
INVASION GENETICS: THE BAKER AND STEBBINS LEGACY

Information entropy as a measure of genetic diversity
and evolvability in colonization

TROY DAY*†
*Department of Mathematics and Statistics, Jeffery Hall, Queen’s University, Kingston, ON K7L 3N6, Canada, †Department of
Biology, Queen’s University, Kingston, ON K7L 3N6, Canada

Abstract

In recent years, several studies have examined the relationship between genetic diversity
and establishment success in colonizing species. Many of these studies have shown that
genetic diversity enhances establishment success. There are several hypotheses that might
explain this pattern, and here I focus on the possibility that greater genetic diversity
results in greater evolvability during colonization. Evaluating the importance of this
mechanism first requires that we quantify evolvability. Currently, most measures of evolv-
ability have been developed for quantitative traits whereas many studies of colonization
success deal with discrete molecular markers or phenotypes. The purpose of this study is
to derive a suitable measure of evolvability for such discrete data. I show that under cer-
tain assumptions, Shannon’s information entropy of the allelic distribution provides a
natural measure of evolvability. This helps to alleviate previous concerns about the inter-
pretation of information entropy for genetic data. I also suggest that information entropy
provides a natural generalization to previous measures of evolvability for quantitative
traits when the trait distributions are not necessarily multivariate normal.
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Introduction

The publication of the symposium volume The Genetics
of Colonizing Species by Baker & Stebbins in 1965 was a
landmark in the study of species invasions and the col-
onization of new habitats. A great deal of the published
discussion of the symposium and the accompanying
publications themselves centred on understanding those
characteristics of species that make for good colonizers.
For example, rapid growth, plasticity, short generation
times and the ability to self have all been suggested as
traits that increase colonization ability.
In addition to examining the attributes of individuals

that make for good colonizers, one might also consider
population-level characteristics that increase the likeli-
hood of colonization success. Several of the contribu-
tions in Baker & Stebbins (1965) follow up ideas along

this theme as well, but since that time (perhaps because
of the influence of that volume), there has been an ever
increasing interest in studies of this sort.
One particular area of focus has been the hypothesis

that increased trait variation (e.g. genetic diversity)
leads to increased colonization success (Hughes et al.
2008; Lee & Gelembiuk 2008; Forsman 2014). For exam-
ple, Forsman (2014) recently surveyed the literature
and identified 18 experimental studies on animals and
plants that manipulated the genetic (and/or pheno-
typic) diversity of founder groups and then assessed
the effect on establishment success. Of the 18 studies,
all but one reported a significant positive relationship
between establishment success and genetic diversity.
Gonz!alez-Su!arez et al. (2015) compiled observational
data for 511 invasion events involving 97 different
mammalian species. Interestingly, they found that
establishment success was positively associated with
intraspecific variation in adult body mass but nega-
tively associated with variation in neonate body mass.
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Along similar lines, Gonz!alez-Su!arez & Revilla (2013)
used a large mammalian data set to show that the risk
of extinction (for example due to habitat change) tends
to decrease as intraspecific variation in adult body
mass, litter size and age at sexual maturity each
increases.
The above studies suggest that intraspecific diversity

in some traits might enhance colonization success or
reduce the likelihood of extinction if the environment
changes. As has been noted previously, however, there
are many possible explanations for this pattern
(Gonz!alez-Su!arez & Revilla 2013; Forsman 2014;
Gonz!alez-Su!arez et al. 2015). For example, high diver-
sity might result in a high probability that pre-adapted
types are already common among the colonizing indi-
viduals. Similarly, if some form of niche complimentary
plays a role in colonization success, then high diversity
might result in a high probability that the appropriate
set of types is present among the colonizers (see also
Loreau & Hector 2001).
Another explanation is that some form of evolution-

ary adaptation is required for successful establishment
and that high (genetic) diversity results in a greater
likelihood of such adaptation as opposed to extinction
(Willi et al. 2006; Lee & Gelembiuk 2008). Dlugosch &
Parker (2008) have shown that, across many species,
colonizing populations have reduced genetic diversity
when measured using discrete molecular markers. This
would therefore lead one to suspect that the evolvabili-
ty of such populations might often be compromised.
When measured for quantitative traits, however, this
pattern was less apparent. Furthermore, they suggest
that many quantitative traits have evolved rapidly in
colonizing populations despite the fact that diversity is
sometimes reduced. Thus, the importance of this evolu-
tionary hypothesis remains unclear.
Given the variety of hypotheses for diversity-coloni-

