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Abstract We extend the existing work on the time-optimal control of the basic SIR
epidemic model with mass action contact rate. Previous results have focused on min-
imizing an objective function that is a linear combination of the cost associated with
using control and either the outbreak size or the infectious burden. We instead, provide
analytic solutions for the control that minimizes the outbreak size (or infectious bur-
den) under the assumption that there are limited control resources. We provide optimal
control policies for an isolation only model, a vaccination only model and a combined
isolation–vaccination model (or mixed model). The optimal policies described here
contain many interesting features especially when compared to previous analyses. For
example, under certain circumstances the optimal isolation only policy is not unique.
Furthermore the optimal mixed policy is not simply a combination of the optimal
isolation only policy and the optimal vaccination only policy. The results presented
here also highlight a number of areas that warrant further study and emphasize that
time-optimal control of the basic SIR model is still not fully understood.

Keywords Time-optimal control · SIR model · Limited resources · Vaccination ·
Isolation
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1 Introduction

Mathematical analyses can provide valuable information about how best to control
infectious disease outbreaks. One issue of very real practical concern, and for which
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mathematical modeling has much to offer, is in determining the optimal distribution
of limited resources during an outbreak. Commonly, in preparation for an outbreak, a
fixed amount of vaccine and other drugs are stockpiled, in addition to the allocation of
a certain amount of funds for other control measures such as isolation and quarantine.
Once the epidemic starts, the goal is then to optimally administer these resources given
that their supply is limited.

One common aim when administering limited resources is to identify a sub-popula-
tion within the general population that is best targeted to receive the control resources.
Consider for example the Polio outbreak in the Netherlands in 1993–1994 (Oostvoigel
et al. 1994). This outbreak was concentrated in an unvaccinated sub-population, and
since there was not enough vaccine to treat the entire population, the vaccine was
predominantly used in the identified sub-population.

In many cases, however, there is no clearly identifiable sub-population on which
to focus control efforts. Furthermore, often the available resources will be insufficient
to target all individuals of a sub-population, even if such a group can be identified.
As a result, it is critical that the resources are administered in a time-optimal fashion.
In other words, if we do not have enough resources to target all appropriate individu-
als during the entire course of an outbreak, how then should these resources be used
over time so as to achieve some specific goal (e.g., minimizing outbreak size)? Such
time-optimal control strategies are the focus of this paper.

Although an analysis of the time-optimal application of outbreak controls is of
clear practical value, surprisingly little analysis has been done for the basic SIR model
(Abakuks 1972, 1973, 1974; Behncke 2000; Greenhalgh 1988; Morton and Wick-
wire 1974; Wickwire 1975, 1977). In addition, many of the previous results that
have been published have not been fully assimilated by practicing epidemiologists
and public health officials. Some of the earliest work in this area is by Abakuks. In
Abakuks (1973), Abakuks investigated the optimal control of a simple determinis-
tic SIR model, and determined the isolation strategy that minimizes the total num-
ber of infected individuals, balanced against a cost associated with using isolation.
He assumed that, at any instant, any number of infectives could be isolated. His
results then demonstrated that the optimal control was to either isolate all of the
infectives at the beginning of the epidemic, or to never isolate any of them, depend-
ing on how heavily the cost of isolation was weighted in the objective function. In
Abakuks (1972), Abakuks determined the optimal vaccination strategy for the same
model and found that the optimal strategy was to vaccinate N susceptibles at the
start of the epidemic, where N depends on the precise form of the objective func-
tion. In Abakuks (1974), Abakuks then determined the optimal vaccination strategy
for the same model but under the assumption that, at any instant, either all or none
of the susceptibles are vaccinated. He found that the optimal control had the same
basic form as the optimal control for the isolation model. Shortly after the publi-
cation of Abakuks (1973, 1974), Wickwire published Morton and Wickwire (1974)
and Wickwire (1975) where he studied the same questions but with two notable dif-
ferences. Firstly, he removed the unrealistic assumption that an arbitrary number of
individuals can be isolated or vaccinated instantaneously, and instead modeled these
processes under the assumption that some finite rate of isolation or vaccination is
possible. Secondly, Wickwire determined the optimal control that minimizes the total
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infectious burden over an outbreak (plus a cost for using the control) rather than
the control that minimizes the total outbreak size. He found that the optimal isola-
tion strategy was to use either maximal control for the entire epidemic or to use no
control at all and that the optimal vaccination strategy has at most one switch (switch-
ing from maximal vaccination to no vaccination). Wickwire’s results therefore, agree
qualitatively with Abakuks’ results when the control dynamics are changed from
acting instantaneously to acting through a rate parameter. Interestingly, however, nei-
ther Abakuks nor Wickwire provided results for a combined isolation–vaccination
model. In fact, even in Behncke (2000), which expands Wickwire’s results to mod-
els with more general contact rates, there is no solution provided for such mixed
models.

