen in such experiments, we need only
consider a hypothetical experiment in which there are two
growth treatments and in which groups of individuals are
started in the experiment at different initial sizes (fig. 44).

The results presented earlier demonstrate that a large
enough threshold causes a negative relationship between
age at the transition and growth conditions. From the
perspective of our hypothetical experiment, then, an al-
ternative way to phrase this is that if individuals start out
well below the threshold, then high-growth individuals will
go through the transition earlier and at a larger size than
low-growth individuals. Of course, because it is the pres-
ence of the threshold that causes this relationship, if in-
dividuals start out far enough above the threshold, then
the reverse pattern is expected (fig. 4a). Therefore, as the
starting size of an individual increases, the model predicts
that there will come a point at which both high- and low-
growth conditions result in the same age at transition,
though high-growth conditions will give a larger size. Fur-
ther increases in initial size will then given a positive re-
lationship between growth conditions and age at transition
(fig. 4). As a result, we can further conclude that if we
instead switched the growth treatment of individuals at
various stages during development, then we would expect
a shift from a negative relationship between growth con-
ditions and age at transition to one that is positive (fig.
4b).

Notice that if the positive relationship that is obtained
when growth conditions are switched late in development
is very steep, then it might well be indistinguishable from
a vertical relationship in an experiment. This would gen-
erate a pattern in which development time appears to be
fixed after some critical size, even though it is not.

Discussion

One of the most surprising results arising from our models
was the difficulty we encountered in attempting to construct
a simple model that offered a general explanation for the
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Age

Age

Figure 4: Plots of hypothetical switching curves for different growth
conditions. a, The switching curves generated by a high- and low-growth
treatment where the individuals are started either well below the threshold
(S,) or well above the threshold (S,). The slope of the curve reverses as
initial size increases because it is the threshold that causes a negative
slope. b, The analogous plot of three switching curves that result from
changing some individuals from high-growth conditions to low-growth
conditions at different stages of development. Again, the slope of the
switching curve changes from negative to positive as the change is made
later and later because it is the threshold that causes a negative slope.
Analogous plots can be made for experiments that switch individuals
from low- to high-growth conditions.

negative relationship between growth conditions and age at
a transition, especially since this relationship is evident in
much of the available empirical data (Stearns and Koella
1986; Berrigan and Charnov 1994; Gotthard and Nylin
1995). This discrepancy has apparently gone unnoticed for
some time. This is probably because many prior models
incorporated von Bertalanffy growth and/or they sought to
maximize the intrinsic rate of increase, both of which can
result in the observed pattern (Stearns and Koella 1986;
Roff 1992; Stearns 1992). Although both assumptions may
be valid in some systems, neither is likely to be generally
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applicable, and therefore, models relying on these assump-
tions are unlikely to provide a general explanation. This
suggests the need to seek new attributes of development
that may be more broadly applicable to explain these em-
pirical patterns. Here, we have demonstrated that devel-
opmental thresholds are one such possibility.

Thresholds and the Wilbur-Collins Model

Our work formalizes Wilbur and Collins’s (1973) influ-
ential verbal model for age and size at metamorphosis and
demonstrates that the inclusion of a threshold size can
cause the optimal age at transition to decrease with in-
creased growth conditions. Importantly, there are at least
two functionally distinct types of thresholds, physical and
overhead thresholds, and the distinction is critical in de-
termining the shape of reaction norms. If the threshold
merely sets the minimum size at which potential repro-
ductive output can be realized (i.e., a physical threshold),
then its effect is felt only by more slow-growing members
of a population, and these individuals will appear to have
an invariant or constrained size at transition (fig. 2). Fast-
growing individuals, on the other hand, will have a re-
action norm exactly as predicted in the general model
without a threshold. If the threshold sets the minimum
size at which an individual can pay the baseline costs of
reproduction (i.e., an overhead threshold), then the
threshold affects the optimal age and size of all growth
classes and can result in a negative relationship between
age and size at transition.

In Wilbur and Collins (1973), the time leading up to
metamorphosis was split into two phases: pre- and post-
threshold. The time spent in the prethreshold phase was
completely constrained by growth conditions, whereas the
time spent in the postthreshold phase could be adjusted
adaptively in response to growth conditions. In particular,
Wilbur and Collins assumed the following rule: if con-
ditions are good (e.g., high growth), delay metamorphosis;
if conditions are bad, metamorphose early. Yet, the form
or even sign of the reaction norm for age and size at
metamorphosis cannot readily be predicted by this verbal
model because growth conditions have opposing effects
on rates of development in the two phases of the life
history. For example, slow growth will delay metamor-
phosis by lengthening the prethreshold phase, but it will
accelerate metamorphosis by shortening the postthreshold
phase. Our results demonstrate that if an overhead thresh-
old is substantial enough, then the lengthening of the
prethreshold phase is greater than the shortening of the
postthreshold phase, causing an overall increase in age at
metamorphosis (as seen in the data). Of course, the op-
posite overall pattern might obtain if the overhead thresh-
old is very small.