zation success relationships, studies of such patterns
have unsurprisingly employed a wide variety of mea-
sures of diversity. For example, the focus of most of the
18 studies examined by Forsman (2014) was on genetic
diversity, and most quantified genetic diversity as the
number of genotypes present in the colonizers (e.g. Re-
usch et al. 2005 with Zostera marina, Wang et al. 2012
with Spartina alterniflora, Agashe 2009 with Tribolium
castaneum, Ellers et al. 2011 with Orchesella cincta, Hov-
ick et al. 2012 and Crawford & Whitney 2010 with Ara-
bidopsis thaliana, Robinson et al. 2013 with Daphnia
magna and Drummond & Vellend 2012 with Taraxacum
officinale). However, several studies used proxies for
genetic diversity such as effective population size
(Newman & Pilson 1997 with Clarkia pulchella), level of
inbreeding or relatedness (Leberg 1990 with Gambusia
holbrooki, and Gamfedlt et al. 2005 with Balanus improvi-

sus), degree of multiple mating in the parents of foun-
ders (Mattila & Seeley 2007 with honey bees) or
phenotypic polymorphism (Wennersten et al. 2012 with
Tetrix subulata). Finally, some studies directly measured
heterozygosity or levels of polymorphism (Porcaccini &
Piazzi 2001 with Posidonia oceanica, Markert et al. 2010
with Americamysis bahia and Martins & Jain 1979 with
Trifolium hirtum).
The most suitable measure of diversity to use is pre-

sumably determined, in part, by the mechanisms that
translate diversity into increased colonization success.
After all, it will be these mechanisms that determine
which aspects of genetic diversity are most important.
Therefore, it might prove useful to examine how best to
measure diversity in the context of different hypotheses.
That is the purpose of this study. I focus on the hypoth-
esis that greater genetic diversity leads to a greater
evolvability in the colonizing population, and I ask how
should evolvability be measured in the context of colo-
nization studies such as those mentioned above? I will
show using some relatively simple evolutionary consid-
erations that Shannon’s measure of the information
entropy of the standing genetic variation is a natural
measure of evolvability.

Quantifying evolvability

Although measures of evolvability has been derived in
previous studies (Houle 1992; Hansen 2003; Hansen &
Houle 2008), these focus on quantitative traits and
restrict attention to cases where the trait follows a nor-
mal (or a multivariate normal) distribution. As can be
seen from the above list of experimental studies, much
of the work on the diversity-colonization success rela-
tionship has focused on molecular genetic data or dis-
crete phenotypic traits. It is not clear how previously
proposed measures of evolvability might be adapted to
this situation, and therefore, I will derive a measure of
evolvability by essentially ‘starting from scratch’. Inter-
estingly, the measure of evolvability obtained has some
features that make it a potential generalization of previ-
ous measures of evolvability used for quantitative traits,
but for situations where multivariate normality no
longer necessarily holds (see Box 1).
I begin by considering the colonization of a new habi-

tat. I use the terms ‘native population’ and ‘native habi-
tat’ in reference to those of the source of the colonists.
Similarly, I use the term ‘novel population’ and ‘novel
habitat’ in reference to the colonists. Although this ter-
minology is motivated by the study of colonizing spe-
cies, the considerations below apply equally to other
instances of adaptation to novel environments. For
example, this includes instances of lab adaptation as
well as adaptation to changes in the environment.
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When a species colonizes a new area, often the selec-
tive conditions differ from those of the native population.
For instance, the new area might have a different temper-
ature profile, salinity or photoperiod, in addition to a dif-
ferent set of biotic factors such as predation, competition

and parasitism. Consequently, natural selection will
favour different alleles in the novel habitat as compared
with the native habitat. For a newly colonizing popula-
tion to be successful, it must therefore not only overcome
the demographic challenges associated with a small pop-

Box 1. The relationship between measures of evolvability

There are two useful ways to compare the measure of evolvability developed here with that proposed for quantita-
tive traits by Houle (1992) and Hansen & Houle (2008).
The most direct comparison can be made by using the general measure of evolvability in eqn (4). This measure
makes no assumptions about the strength or form of selection or about the form of the target distribution. Further-
more, in the case of a continuous random variable X representing the breeding value of a quantitative trait, and
target and native probability density functions given by p!ðxÞ and p(x), respectively, the corresponding quantity D
can be computed as

D p!jjpð Þ ¼
Z

p!ðxÞ logb
p!ðxÞ
pðxÞ

! "
dx:

Therefore, we can compute the evolvability in eqn (4) for any distribution of interest.
In the context of quantitative traits, we restrict attention to those specific types of selection (and mutation) that are
compatible with both the native and the target distributions being Gaussian and having a common variance. Under
these conditions, the evolutionary change that occurs in going from the native distribution p(x) to the target distri-
bution p!ðxÞ is completely described by the difference in the means of these two distributions. In this case, Dðp!jjpÞ
can be calculated as

D p!jjpð Þ ¼ 1

2

ðD"xÞ2

v

where D"x is the difference in the means and v is the (common) variance.
Now if we use the mean-standardized nondimensional breeder’s eqn from Hansen & Houle (2008), we have
D"x ¼ IAb where IA is the mean-standardized variance of the breeding value distribution and b is the mean-stan-
dardized selection gradient. Thus, we have

D p!jjpð Þ ¼ IA
b2

2

Hansen and Houle proposed
ffiffiffiffiffi
IA

p
, or equivalently IA, as a measure of evolvability for such traits. The above eqn

shows that this is a special case of eqn (4) where the strength of selection is measured by Sðp!i ; piÞ ¼ b2=2.
A second type of comparison with previous measures of evolvability can be made by considering how evolvability
as measured by information entropy in eqn (7) (which assumes truncation selection and no knowledge of the selec-
tive regime in the novel habitat) compares with previous measures if the native distribution is a continuous distri-
bution of breeding values. Although it is well-known that there is no equivalent measure of information entropy
for continuous random variables, Shannon himself defined the entropy in such cases by analogy with the discrete
case. In particular, he used

%
Z

pðxÞ logb̂ pðxÞdx

as the information entropy for a continuous random variable X (Shannon & Weaver 1949). The above expression is
usually referred to as differential entropy to distinguish it from the right-hand side of eqn (7).
Interestingly, for a mean-standardized normal distribution of breeding values, the differential entropy can be calcu-
lated as lnð

ffiffiffiffiffi
IA

p ffiffiffiffiffiffiffiffi
2pe

p
Þ where e is the base of the natural logarithm. Therefore, for normally distributed quantitative

traits, information entropy reduces to a simple transformation of the coefficient of variation
ffiffiffiffiffi
IA

p
. Thus, in this spe-

cial case, we again obtain a measure of evolvability that is effectively the same as that proposed for quantitative
traits. This lends support to the idea that information entropy provides a type of generalization of other measures
of evolvability for cases where the distribution of breeding values is not Gaussian.
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ulation size, but also potentially evolve adaptations to its
new habitat if it is to avoid extinction.
To make things concrete, consider a single locus with

m potentially segregating alleles (extensions to multiple
loci will be considered briefly in the discussion). The
probability distribution of alleles in the native popula-
tion will be referred to as the ‘native distribution’. The
novel habitat will typically select for a different distri-
bution of alleles, and I refer to this new distribution as
the ‘target distribution’. I will define the target distribu-
tion more precisely later, but for the time being, it
should simply be viewed as the allelic distribution that
is favoured by selection in the new habitat.
For successful adaption to the new habitat (as

opposed to extinction), it might be necessary for the
native distribution to evolve into the target distribution.
We would therefore like a way of quantifying how easy
it is for this to happen. I will restrict attention to the
simplest case where the alleles favoured in the novel
habitat are present in the standing genetic variation of
the native population. This is effectively the same type
of assumption that is made in the analyses of evolvabil-
ity for quantitative traits (Hansen & Houle 2008). Exten-
sions to situations where the favoured alleles must first
arise through mutation in the novel habitat are consid-
ered briefly in the discussion.
Now consider a native distribution and the target dis-

tribution to which it must evolve. How easy is it for
this to occur through selection? If the native distribution
can achieve target distributions that are very different
from itself, then, all else equal, we would say that the
native distribution is highly evolvable. At the same
time, however, if the native distribution can only
achieve such very different target distributions if selec-
tion is extremely strong, then we might say that its
evolvability is quite low. Thus, I seek a measure that
quantifies the magnitude of the change in distribution
that can be achieved per unit strength of selection, as has
been used in other analyses (Hansen & Houle 2008).
The first step is to quantify how much change occurs

in going from the native to the target distribution. Sup-
pose pi is the native distribution of allele frequencies
and p!i is the target distribution. How can we measure
the change achieved when pi evolves into the distribu-
tion p!i , from the standpoint of selection and evolution?
If the target distribution can be obtained simply by ran-
domly sampling the native distribution, then, in a
sense, no change is necessary to go from pi to p!i
because the two distributions are effectively the same
from the standpoint of selection. This is because no
selection (i.e. no biased sampling) is required to obtain
the target distribution. On the other hand, if it is very
unlikely to obtain the target distribution by randomly
sampling the native distribution, then a great deal of