Our work extends that of Abakuks (1972, 1973, 1974), Morton and Wickwire
(1974), and Wickwire (1975) by examining the kind of resource constraints men-
tioned earlier. Specifically, the simple SIR model with mass action contact is revis-
ited, and the following question is asked: “Given that there is a limited amount of
control resources available during an outbreak, what control policy minimizes the
total outbreak size?” Although such SIR models are probably too simplistic for many
real outbreaks of interest for which there is limited control resources, we focus on
this simple case for two reasons. First, we are able to provide a complete analytical
solution for these cases, both for independent isolation and vaccination, as well as for
a mixed model that allows both controls simultaneously. Thus, although these models
are not intended as definitive solutions to real-world optimal isolation and vaccina-
tion problems, they provide a foundation of rigorous mathematical results upon which
more complex models can be built, and for which such complete solutions are not
possible. Second, even in this very simple epidemiological model, the analysis is not
trivial, and the results have some surprising and initially counterintuitive features.
For example, the optimal isolation strategy exhibits threshold behaviour, the solution
switching from being non-unique to being unique under different parameter values,
whereas the optimal vaccination strategy has a consistent basic form. Secondly, in the
case of limited resources, the solution for the optimal control strategy of the mixed
model is not, in fact, a direct combination of the optimal isolation and vaccination
strategies on their own.

The remainder of this article is structured as follows. Section 2 reviews the basic
model used in all further analysis and gives a precise mathematical statement of the
problem. Section 3 describes the optimal isolation, optimal vaccination and optimal
mixed polices under limited resources. The next three sections then present the proofs
for the optimal isolation, optimal vaccination and optimal mixed polices, respectively.
Lastly, Sect. 7 discusses some of the salient features of the results.

2 Model and setup

The following standard deterministic SIR model is used throughout this article
(Anderson and May 1991)
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Ṡ = −βSI − uv S,

İ = βSI − (μ + ui )I,
(1)

where S and I are the numbers of susceptible and infected hosts (a dot indicating
time derivatives), β is the transmission rate, μ is the per capita loss rate of infected
individuals through both mortality and recovery, and uv and ui are the per capita rates
of vaccination and isolation respectively. Note that, by definition, vaccination has a
direct effect only on susceptible individuals whereas isolation has a direct effect only
on infected individuals. If uv ≡ 0 then (1) describes the standard isolation model, if
ui ≡ 0 then (1) describes the standard vaccination model, and if neither uv nor ui are
the zero function then (1) describes the isolation–vaccination model (or mixed model).
Note that we do not explicitly track the dynamics of the recovered sub-population.

The main reason we have chosen to analyze model (1) is that it allows us to extend
the work of Abakuks (1972, 1973, 1974), Morton and Wickwire (1974), and Wickwire
(1975) to the case when there are limited resources. This being said, it is worth mention-
ing some of the major assumptions implicit in model (1). The first major assumption
is that disease transmission is well modelled using mass action incidence. Although
it is perhaps more common to use standard incidence when modeling human disease,
there are important studies that use mass action incidence [for example a recent study
for influenza, Lipsitch et al. (2007)]. We have therefore decided to use mass action
incidence because it is consistent with the models used in Abakuks (1972, 1973, 1974),
Morton and Wickwire (1974), and Wickwire (1975) and because there is a precedent
for it in current literature. The second major assumption is that isolation and vac-
cination are completely effective. In other words, isolated individuals cannot spread
the infection and vaccinated individuals cannot contract the infection. Although we
have not undertaken the detailed analysis required to fully understand the implications
of these assumptions, we have performed some preliminary numerical analysis that
suggests that these assumptions do not significantly alter the main conclusions of our
work (see Appendix).

Before proceeding further, it is worth discussing the bounds on the control vari-
ables, ui and uv in (1). The variables ui and uv are the per-capita rates of isolation and
vaccination respectively, and therefore in practice each of these will be related to the
isolation and vaccination effort that is employed. For example, the level of ui that can
be attained at any given time will, to some extent, depend upon the public health infra-
structure (e.g., number of public health officers available). At the same time, however,
the characteristics of the disease will impose an upper limit on the possible values of
ui . For example, if some infections are asymptomatic (or if there is an asymptomatic
phase), then even if we employed an infinite isolation effort, ui would remain bounded.
This simply reflects the fact that, regardless of how much we strive to increase the
rate of isolation or vaccination, it is usually unavoidable that the targeted individuals
will spend some nonzero amount of time circulating in the population before they
are recruited (i.e., before they are isolated of vaccinated). Therefore, we model this
by specifying an upper bound for both control variables, and suppose that this upper
bound is disease-specific. The presence of these upper bounds on the control variables
is distinct from our assumption (to be formalized shortly) that control resources are
limited. The upper bounds reflect unavoidable constraints on the rate at which we can
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isolate or vaccinate, whereas the assumption of limited resources reflects constraints
on the total number of people we can isolate or vaccinate.

Remark 1

(i) Let z(t) denote the total number of vaccinated susceptibles at time t and let w(t)
denote the total number of isolated individuals at time t . The actual values of
S, I , z and w will depend on the specific choice of controls ui and uv . When
necessary, in order to make this dependence explicit, S[ui ,uv], I[ui ,uv], z[ui ,uv] and
w[ui ,uv] will be used to denote the states satisfying (1) with the particular choice
of controls, ui and uv . Furthermore, if ui ≡ 0 (uv ≡ 0) then S[uv] (S[ui ]) will be
used instead of S[0,uv] (S[ui ,0]).

