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Preemptive quarantine through contact-tracing effec-
tively controls emerging infectious diseases. Occasionally
this quarantine fails, however, and infected persons are
released. The probability of quarantine failure is typically
estimated from disease-specific data. Here a simple, exact
estimate of the failure rate is derived that does not depend
on disease-specific parameters. This estimate is universal-
ly applicable to all infectious diseases.

reemptive quarantine (isolating asymptomatic persons
who have had contact with an infected person) is an
effective technique for slowing the spread of emerging
infectious diseases, but it also results in many uninfected
persons being isolated (for examples, see [1,2]). Health
officials must determine an acceptable quarantine duration
that balances the social and financial costs of holding
potentially uninfected persons for long durations with the
risk of releasing an infected person into the general public
before he or she displays symptoms, if a shorter duration is
used (the quarantine failure rate, ¢). One primary consid-
eration in setting the quarantine duration is the range of
observed incubation times. Often the quarantine duration
is set to be (approximately) equal to the longest observed
incubation period in a sample of n infections (3). The quar-
antine failure rate is then monitored through the collection
of data on incubation periods throughout the outbreak (3).
This approach requires considerable effort, and it must
be carried out for each new disease. This assessment of
quarantine failure rates is also necessarily retrospective,
with the data required for analysis becoming available only
after the fact. Here a much simpler approach is derived that
requires no data specific to the disease in question. It
applies for all possible infectious diseases, and therefore
can be employed proactively rather than retrospectively.
If the quarantine duration is chosen to be the longest
incubation period in a sample of n infections, then the
probability, y, that the quarantine failure rate is no larger
than 7, is
x =1-(1-mn (equation 1)
for all possible infectious diseases (Appendix). For exam-
ple, the probability that the quarantine failure rate is no
larger than 1% is simply ¢ = 1 — (1 — 0.01)". This is valid
irrespective of any of the biologic details of the disease of
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interest. In particular, the form of the underlying probabil-
ity distribution of incubation times for the disease at hand
has no influence on this result.

Often it is of more interest to estimate the quarantine
failure rate at a prescribed level of certainty. By rearrang-
ing equation 1, we have: with % certainty, the quarantine
failure rate, o, is no larger than m, where

T =1-(1-x)¥. (equation 2)

For example, the 95% confidence boundary for the failure
rate is simply

m=1-(1-0.95)Yn. Moreover, a point estimate for the fail-
ure rate is obtained by calculating the expectation of ¢:

— 1

n+1 (equation 3)
Indeed, more generally the probability density of quaran-
tine failure rate, ¢, is simply p(¢ ) = n(1 — ¢ )™ for any
infectious disease (Appendix).

The above results also allow one to evaluate the proto-
col of using the largest incubation period of n infected
hosts as the quarantine duration. For example, if n = 35 (a
reasonable value for a newly emerging disease) then the
point estimate for ¢ is (equation 3) 1/36 (2.8%), and we
have 95% confidence that ¢ is no larger than 8.2% (equa-
tion 2). Thus, a failure rate of 8 in 100 infected persons
inadvertently being released from quarantine is within the
95% confidence region. This failure rate is likely unac-
ceptable for highly transmissible diseases.

Alternatively, the above results can be used to determine
the sample size, n, on which the quarantine duration must
be based to ensure that the quarantine failure rate is less
than 7 with y% certainty. Rearranging equation 1 yields
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Figure. Sample size of infections, n, that the quarantine duration
must be based on to ensure that the quarantine failure rate is no
larger than ©t (with 95% certainty). Results assume that the quar-
antine duration is set equal to the largest incubation period
observed in the sample of n infections. Curve is plotted using
equation 4 with ¢ = 0.95.
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DISPATCHES

o In@-2)

In@-7) (equation 4)

This is plotted in the Figure, indicating that enormous sam-
ple sizes are required to ensure that the quarantine failure
rate is <1%. Together, the above results therefore call for
two amendments to preemptive quarantine protocols. First,
update the quarantine duration as further infections are
observed during an outbreak. This amendment keeps n as
large as possible. Secondly, set the quarantine duration to
be longer than the maximum observed incubation period
during the initial stages of the epidemic, when the sample
size, n, is necessarily small.

Dr. Day is a mathematical biologist conducting theoretical
research in evolutionary biology. One of his primary interests is
in developing theory to better understand and predict the evolu-
tionary and epidemiologic dynamics of infectious diseases.

Appendix: Explanation of Formula for
Predicting Quarantine Failure Rates

Let L be a random variable denoting the incubation period,
and f (I) and F (1) be its probability density function (p.d.f.) and
cumulative distribution function. Let M be a random variable
denoting the maximum incubation period in a sample of n infec-
tions. The p.d.f. of M is then given by nf (m)F (m)“. In other
words, the probability that, after n draws the maximum incuba-
tion period is m, is given by the product of the probability that

one draw yields an incubation period of exactly m (i.e., nf (m)dm)
with the probability that the remaining n — 1 draws all yield incu-
bation periods no larger than m (i.e., F (m)n'l). Now introduce a
new random variable, X = F (m) (lying in [0,1]), representing the
probability that an infected host will have an incubation period no
larger than m (where F is the same cumulative distribution func-
tion introduced above). The p.d.f. of X is

d G(x) n-1 _ n-1
&L nf (M)F (m)"*dm = nx

where G( x) is defined to be the inverse of F( x). The quarantine
failure rate is 1-X , and therefore its p.d.f., p(¢ ), is

n-n

p(¢) = n (1-¢)~1. We then also have

x=] n(-¢)"dg =1-(1-x)" i

6 = [[on@-0)do =1/(n+1)
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