change is required to go from pi to p!i because the two
distributions would then be very different from the
standpoint of selection. Thus, we can use the probabil-
ity of obtaining the target distribution from the native
distribution via random sampling as an evolutionarily
relevant measure of the change achieved in evolving
from one into the other through selection.
To formalize this idea, we need to calculate the prob-

ability of obtaining the target distribution when sam-
pling from the native distribution. I begin by first
considering a sample of size n (shortly I will take the
limit as n ? ∞). To work with a sample of size n, we
first need to characterize the target distribution for a
sample of size n. Let Ai be random variables denoting
the number of alleles of type i that are obtained when
drawing a sample of n alleles from the target distribu-
tion (with

P
i Ai ¼ n). Now, for any sample obtained

from the target distribution, we can calculate the proba-
bility of obtaining this same collection of alleles when
sampling n alleles from the native distribution. Denot-
ing this probability by Zn, it is given by the multino-
mial probability:

Zn ¼ n!Q
i Ai!

Y

i

pAi
i ðeqn1Þ

The probability Zn in eqn (1) is, itself, a random vari-
able because the Ai are random variables. Different
samples from the target distribution will, by chance,
result in different numbers of each type of allele, Ai.
Consequently, different samples will result in different
probabilities Zn of obtaining the sample when drawing
from the native distribution. To obtain a ‘typical’ value
for Zn, we can calculate an average of Zn over the
draws in the sample for a large sample size n. The mul-
tiplicative nature of (1) means that a ‘typical’ value of
Zn is best characterized by its geometric average,
ðZnÞ1=n. This represents the (geometric) average proba-
bility across all draws in a sample, and it takes a value
between 0 (the distributions are very different) and 1
(the distributions are effectively the same).
The quantity ðZnÞ1=n is also a random variable, but

we expect that, from the law of large numbers, it will
not vary much if the sample size n is large. Before for-
mally considering this limit, however, I first take the
negative logarithm of ðZnÞ1=n. Denoting the resulting
quantity by Ln gives

Ln ¼ % logb
n!Q
i Ai!

Y

i

pAi
i

 !1=n

¼ % 1

n
logb n!þ

1

n

X

i

logb Ai!%
1

n

X

i

Ai logb pi ðeqn2Þ

where I have left the base of the logarithm unspecified.
Ln is a non-negative random variable, and as the native
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and target distributions become increasingly different,
Ln takes on increasingly large positive values.
The use of the logarithm in (2) has two advantages.

First, as will be seen below, the strength of selection
is often naturally measured on a additive scale and
using the logarithm here means that we are then
measuring the change in distribution on an additive
scale as well.
Second, using the logarithm provides a convenient

way to interpret the change achieved in evolving from
the native to the target distribution. The base b is arbi-
trary and so it can be viewed as setting the scale of
measurement. In particular, a value of Ln ¼ 0 means
that there is a (average) probability of 1 of obtaining the
target distribution by randomly sampling the native
distribution. A value of Ln ¼ 1 means that there is a
(average) probability of 1/b of obtaining the target dis-
tribution. Similarly, a value of Ln ¼ 2 means that there
is a (average) probability of 1=b2 of obtaining the target
distribution, and so forth.
Relative values of Ln also have meaningful interpreta-

tions. For example, suppose two populations differ by
one unit in the amount of change, Ln, that occurs when
evolving from the native into the target distribution, and
consider working with the base b = 10. Then, the popula-
tion with the larger value of Ln will have evolved ten
times as much as the other population in the sense that
the probability of it giving rise to the target distribution
simply through random sampling will have increased
ten times more than that of the other population.
With these preliminaries, we can now take the limit

n?∞. In this limit, the random variable Ln approaches
a fixed (i.e. deterministic) value, and defining
D ¼ limn!1Ln, we obtain

Dðp!i jjpiÞ ¼
X

i

p!i logb
p!i
pi

! "
ðeqn3Þ

where I have used the notation Dðp!i jjpiÞ to indicate that
D depends on both the target and native distributions
(the notation ‘jjÞ’ in the argument of D is a convention
borrowed from information theory). Formally, the
above limit holds ‘almost surely’ and makes use of the
strong law of large numbers, Stirling’s approximation
logbn! ¼ n logb n % n þ Oðlogb nÞ and the continuous
mapping theorem. Analogous calculations have been
used in the context of statistical mechanics and Bayes-
ian statistics (for example, see Jaynes 2003). The quan-
tity Dðp!i jjpiÞ in (3) that characterizes the amount of
change that occurs in evolving from the native into the
target distribution is known in information theory as
the Kullback-Leibler divergence between the distribu-
tions p!i and pi.
To quantify the evolvability of the native population,