(ii) Let c ∈ R. Using a slight abuse of notation, if ui (t) = c (uv(t) = c) for all time
then ui (uv) will be denoted by ui = c (uv = c).

The general question addressed in this paper can be phrased mathematically as
follows:

General problem
Fix wmax ≥ 0 and zmax ≥ 0. Determine the control for model (1) that minimizes

T∫

t0

βS[ui ,uv] I[ui ,uv]dt, (2)

subject to S(t0) = S0, I (t0) = I0, T = inf{t | I[ui ,uv](t) = 0.5}, (ui (t), uv(t)) ∈
[0, umi ] × [0, umv ] for all t ∈ [0, T ], and subject to the resource constraints

T∫

t0

ui I[ui ,uv]dt ≤ wmax, (3)

and

T∫

t0

uv S[ui ,uv]dt ≤ zmax. (4)

All of the results presented here hold for any umi ∈ (0,∞) and umv ∈ (0,∞) but to
simplify notation it is assumed that umi = umv = umax. Expression (2) represents the
total outbreak size over the course of the epidemic, and expressions (3) and (4) reflect
the assumption that there is a maximum total amount of isolation and vaccination,
respectively, that can be used during the course of the epidemic.

The method of choosing T requires some further explanation. The end of the epi-
demic in models such as system (1) is not well defined, because the number of infected
individuals approaches zero asymptotically as time approaches infinity. As a result, it
is not immediately clear how best to choose T . The three most natural choices are

123



428 E. Hansen, T. Day

(i) T = ∞,
(ii) T = Tmax, where Tmax is a sufficiently large constant, and

(iii) T = inf{t | I (t) = Imin}, where Imin is some constant chosen to indicate the end
of the epidemic.

A potential problem with choosing methods i and ii is that the structure of the opti-
mal control can be affected by the dynamics of the system at very large values of t
in undesirable ways. For example, suppose ui is nonzero and then at some time t1,
I (t1) < 1 and w(t1) = wmax. Then because constraint (3) is now active, ui (t) = 0 for
all t > t1. If İ (t+1 ) > 0, however, then there will be another peak in infectives before
the epidemic settles down permanently. This sort of behaviour is undesirable because
the final peak in infectives is caused by a fractional number of infectives. Further-
more, an additional complication of method ii is that it is not clear how large T must
be in order to coincide with a reasonable interpretation of the end of the epidemic.
Method iii avoids both of these difficulties because it terminates the epidemic as soon
as I (t) = Imin. In the general problem statement above, Imin was chosen to be 0.5 but
any value smaller than 1 would work just as well.

In order to make the solution to the above General Problem more transparent, we
break it down into three separate problems:

Problem 1 (Isolation Only) Solve General Problem with zmax = 0.

Problem 2 (Vaccination Only) Solve General Problem with wmax = 0.

Problem 3 (Mixed Model) Solve General Problem with zmax > 0 and wmax > 0.

The primary method applied to solve these problems is Pontryagin’s maximum
principle (PMP). (See Berkovitz 1974; Kamien and Schwartz 2003; Pontryagin et al.
1964, for details of the PMP.) A simple application of Filippov’s theorem, Agrachev
and Sachkov (2004), shows that optimal controls exist for Problems 1, 2 and 3. There-
fore, in the sequel the existence of optimal controls will always be assumed.

Finally, it is worthwhile to point out that although the General Problem minimizes
the total number of infectives,

∫ T
t0

β I Sdt , this is equivalent to minimizing the total

infectious burden
∫ T

t0
I dt . For Problem 1,

∫ T
t0

β I Sdt = S0 − S(T ) and
∫ T

t0
I dt =

− 1
β

ln
(

S(T )
S0

)
, and therefore both quantities are minimized by maximizing S(T ). For

Problem 2, notice that
∫ T

t0
β I Sdt = I (T ) − I0 + μ

∫ T
t0

I dt . Since I (T ) and I0 are
fixed, minimizing the total number of infectives and minimizing the total infectious
burden are equivalent. For Problem 3 it is also the case that both cost functions lead
to the same optimal control. Although this is perhaps less obvious, it can be proven
by using the PMP to solve Problem 3 with (2) replaced by

∫ T
t0

I dt . The procedure to
do this is very similar to the solution of Problem 3 and so is not detailed further.

3 Optimal policies

The following three theorems provide solutions to Problems 1–3.
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Theorem 1 (Optimal Isolation Policy) If w[umax](T ) ≤ wmax, then the optimal iso-
lation policy for Problem 1 is u∗

i ≡ umax. If w[umax](T ) > wmax, then the optimal
isolation policy u∗

i is any control ui such that w[ui ](T ) = wmax.