Empirical Tests of the Model

We have illustrated how our optimality model can be used
to make predictions for experiments in which food rations
are manipulated at different stages of development. In par-
ticular, figure 4 illustrates the model’s predictions when
the optimal length of the postthreshold phase of devel-
opment increases with growth conditions (as Wilbur and
Collins assumed). Although our analysis with power func-
tion growth (assuming an exponent of 2/3 to 3/4) suggests
that this is a common expectation, the model reveals that
other predictions are also possible given different descrip-
tions of growth. Therefore, although we would take the
predictions of figure 4 to be among the most easily tested
predictions of the model, failure to match these predictions
does not, unfortunately, rule out a general model of de-
velopmental thresholds. This indeterminacy means that
more definitive tests of the model are not possible without
detailed information on the position of the threshold as
well as an appropriate mathematical description of growth
and the size/fecundity relationship. Of course, the prog-
nosis is as bad or worse for the original Wilbur/Collins
model and its derivatives because most of these are purely
verbal arguments.

Despite these caveats, it is worth comparing our key
predictions from the overhead model with the results from
food manipulation experiments on insects, crustaceans,
and amphibians, experiments that were conducted with
respect to the original Wilbur-Collins framework (Travis
1984; Alford and Harris 1988; Reznick 1990; Hensley 1993;
Ebert 1994; Leips and Travis 1994; Tejedo and Reques
1994; Audo et al. 1995; Bradshaw and Johnson 1995;
Twombly 1996; Beck 1997; Hentschel and Emlet 2000;
Morey and Reznick 2000). First, when larvae are exposed
to constant food over the premetamorphic period, low-
food larvae typically have delayed age and reduced size at
metamorphosis. This prediction is in accord with our
model, if the threshold size for metamorphosis is relatively
large. Second, most manipulations reveal that size at meta-
morphosis is sensitive to changes in growth conditions,
even if those changes occur late in the larval period. Spe-
cifically, larvae moved from high to low food ration will
have reduced size compared to those remaining at high
food (or vice versa). This observation is also in accord
with our model predictions.

Finally, most previous studies have found that devel-
opment rate of larvae is unaffected by changing food con-
ditions, when those changes occur at later development
stages. Recall that the Wilbur-Collins model predicts that
development rate will respond to growth conditions after
the threshold has passed (presumably at later stages). Spe-
cifically, if growth conditions decline, the Wilbur-Collins
model predicts that larvae will escape these conditions by



accelerating development. Therefore, this general empir-
ical result is in opposition to the key prediction of the
Wilbur-Collins model. Notably, recent experiments by
Morey and Reznick (2000) contrast with these earlier re-
sults and are in accord with the Wilbur-Collins predictions.
Morey and Reznick (2000) found that at all larval stages
tested, larvae responded to food deprivation by acceler-
ating development. The lack of a response by late-stage
larvae to food manipulations has been interpreted as an
indication that development rate is fixed at some early
stage and is, therefore, insensitive to conditions after this
stage (e.g., Hensley 1993; Leips and Travis 1994; Hentschell
1999). Although fixed development rates may occur in
some species, this would offer only a proximate instead
of ultimate explanation for the observations.

Our model demonstrates that development rate can ei-
ther increase or decrease when food is reduced (fig. 4).
The direction of the effect depends on the size of the larvae
at the time of food reduction relative to the threshold.
Manipulations occurring before the threshold will slow
development, while those after the threshold will speed
development. Therefore, predictions can only be precise
if the threshold size is known. Moreover, development may
appear to be fixed after some stage simply because the
opposing effects of food reductions before and after the
threshold will cancel one another out. Unfortunately, only
Morey and Reznick (2000) have precisely identified the
threshold size and then manipulated food at different dis-
tances from that threshold. Finally, as seen in our figure
3, there are large regions of the optimal switch curve where
there is little variance in age at maturity, despite the fact
that it is unconstrained in our model, and large variance
in size at maturity. This would appear, to the experimenter,
as a fixed development rate, with flexible size at maturity.
This is also the most common pattern found by experi-
menters (Travis 1984; Alford and Harris 1988; Reznick
1990; Hensley 1993; Ebert 1994; Leips and Travis 1994;
Tejedo and Reques 1994; Audo et al. 1995; Bradshaw and
Johnson 1995; Twombly 1996; Beck 1997; Hentschel and
Emlet 2000).