we also need to know how strong selection must be in

order to evolve the target distribution from the native
distribution (Hansen & Houle 2008). Many measures of
the strength of selection have been proposed but, as far
as I am aware, there is no single measure that is suit-
able under all possible forms of selection. Therefore,
although there is a very general way to measure the
amount of evolution that occurs through one generation
of selection, there does not appear to be a similarly gen-
eral way to measure the strength of selection required
to cause this evolution. Thus, for the moment, I simply
denote the strength of selection required to evolve the
distribution p!i from pi in a single generation as
Sðp!i ; piÞ.
With the above two ingredients in hand, we can now

define the evolvability E of the target distribution from
the native distribution, as the amount of change in alle-
lic distribution that occurs in going from one to the
other, per unit strength of selection. We have

E ¼ Dðp!i jjpiÞ
Sðp!i ; piÞ

: ðeqn4Þ

Box 1 discusses the relationship between this general
formulation and the specific measures of evolvability
for quantitative traits proposed by Hansen & Houle
(2008). The next task is to simplify the general measure
of evolvability given by eqn (4) for populations that col-
onize novel habitats.

Information entropy as evolvability when
adaptating to novel environments

Equation (4) is a very general measure of evolvability that
can be applied to any distribution of alleles at a single
locus and to any target distribution (it can also be
extended to account for a continuum of alleles; Box 1). It
also highlights an important point – the evolvability of a
population depends not only on the allelic distribution of
that population pi, but also on the form of selection as
quantified by the difference between pi and p!i . A similar
dependence occurs with previous measures of evolvabili-
ty for quantitative traits as well although selection in
such cases is necessarily restricted to specific functional
forms (e.g. Hansen & Houle 2008; Chevin 2012).
In many situations, we do not know exactly what the

form of selection will be, and therefore, we cannot spec-
ify a particular target distribution. For example, this is
often the case for populations that colonize novel habi-
tats. In such cases, the best we can do is to calculate an
expected evolvability over the different forms of selec-
tion that might occur (e.g. see Kirkpatrick 2009; Chevin
2012). To do so, we first specify the set of possible
alleles. We then specify a class of target distributions
for this set of alleles that captures the different forms of
selection of interest. Finally, we calculate the expected
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evolvability E½E( by averaging (4) over these different
target distributions, where each target distribution is
weighted by its probability of occurrence.
There are two equivalent ways that we can proceed

in this direction. The first starts by specifying a class of
fitness functions. These can then be used to obtain a
suitable measure of the strength of selection for each
target, Sðp!i ; piÞ. They can also be used to derive the tar-
get distributions by determining the distribution of
alleles that is produced by each fitness function. From
there, one can compute the quantity Dðp!i jjpiÞ. The sec-
ond approach starts by specifying a class of target dis-
tributions. These will directly determine the quantity
Dðp!i jjpiÞ for each target. We then derive a fitness func-
tion for each target distribution by determining the
function required to produce the target through selec-
tion. Finally, these fitness functions can be used to
obtain a suitable measure of the strength of selection
for each target, Sðp!i ; piÞ. I follow the second approach
below as the general measure of evolvability in eqn (4)
has been developed by fixing attention on the native
and target distributions themselves.
From the standpoint of evolvability during coloniza-

tion, some types of target distributions are perhaps of
more interest than others. To the best of my knowledge,
all previous measures of evolvability for quantitative
traits are based on an assumption that, whatever the
nature of selection might be, it favours a particular phe-
notypic or genotypic value. This is embodied by the
assumption that selection is directional in these studies
(Hansen & Houle 2008). This also seems like a reason-
able assumption for adaptation to a novel habitat, and
so I employ a form of directional selection as well.
There are many different ways to model directional

selection. There is an ‘obvious’ choice for which of these
to use in the context of quantitative traits, however,
because the form that is chosen must be compatible with
the assumption that all distributions remain multivariate
normal. Thus, most such studies assume (sometimes
implicitly) that the fitness of different types is specified
by a function from the exponential family.
In the context of eqn (4), there is no similar constraint

that dictates our choice for the form of fitness because we
are allowing for arbitrary target distributions. Thus to
model directional selection for a particular allele k, we
are free to choose any target distribution subject only to
the constraint that the frequency of allele k increases
through selection and that of other alleles decreases (i.e.
p!k [ pk and p!i \ pi for all i 6¼ k). This freedom is both a
luxury and a curse as we must restrict things more in
order to make further progress, but any such restriction
is necessarily somewhat arbitrary.
Perhaps the most obvious further restriction for mod-