A key feature affecting the optimal isolation policy in Theorem 1 is whether or not
the resources are sufficient to maintain a maximal isolation rate for the entire duration
of the outbreak (i.e., w[umax](T ) ≤ wmax versus w[umax](T ) > wmax). Whether or not
this is the case will depend on several factors. First, it is clear that the disease-specific
transmissibility, β, as well as the per-capita removal rate, μ, will affect whether or
not the resources are sufficient. Less obvious, however, is that the maximum possible
isolation rate, umax, will also play a role. For example, if umax is relatively large, then
it might be possible to reduce the size of the outbreak substantially, thereby requiring a
smaller overall total amount of resources. On the other hand, if umax is relatively small,
then a large outbreak might be unavoidable, meaning that a much larger total pool of
resources would be required to maintain a maximal isolation effort for the entire epi-
demic. Thus, the way the disease in question affects the value of umax (as well as how
the existing public health infrastructure affects umax) will play an important role in
deciding which of the two outcomes in Theorem 1 occur.

Theorem 1 says that if there are sufficient isolation resources, then the optimal
strategy is to isolate infectives with maximal effort for the entire epidemic. If there are
not sufficient resources to do this, then the optimal strategy is any strategy that uses
all of the available isolation resources. So, for example, it is optimal to start isolating
with maximal effort at the start of the epidemic and to continue isolating with maxi-
mal effort until all of the resources have run out, but this is only one of many possible
optimal strategies.

This non-uniqueness of the optimal solution deserves further consideration as it
gives policy makers much freedom in choosing how to isolate individuals. One com-
plication is that exercising this freedom requires knowing a priori that the available
resources are insufficient. Data from previous epidemics as well as case reports of
the current epidemic can be used to estimate the required resources. Alternatively,
in very serious situations, it might be quite obvious that the available resources are
insufficient. At the same time, however, this flexibility means that policy makers also
have the freedom to optimize other cost functions in addition to (2). For example, if
one wanted to minimize the average number of infected individuals per unit time over
the entire outbreak, it is shown in the Appendix that the optimal policy is to isolate
with maximal effort as long as possible. Given this is also an optimal strategy for the
cost function (2), it will simultaneously optimize both criteria.

Theorem 2 (Optimal Vaccination Policy) There exists a τ ∈ [0, T ] such that the
optimal vaccination policy for Problem 2 is

u∗
v(t) =

{
umax t ∈ [0, τ )

0 t ∈ [τ, T ], (5)

where
∫ τ

t0
umaxS[umax]dt = zmax if τ < T . That is, the optimal vaccination policy is

to vaccinate with maximal effort until either all of the resources are used up or the
epidemic is over.
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Theorem 2 reveals that the optimal vaccination policy is unique, with the strategy
being to employ maximal vaccination from the beginning of the outbreak, for as long
as possible. An interesting consequence of the above two theorems is that, under cer-
tain circumstances, the optimal isolation policy is less sensitive to initial conditions
than the optimal vaccination policy. For example, if there are insufficient resources to
isolate maximally for the entire epidemic then there is no penalty for delaying an iso-
lation program provided the maximal possible number of individuals are still isolated.
This is not, however, true for vaccination.

Theorem 3 (Optimal Mixed Policy) There exists a τ ∈ [0, T ] such that the optimal
mixed isolation and vaccination strategy for Problem 3 has one of the following forms:

(i)

(u∗
i (t), u∗

v(t)) =
{

(umax, umax) t ∈ [0, τ ]
(0, u∗

v(t)) t ∈ (τ, T ], (6)

where
∫ τ

t0
umax I[umax,umax]dt = wmax if τ < T , or

(ii)

(u∗
i (t), u∗

v(t)) =
{

(umax, umax) t ∈ [0, τ ]
(u∗

i (t), 0) t ∈ (τ, T ], (7)

where
∫ τ

t0
umaxS[umax,umax]dt = zmax if τ < T .

In Eq. 6, if t > τ then u∗
v(t) represents the optimal control for the corresponding

vaccination only model. That is, for t > τ , u∗
v(t) is the solution to Problem 2 with

z̃max = zmax−
∫ τ

t0
umaxS[umax,umax]dt and initial conditions t̃0 = τ , S̃0 = S[umax,umax](τ )

and Ĩ0 = I[umax,umax](τ ). In Eq. 7, u∗
i (t) for t > τ is defined similarly.

Theorem 3 says that the optimal isolation–vaccination strategy is to isolate and vac-
cinate with maximal effort until either the vaccination or isolation resources run out.
If the isolation resources run out first, then it is optimal to continue with the optimal
vaccination strategy. If the vaccination resources run out first, then it is optimal to
continue with the optimal isolation strategy. The optimal mixed policy is particularly
interesting because it is not simply a combination of the optimal isolation and the
optimal vaccination policies. Consider the case where there are insufficient isolation
resources to isolate with maximal effort for the entire epidemic. Then, unlike the opti-
mal isolation policy, u∗

i is no longer given by any control that uses all of the isolation
resources. In fact the isolation effort must be maximal at the start of the epidemic and
must remain maximal until either the isolation or the vaccination resources run out. If
the vaccination resources run out first, then the isolation policy for the remainder of
the outbreak can then be anything that uses the remaining isolation resources.
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4 Proof for optimal isolation policy

The isolation model with limited resources is described by the following set of equa-
tions:

Ṡ = −βSI, (8)

İ = βSI − (μ + ui )I, (9)

ẇ = ui I.