Environmental Determination of Growth

One of the primary limitations of our model is that it sets
growth rate as a function that is fixed by the environment.
Although this is typical for life-history models (Roff 1992;
Stearns 1992), it is not in accord with our knowledge of
the adaptive foraging strategies of individuals. For ex-
ample, we know that foragers can “choose” a growth rate
that balances the often conflicting demands of gaining
energy and avoiding predation (Lima and Dill 1990; Lima
1998). Allowing such flexible foraging strategies in life-
history models is known to affect and even reverse the
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sign of predictions for age and size at maturity (Abrams
and Rowe 1996; Abrams et al. 1996). Moreover, aspects
of the environment other than growth and predation, in-
cluding time constraints (e.g., Rowe and Ludwig 1991)
and temperature (e.g., Berrigan and Charnov 1994) can
also act directly and through flexible growth to affect age
and size at any life-history transition. We have not in-
cluded these factors in this treatment, though the frame-
work can easily accommodate these and others. These facts
argue that tests of the model need to be limited to carefully
controlled growth experiments where other factors, such
as predation risk, can be controlled. Finally, we have as-
sumed, in accord with most of the experimental literature,
that all variation in growth is environmental rather than
genetic. There is, however, no reason to expect that genetic
variation in growth rates would change our qualitative
predictions.

Defining and Explaining Thresholds

There is currently evidence for developmental thresholds
in many systems, including threshold sizes for metamor-
phosis or maturation in insects, crustaceans, amphibians,
and fish (see Roff 1992, p. 126) To date, most thresholds
have been defined proximately as physiological constraints,
without any clear connection to fitness components. For
example, Wilbur and Collins (1973) describe thresholds
as endocrinological mechanisms that initiate metamor-
phosis. There are two problems with such proximate def-
initions. First, there is no explicit connection between the
mechanism underlying the constraint and fitness. Details
about these connections are required to understand how
the threshold affects optimal age and size for subsequent
transitions. We have illustrated two types of thresholds
(physical and overhead) that have very different effects,
and it is reasonable to assume that there are other possible
types of thresholds with other effects on age and size at
transitions as well. Therefore, considerable effort should
be directed toward understanding the mechanisms un-
derlying particular thresholds under study and the con-
nections between these mechanisms and components of
fitness.

Second, the proximate nature of these definitions, ours
included, leaves the question of how these thresholds evolve
untouched. Recent work by Morey and Reznick (2000; also
see references therein) has revealed interspecific variation
among toads in the threshold size for metamorphosis. They
found that species from more temporary environments had
a lower threshold size than those from more permanent
habitats. On one level, this makes sense; species in tem-
porary environments are under strong selection to meta-
morphose rapidly to escape deteriorating environments.
However, if thresholds can indeed evolve as this suggests,
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what are the evolutionary forces that keep threshold sizes
large in permanent habitat species? More generally, what is
the advantage of any threshold at all? An answer to this
question will require a detailed understanding of the phys-
iological mechanisms underlying the threshold. A promising
system for exploration is amphibian metamorphosis, where
a great deal of effort has been directed toward understanding
developmental mechanisms (reviewed in Denver 1997).
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APPENDIX

A More General Model

Here we consider a more general set of assumptions than
those of the text. The optimality condition for the general
fitness expression, expression (3), is

dF 1
X

dv
— X - = - X
dt F

1
Vv (A}
where V represents the “value” of undergoing the transition
at different ages and is a function of age and possibly size
as well; that is, V(t, w(f)) (examples of possible choices for
V are considered below). Implicitly differentiating equation
(A1) gives dt*/dk as

) (dF/dt dV/dt)

dt* ok F 14

Fa (dF/dt dV/dt) : (A2)
at\ F 14

The second-order condition required for ¢* to give a max-
imum implies that the denominator of equation (A2) is
negative, and therefore the sign of dt*/dk is given by the
sign of the numerator:

dF/dt

F \4

s 9
oc —
dk 9k

(A3)

dV/dt)

If, as in the text, we assume that V(f) = ¢ *, then ex-
pression (A3) shows that the optimal age at maturity will
increase provided that the first term is positive, that is,

provided that the per unit rate of increase of reproductive
output increases with growth conditions. As a result, even
though the per unit growth rate always increases with
growth conditions by definition (2), it is nevertheless pos-
sible to choose a function, F(w), such that the per unit
rate of increase of reproductive output decreases with
growth conditions. This requires a very specific form of
F, however, and therefore this is unlikely to provide a
general explanation for the observed empirical patterns.

Perhaps one of the most reasonable, general choices for
F is F(w) o< wP. In this case, the right-hand side of ex-
pression (A3) becomes

av 1
k) +— x —|.
B, b dt>< \%

Py (A4)

Under a time constraint, we suppose that V(¥) is a function
of time only, and therefore expression (A4) has the same
sign as dg/ok; the optimal age at maturity always increases
with growth conditions as in the text. If mortality rate is
size dependent, then the second term in the parentheses
of expression (A4) is —u(w(t")), and therefore expression
(A4) becomes

og_du  ow
dk dwxat' (A5)

B
If mortality rate decreases with increased size, then clearly
this will be positive; the optimal age at maturity again
increases with growth conditions. If the reverse holds, then
whether the optimal age at maturity increases or decreases
with growth conditions will depend on the relative mag-
nitude of the terms in expression (A5).
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