elling directional selection is to assume truncation selec-

tion. This is the most extreme form of directional
selection for a particular allele. It is also the simplest
form of directional selection in the sense of having the
fewest parameters. Furthermore, it is a natural form of
selection that one might impose artificially if attempting
to quantify the evolvability of a population by selecting
it in different directions.
Another convenient feature of truncation selection is

that it permits an unambiguous measure of the strength
of selection. If we denote the frequency of any favoured
type under truncation selection by q, then under ran-
dom mating the evolutionary change in q as a result of
one generation of selection is given by (Wright 1935)

Dq ¼ qð1% qÞ
2

@ ln "W

@q
ðeqn5Þ

where Dq is the change in q and "W is the population
mean fitness. This is an example of Wright’s adaptive
topography (Wright 1935; Lande 1976; Barton & Turelli
1987), and the magnitude of the quantity @ ln "W=@q
(which is sometimes referred to as the selection gradi-
ent) provides a widely used normalized measure of the
strength of selection.
For these reasons, I proceed with an assumption of

truncation selection for a particular allele k. In this case,
the target distribution is p!k ¼ 1 and p!i ¼ 0 for all
i 6¼ k, and the associated fitness function that produces
this target distribution is Wk [ 0 and Wi ¼ 0 for all
i 6¼ k, where Wi is the marginal fitness of allele i. It is
worth-noting though that this form of target distribu-
tion applies more generally if, instead of quantifying
evolvability over a single generation of selection, we
were to quantify it over multiple generations. For exam-
ple, suppose we assume a more general form of direc-
tional selection for allele k where we require only that
Wk [ Wi for all i 6¼ k. This is no longer truncation
selection as all alleles might have nonzero fitness.
Under these conditions, if no processes other than selec-
tion are occurring, then over time the population will
evolve to a distribution concentrated entirely at allele k.
In other words, the allelic distribution would converge
to pi ¼ 1 if i = k and pi ¼ 0 otherwise. Thus, the same
target distribution applies to this more general form of
directional selection if we quantify evolvability over a
large number of generations.
Under truncation selection, we have "W ¼ pkWk and

therefore Sðp!i ; piÞ ¼ j@ ln "W=@pkj ¼ 1=pk. Substituting
this and p!k ¼ 1 and p!i ¼ 0 for all i 6¼ k into (4) gives

E ¼ %pk logb pk ðeqn6Þ

Equation (6) gives the evolvability of the target distri-
bution from the native distribution when there is trun-
cation selection for allele k. As we do not know a priori
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which allele will have the highest fitness during coloni-
zation, the final step is to calculate the expected evolv-
ability E½E( over all possible favoured alleles. To do so,
we need to specify the probability that allele k will be
the favoured allele. If we have no a priori knowledge of
which allele will be favoured, the only reasonable
assumption is that each allele has equal chance of being
the favoured allele. Thus, taking the expectation of (6)
over a uniform distribution for k gives

E½E( ¼ %
X

k

pk logb̂ pk ðeqn7Þ

where the normalization constant 1/m has been absorbed
into the new base of the logarithm, b̂. Equation (7) is
Shannon’s measure of the information entropy of the
native allelic distribution (Shannon 1948). Thus, the infor-
mation entropy of the native allelic distribution provides
a natural measure of the evolvability of a population
under truncation directional selection when colonizing a
novel habitat (Box 2 provides some intuition for thinking
about information entropy).

Discussion and concluding remarks

The results derived here suggest that Shannon’s infor-
mation entropy is a sensible measure of genetic diver-
sity in the context of evolvability in novel habitats.
Shannon information is frequently used as a measure of
species diversity in the ecological literature, and there
have also been several instances of its use in population
genetics as a measure of genetic diversity (Sherwin et al.
2006; Kosman & Leonard 2007; Sherwin 2010). The ear-
liest such instance that I am aware of is Lewontin’s
(1972) use of information entropy for quantifying pat-
terns of allelic diversity in humans. Nevertheless, this
measure has not seen widespread use in population
genetics despite the fact that many software packages
can routinely compute this quantity.
One possible reason for a general reluctance to use