Phrasing Problem 1 as a maximization problem, the PMP provides the following
relations:

The Hamiltonian is

H(t) = −λ0βSI − λSβSI + λI βSI − λI (μ + ui )I + λwui I

= −λ̇I I = −λ̇S S − λI μ + (λw − λI )ui I = 0, (10)

where the adjoint variables satisfy,

λ̇S = −(λI − λ0 − λS)β I, (11)

λ̇I = −(λI − λ0 − λS)βS − (λw − λI )ui + λI μ, (12)

λ̇w = 0.

The transversality conditions are (λ0, λS(T ), λI (T ), λw) = (λ0, 0, λI (T ), q), where
q ≤ 0. The optimal control therefore satisfies

u∗
i =

⎧⎨
⎩

umax λw > λI

? λw = λI

0 λw < λI .

From Eq. 10 we have λ̇I = 0, and therefore the optimal control is either u∗
i ≡ 0,

u∗
i ≡ umax or u∗

i is singular.
The, solution to Problem 1 uses the following three observations:

(i) Without the constraint (3) the solution to Problem 1 is u∗
i ≡ umax. In the sequel

this solution will be called the unconstrained optimal control. The proof of this
result is given in the Appendix.

(ii) The total number of isolated individuals can be written as (see Appendix for
details):

T∫

t0

ui I[ui ]dt = S0 − S[ui ](T ) + I0 − I[ui ](T ) + μ

β
ln

(
S[ui ](T )

S0

)
. (13)

Equation 13 shows that the constraint value, w[ui ](T ) = ∫ T
t0

ui I[ui ]dt , depends
only on S[ui ](T ).
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(iii) The cost function can be rewritten as
∫ T

t0
β I[ui ]S[ui ]dt = S0 − S[ui ](T ) and

therefore minimizing the cost function is equivalent to maximizing S[ui ](T ).

Clearly, if w[umax](T ) ≤ wmax then the optimal control is the unconstrained optimal
control u∗

i ≡ umax. To determine the optimal control when w[umax](T ) > wmax first
notice that Eq. 13 can be rewritten as

μ

β
ln(S[ui ](T )) − S[ui ](T ) = I[ui ](T ) − I0 − S0 + μ

β
ln(S0) + w[ui ](T ).

There are two possible scenarios:

(i) Suppose w[umax](T ) > wmax and S[umax](T ) <
μ
β

. Then S[ui ](T ) is an increasing
function of w[ui ](T ) for any w[ui ](T ) ≤ wmax < w[umax ](T ). Therefore, u∗

i is
any control that uses all of the available resources.

(ii) Suppose w[umax](T ) > wmax and S[umax](T ) >
μ
β

. Since f (S) = μ
β

ln(S)− S is a

convex down function with maximum S = μ
β

, for any ui satisfying w[ui ](T ) <

wmax it must be that S[ui ](T ) <
μ
β

. Then S[ui ](T ) is an increasing function of
w[ui ](T ) for any w[ui ](T ) < wmax. Therefore, u∗

i is any control that uses all of
the available resources.

This concludes the proof of Theorem 1.

5 Proof for optimal vaccination policy

The vaccination model with limited resources is described by the following set of
equations:

Ṡ = −βSI − uv S,

İ = βSI − μI,

ż = uv S.

Phrasing Problem 2 as a maximization problem, the PMP provides the following
relations:

The Hamiltonian is

H(t) = −λ0βSI − λSβSI − λSuv S + λI βSI − λI μI + λzuv S,

= −λ̇I I + (λz − λS)uv S = −λ̇S S − λI μI = 0, (14)

where the adjoint variables satisfy,

λ̇S = −(λI − λ0 − λS)β I − (λz − λS)uv, (15)

λ̇I = −(λI − λ0 − λS)βS + λI μ, (16)

λ̇z = 0.
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The transversality conditions are (λ0, λS(T ), λI (T ), λz) = (λ0, 0, λI (T ), p), where
p ≤ 0. The optimal control therefore satisfies

u∗
v =

⎧⎨
⎩

umax λz > λS

? λz = λS

0 λz < λS .

(17)

The first step is to show that the optimal control is purely bang-bang (that is, has no
singular components). If λz = λS on some interval J then λ̇S = 0 on J . Equation 15
then gives

0 = −(−λ0 − λS + λI )β I − (λz − λS)uv,

0 = −(−λ0 − λS + λI )β I,

0 = (−λ0 − λS + λI ), (18)

λI = λ0 + λS,

and therefore λ̇I = 0 on J . If λ̇I = 0, then by Eqs. 16 and 18 it must be that
λI = 0. Therefore λS = −λ0 and the only nonzero choice for the adjoint vari-
ables on J is (λ0, λS, λI , λz) = (1,−1, 0,−1). Further, by Eqs. 15 and 16, once u∗

v

becomes singular then it must remain singular (that is, T ∈ J ). Now since T ∈ J ,
(λ0, λS, λI , λz) = (1,−1, 0,−1) must satisfy the transversality condition λS(T ) = 0.
Since the transversality condition is not satisfied, the optimal control must be purely
bang-bang.