Shannon information in population genetics has to do
with its interpretation (Nei 1975; Hennick & Zeven
1991). In ecology, several different measures of diversity
are often used and debated, and the discussions some-
times centre around the phenomenological properties of
each measure. For example, discussions often consider
questions like whether a measure adequately captures
species evenness versus richness, or whether it places
‘too much’ weight on rare species.
In population genetics, the tradition has been to focus

more on the mechanistic interpretation of diversity
measures. For example, measures like heterozygosity or
percentage polymorphic loci have clear population-
genetic interpretations. And as Nei (1975) remarked,
Shannon information was ‘...designed to measure the

amount of information in information engineering and
is not related to any genetic entity. [As such] ...it is not
clear what the ... value of this quantity means in terms
of genetic materials’.
The derivation presented here partially addresses this

issue of interpretation. It shows that information
entropy is a natural measure of evolvability during col-
onization. As an example, suppose we chose the base
b̂ ¼ 10 and we wish to compare the evolvability of two
native populations, A and B, and suppose further that
population A has value of E½E( that is one unit larger
than that of population B. Then, under truncation direc-
tional selection, population A is 10 times more evolv-
able than population B in the sense that, per unit
strength of selection, population A can evolve a 10-fold
greater likelihood of giving rise to the target distribu-
tion through simple random sampling.
Interestingly, of the 18 studies on colonization

described in the introduction, the earliest of these
(Martins & Jain 1979) was also the only study to employ
information entropy as a measure of genetic diversity.
Coincidentally, Martins & Jain’s (1979) study also
appears to have been motivated, in large part, by the
symposium volume of Baker & Stebbins (1965). They
studied rose clover, Trifolium hirtum, and examined the
effect of the information entropy of the allelic distribution
of colonists over two years. In the first year of the study,
they found no effect, but in the second year, they found a
rather strong positive relationship between entropy and
the establishment success of new roadside colonies.
The measure of information entropy in eqn (7) leaves

the base of the logarithm, b̂, unspecified. One natural
choice is b̂ ¼ m where m is the number of alleles poten-
tially segregating. Information entropy is always maxi-
mized when all alleles are present at equal frequency,
and therefore with this choice of b̂, the maximum possi-
ble information entropy is 1. This choice is analogous to
the use of base 2 logarithms in information theory
where the random variables of interest are often binary,
taking one of two possible values. Thus, while informa-
tion entropy is measured in bits when using base 2, it is
measured in so-called m-ary units when using base m.
It should also be emphasized that, when using any

measure to compare the evolvability of two popula-
tions, one should ensure that the potential allelic types
in each population are the same. Otherwise the mean-
ing of any comparison is unclear. This does not mean
that the same alleles need to be segregating in all popu-
lations, but only that the alleles segregating in each
population are a subset of the same set of m possible
alleles. Furthermore, all else equal E½E( will tend to
increase as the number of alleles included in a sample
increases, and therefore, it is also important to control
for sampling effort when making comparisons.
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The derivation presented here has focused entirely on
quantifying evolvability in terms of the allelic distribu-
tion of a single locus. Often, however, data are available
for multiple loci. In such cases, there are two ways that
one might make use of such data. The first is simply to
average the value of E½E( over all loci. In fact this was
exactly the approach taken by Martins & Jain (1979),

and it is analogous to the calculation of average hetero-
zygosity across multiple loci Nei (1975).
The second approach is instead to calculate the joint

information entropy across all loci. To do so, one would
use the distribution of all genotypes of interest and cal-
culate the information entropy of this distribution. In
other words, each locus would be viewed as a random

Box 2. Gaining an intuition for information entropy

Although information entropy is used frequently in ecology, it is less common in evolutionary biology (although
see Frank 2012 for uses of information theory in evolutionary biology that are quite distinct from that explored
here). There are two simple ways to begin developing an intuition for what information entropy represents.
The first is rooted in the information-theoretic origins of entropy. Suppose we know the native allelic distribution
for some population and imagine that a randomly chosen individual disperses to a novel habitat. For simplicity
suppose the organism is haploid. The allelic identity of this single colonist can be viewed as a random variable
drawn from the known native allelic distribution. We can then ask the qualitative question, how much new infor-
mation do we gain about the allelic identity of this colonist if we were to actually measure it?
Although the above question is vague in that we have not specified what is meant by ‘information’, we can make
some qualitative progress without being more precise. For example, if the native population contained only a sin-
gle allelic type, then clearly we would gain no new information by measuring the colonist. This is because we
already know with certainty what its identity must be. On the other hand, if there are m potential alleles, and if
each of them is equally frequent in the native population, then we would gain a great deal of information by mea-
suring the colonist. This is because its allelic identity prior to measurement is maximally uncertain. And it seems
reasonable that we would gain an intermediate degree of new information if the native allelic distribution was
somewhere between these two extremes.
Information entropy captures the above qualitative intuition in a precise way. Roughly speaking, it is a measure of
the uncertainty of a random variable. Low information entropy corresponds to a low degree of uncertainty in the
outcome of a random variable. In such cases, we gain very little new information about a realization of the random
variable by seeing its value because there is not much uncertainty in its outcome. On the other hand, high informa-
tion entropy corresponds to a high degree of uncertainty in the outcome of a random variable. In this case, we gain
a great deal of information about a realization of the random variable by seeing its value.
Another useful way to think about the information entropy of a distribution is as a measure of variability. Studies
of variance are common in evolutionary biology because, under certain assumptions, genetic variance plays an
important role in evolutionary change through natural selection. More generally genetic variability is perhaps a more
suitable quantity from the standpoint of selection as there needs to be variation for selection to act. Importantly,
variability and variance are not always the same thing.