Next, we consider the times at which the optimal control switches between 0 and
umax. Suppose the optimal control switches at times tsi . Then

H(tsi ) = −λ̇I (tsi )I (tsi ) = −λ̇S(tsi )S(tsi ) − λI (tsi )μI (tsi ) = 0. (19)

Therefore, substituting λ̇I (tsi ) = 0 into Eq. 16 gives

(λS(tsi ) + λ0)βS(tsi ) = λI (tsi )(βS(tsi ) − μ). (20)

The rest of the proof relies on the following relations which are obtained from Eq. 17
and Eq. 19:

λI (tsi ) > 0 ⇒ λ̇S(tsi ) < 0 ⇒ (0 → umax)

λI (tsi ) < 0 ⇒ λ̇S(tsi ) > 0 ⇒ (umax → 0) (21)

λI (tsi ) = 0 ⇒ λ̇S(tsi ) = 0 ⇒ no switch occurs.
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Remark 2 In (21), the notation (a → b) means that u∗
v switches from the value a to

the value b at t = tsi . In the sequel, the notation:

a → b → b

c → d → e

describes two possible forms for u∗
v . In the first form, u∗

v has the value a for some time
and then switches to the value b for the remainder of the time. In the second form, u∗

v

has the value c for some time and then switches to the value d for some time and then
switches to the value e for the remainder of the time.

Now since λS(tsi ) = λz = constant, λS(tsi ) + λ0 is either always positive, always
negative or always zero.

Suppose λS(tsi ) + λ0 = 0. Then by (20), either λI (tsi ) = 0 or S(tsi ) = μ
β

. By

(21), if λI (tsi ) = 0 then no switch occurs. Alternatively if S(tsi ) = μ
β

then the optimal
control has only one switch and this switch occurs when I is maximal. The possible
optimal controls are:

umax → umax

umax → 0

0 → umax

0 → 0

(22)

Next consider the case when λS(tsi ) + λ0 > 0. By Eq. 20, if λS(tsi ) + λ0 > 0 then
either

(i) λI (tsi ) > 0 and S(tsi ) >
μ
β

or

(ii) λI (tsi ) < 0 and S(tsi ) <
μ
β

.

Suppose that at ts1 possibility i holds. Then by (21), u∗
v switches from 0 to umax at ts1 .

If there is to be another switch (say at t = ts2 ) then it must be from umax to 0. This
implies, by (21), that ii must hold at ts2 . If there is to be a third switch (say at t = ts3 )
then it must be from 0 to umax and therefore, by (21), i must hold at ts3 . But this is not
possible because S is a monotonically decreasing function of time. Similar reasoning
applies to the case when possibility ii holds at ts1 . Therefore, if λS(tsi ) + λ0 > 0 the
optimal control can have at most two switches. The possible forms for the optimal
control are:

umax → umax → umax
umax → 0 → 0
0 → umax → 0
0 → umax → umax
0 → 0 → 0

(23)

Notice however, that the control form 0 → umax → 0 is not optimal. To see this,
recall that the Hamiltonian can be written as H = −λ̇I I +(λz −λS)uv S and therefore
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λ̇I (t) ≥ 0 for all t ∈ [0, T ]. Also, by (21), λI (ts1) > 0 and λI (ts2) < 0, but this is not
possible since λI is monotonically increasing.

Next consider the case when λS(tsi )+λ0 < 0. Applying similar arguments to those
that were used for the case when λS(tsi ) + λ0 > 0, the possible forms for the optimal
control are:

umax → umax → umax

umax → 0 → 0

0 → umax → umax

umax → 0 → umax

0 → 0 → 0

(24)

Notice however, that the control form, umax → 0 → umax is not optimal because at
the first switch λI (ts1) < 0 and at the second switch λI (ts2) > 0. This implies that λI

is non-constant while u∗
v = 0 which contradicts Eq. 14.

Combining the control forms in (22), (23) and (24) gives the following candidates
for the optimal control:

umax → umax → umax

umax → 0 → 0

0 → umax → umax

0 → 0 → 0

(25)

The next step is to show that the control forms, 0 → umax → umax and 0 → 0 → 0,
are not optimal. Recall that λ̇I ≥ 0. Therefore, since λI (tsi ) > 0, it must be that
λI (t) > 0 for all t ∈ [ts1 , T ]. Therefore, by Eq. 14, λ̇S(t) < 0 for all t ∈ [ts1 , T ].
Since λS(T ) = 0 this implies that λS(t) > 0 for all t ∈ [ts1 , T ) and therefore
λS(ts1) = λz > 0 but this is a contradiction since λz ≤ 0. The proof that uv ≡ 0 is
not optimal is given in the Appendix.

The discussion above shows that the optimal control is given by,

u∗(t) =
{

umax t ∈ [0, ts1)

0 t ∈ [ts1 , T ]. (26)

To prove the assertion about ts1 , suppose that u ≡ umax is not optimal. Then, since
the optimal control has the form umax → 0, by (21), λI (ts1) < 0. This implies, since
λI is monotonically increasing, that λI (t) < 0 for all t ∈ [0, ts1 ]. This implies, since
λ̇I (t) = 0 for all t ∈ [ts1 , T ], that λI (t) < 0 for all t ∈ [0, T ]. By Eq. 14, this
shows that λ̇S > 0 for all t ∈ [0, T ) and therefore λS(t) < 0 for all t ∈ [0, T )

(since λS(T ) = 0). Therefore, if ts1 < T then λS(ts1) = λz < 0. But λz < 0 only if
zmax = z(T ) and therefore all of the resources must be used up.
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6 Proof for optimal mixed policy

The mixed model with limited resources is described by the following set of equations:

Ṡ = −βSI − uv S,

İ = βSI − (μ + ui )I,

ẇ = ui I,

ż = uv S.

Phrasing Problem 3 as a maximization problem, the PMP provides the following
relations:

The Hamiltonian is

H(t) = −λ0βSI − λSβSI − λSuv S + λI βSI − λI (μ + ui )I + λwui I + λzuv S,

= −λ̇I I + (λz − λS)uv S = −λ̇S S + (λw − λI )ui I − λI μI = 0, (27)

where the adjoint variables satisfy,

λ̇S = −(λI − λ0 − λS)β I − (λz − λS)uv,

λ̇I = −(λI − λ0 − λS)βS − (λw − λI )ui + λI μ,

λ̇z = 0,

λ̇w = 0.

(28)

The transversality conditions are (λ0, λS(T ), λI (T ), λz, λw) = (λ0, 0, λI (T ), p, q),
where p, q ≤ 0. The optimal control therefore satisfies

u∗
v =

⎧⎨
⎩

umax λz > λS

? λz = λS

0 λz < λS,

and

u∗
i =

⎧⎨
⎩

umax λw > λI

? λw = λI

0 λw < λI .

Remark 3

(i) In the sequel ui and uv will denote the optimal controls (instead of u∗
i and u∗

v).
The notation u∗

v and u∗
i will denote the optimal controls for the vaccination only

model and isolation only model (that is, solutions to Problems 2 and 1 respec-
tively with appropriate choices of t̃0, z̃max, w̃max, μ̃, Ĩ0 and S̃0).

(ii) In the sequel, the notation:

ui : a → b → b →
uv : c → d → e →

t : 0 → ts1 → ts2 →
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means that there are two possible switch times, ts1 and ts2 , and ui switches from
a to b at ts1 and does not switch at time ts2 . Similarly, uv switches from c to d at
time ts1 and from d to e at time ts2 .

The solution to Problem 3 uses the following claims (the proofs of which can be
found in the Appendix).

Claim 3.1 If uv is singular on some interval J then ui is not singular on J and ui = 0
on J .

Claim 3.2 If ui is singular on an interval J , then uv = 0 on J .

Claim 3.3 When ui is singular, denote it by us . If ui has a singular component, then
ui has one of the following forms:

umax → us

us → us.

Claim 3.4 If there exists a ts ≥ 0 such that ui is constant for all t ∈ (ts, T ] then
uv(t) = u∗

v(t) for all t ∈ (ts, T ].
Claim 3.5 If there exists a ts ≥ 0 such that uv(t) = 0 for all t ∈ (ts, T ] then
ui (t) = u∗

i (t) for all t ∈ (ts, T ].
Claim 3.6 Let J be a maximal interval such that

(i) ui = umax on J and
(ii) ui is not singular on J .

If T /∈ J then uv = umax on J .

Claims 3.1–3.6 and the fact that λ̇I ≥ 0, imply that the optimal control must have
one of the following forms:

ui : us →
uv : 0 → (29)

t : 0 →,

ui : 0 →
uv : u∗

v → (30)

t : 0 →,

ui : umax →
uv : u∗

v → (31)

t : 0 →,

ui : umax → us →
uv : umax → 0 → (32)
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t : 0 → ts1 →,

ui : umax → 0 →
uv : umax → u∗

v → (33)

t : 0 → ts1 → .

Remark 4 In the expressions (29)–(33) the instances when ui can be singular are
explicitly indicated. For example if ui has the form specified in (32) then ui is singular
for all t > ts1 . Conversely, if ui has the form specified in (33) then ui is never singular.
In other words, form (33) not only specifies that ui (t) = 0 for all t > ts1 but also that
ui is not singular.

Claim 3.7 The optimal control is not of the form (29).

Proof If the optimal control is of the form (29) then it is also the optimal control for
the isolation only model. Therefore, there exists a ts ∈ [0, T ] such that

ui (t) =
{

umax t ∈ [0, ts]
0 t ∈ (ts, T ],

is optimal. Now fix this choice of ui . The next step is to show that there exists a uv

that gives a lower value for the cost function then uv ≡ 0 does.
Suppose ts 
= T then, by the principle of optimality, it follows that

(ui (t), uv(t)) =
{

(umax, 0) t ∈ [0, ts)
(0, u∗

v) t ∈ [ts, T ],

has a smaller cost than a control of the form (29).
Alternatively, suppose ts = T , then the mixed model essentially becomes a vacci-

nation only model with new parameter μ̃ = μ + umax. Therefore, uv = u∗
v gives a

lower value for the cost function than uv ≡ 0 does. ��
Claim 3.8 If the optimal control is of the form (30) then u∗

v ≡ umax.