(a) (b)

1.6 1.7 1.8 1.9 2.0 2.1 2.2 1.6 1.7 1.8 1.9 2.0 2.1 2.2

Allelic value Allelic value

Population A Population B

Box Fig. 1 The distributions of allelic values for two populations, A and B. The populations have differing var-
iances and variability as measured by information entropy. Population A has a high variance in allelic value but
low variability, while population B has the opposite.
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variable, and the genotype distribution would be
regarded as the joint distribution of alleles across all
loci. The joint information entropy would then be calcu-
lated as in eqn (7), but where the summation takes
place over all elements of the joint probability distribu-
tion. This second approach is preferable in some ways
as it gives a total measure of evolvability, accounting
for any possible association of alleles through linkage
disequilibrium, whereas the first approach gives the
average evolvability of a single locus.
As with previous measures of evolvability the measure

derived here focuses only on standing genetic variation.
While this is likely an important component of adapta-
tion in colonization, novel mutations are likely also
important (Schluter & Barrett 2008). Although accounting
for this in measures of evolvability is difficult without
knowing more about mutational pathways and fitness
relationships, we might still make some progress by
viewing the target distribution as the distribution
obtained from the standing variation that is as close as
possible to the distribution favoured by selection. The
rationale would be that the closer the population is to the
real distribution favoured by selection, perhaps the

longer the population can persist before going extinct. As
a result, the greater will be the likelihood that the appro-
priate mutations arise before extinction occurs.
Finally, it is important to emphasize the limitations of

information entropy as a measure of evolvability. As eqn
(4) shows, the evolvability of any population depends on
the form of selection. Consequently, there is no single
measure that is appropriate under all conditions. The
derivation of information entropy in eqn (7) from eqn (4)
rests on two important assumptions: (i) that there is trun-
cation selection in favour of a particular allele and (ii)
that all alleles are equally likely to be the favoured allele.
If either of these assumptions is relaxed, then a different
measure of evolvability might be obtained. For example,
if we have reason to believe that certain alleles are
more likely to be favoured during colonization than
others, then the expected evolvability can be written
more generally as %E½pk logb pk( where the expectation is
taken over an appropriate, nonuniform, distribution.
Likewise, relaxing the assumption of truncation selection
will typically produce still different measures. Thus, it is
important to choose a measure of evolvability that
appropriately captures the situation of interest.

(a) (b)

1.6 1.7 1.8 1.9 2.0 2.1 2.21.6 1.7 1.8 1.9 2.0 2.1 2.2

Low variance 
High entropy

High variance 
Low entropy

Allelic value Allelic value

Population A Population B

Box Fig. 2 The distributions of allelic values for two populations, A and B. Both populations contain two alleles
with equal frequency, and therefore, they have equal variability as measured by information entropy. However,
the variance in allelic value of population B is larger than that of population A.

As an example, consider a distribution of discrete allelic values where each allele specifies the value of a quantitative
trait like body size. Figure B1 presents distributions from two hypothetical populations that, in an important sense,
have the same variability. Both populations have only two alleles and each is equally frequent. As a result, their infor-
mation entropy is the same. However, the variance in body size in the two populations is very different, with popula-
tion B having a higher variance. From an evolutionary standpoint, however, there is an important sense in which the
two populations are equally evolvable. Therefore variation, as measured by information entropy, can be a more suit-
able measure of evolvability. Along similar lines, Figure B2 presents distributions from two populations, population
A with high variance but low variability (as measured by information entropy) and populations B with low variance
but high variability (again measured by information entropy). In this case, it seems reasonable that we would want to
classify population B as being more evolvable than population A, again suggesting that variability as measured by
information entropy is a more suitable measure of evolvability than variance.
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