Proof Suppose to the contrary that

u∗
v(t) =

{
umax t ∈ [0, ts]
0 t ∈ (ts, T ],

where ts < T . Then it follows that

(ui (t), uv(t)) =
{

(0, umax) t ∈ [0, ts]
(u∗

i , 0) t ∈ (ts, T ],

will give a lower value for the cost function than a control of the form (30) will. ��
Claim 3.9 The optimal control is not of the form (30).
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Proof If the optimal control is of the form (30) then
∫ T

t0
ui I dt = 0 < wmax and there-

fore λw = 0. Since ui is not singular (see Remark 4), this implies that λI (t) > 0 for
all t > t0. Therefore, by Eq. 27, λ̇S(t) < 0 for all t > t0. This implies that λS(t) > 0
(since λS(T ) = 0) for all t < T , but this gives a contradiction since if λS(t) > 0 then
uv(t) = 0. ��
Claim 3.10 If the optimal control is of the form (32) then

∫ ts1
t0 umaxS[umax,umax]dt =

zmax.

Proof By Claim 3.5, if the optimal control has the form (32) then us = u∗
i . Therefore

there exists a ts2 ∈ [ts1, T ] such that

ui (t) =
⎧⎨
⎩

umax t ∈ [t0, ts1 ]
umax t ∈ (ts1, ts2 ]
0 t ∈ (ts2 , T ]

is optimal. Assume that the number of people vaccinated at t = ts1 is not the maximal

amount, that is assume
∫ ts1

t0 umaxS[umax,umax]dt < zmax. Suppose ts2 
= T then it follows
that

(ui (t), uv(t)) =
⎧⎨
⎩

(umax, umax) t ∈ [t0, ts1 ]
(umax, 0) t ∈ (ts1 , ts2 ]
(0, u∗

v) t ∈ (ts2 , T ],
has a smaller cost then a control of the form (32).

Alternatively, suppose ts2 = T , then the mixed model essentially becomes a vac-
cination only model with new parameter μ̃ = μ + umax. Therefore, uv = u∗

v is the
optimal choice for uv and so if uv = u∗

v has the form specified in (32) then it must be
that

∫ ts
t0

umaxS[umax,umax]dt = zmax. ��
Claim 3.11 If the optimal control is of the form (33) then

∫ ts
t0

umax I[umax,umax]dt =
wmax.

Proof The first step is to show that λI (t) ≤ 0 for all t ∈ [0, T ). Suppose to the con-
trary that there exists a t∗ ∈ [0, T ) such that λI (t∗) is positive. Then, since λ̇I ≥ 0, it
must be that λI (t) > 0 for all t ∈ J = [t∗, T ]. Therefore, since λw ≤ 0, ui = 0 on J .
This implies, by Eq. 27, that λ̇S < 0 on J and hence λS > 0 on J (since λS(T ) = 0).
Similarly, since λS > 0 on J , uv = 0 on J and this implies, by Eq. 27, that λ̇I = 0
on J . Letting λ̇I = 0 and rearranging Eq. 28, gives

λI (βS − μ) = (λ0 + λS)βS. (34)

Now both the right-hand side of Eq. 34 and λI are positive on J . This implies that
S(t) >

μ
β

for all t ∈ J . But this contradicts the fact that S(T ) <
μ
β

. This proves that
λI (t) ≤ 0 for all t ∈ [0, T ).

Now, λ̇I ≥ 0, λI ≤ 0 and ui switches from umax to 0 when λI = λw. Therefore
if λw = 0 then the switch occurs while ui is singular, since ui is not singular (see
Remark 4) it must be that λw < 0. ��
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Lastly, notice that control form (31) covers the case when there are enough resources
to isolate with maximal effort for the entire epidemic. This proves Theorem 3.

7 Discussion

The results presented in Sect. 3 contain many interesting features. Firstly, recall that
Wickwire showed that the optimal isolation policy is either to isolate with maximal
effort for the entire epidemic or to never isolate any infectives. In contrast, the optimal
isolation policy presented in Theorem 1 is to isolate with maximal effort for the entire
epidemic only if there are enough resources. If there are not enough resources, the
optimal policy is any policy that uses all of the resources. In other words, the optimal
isolation policy presented by Wickwire is characteristically different than the one pre-
sented here. Conversely, the optimal vaccination policies given in Wickwire (1975)
and Theorem 2 have the same basic form. These differences are partially explained
by the PMP relations. A simple calculation shows that the basic form of the PMP
relations are the same for the case when the objective function includes a term linear
in the control and the case when the total amount of resources are limited. Correspond-
ingly, the optimal isolation policy is singular, so the PMP relations are not sufficient to
determine the optimal isolation policy. This means that the optimal isolation policies
in Morton and Wickwire (1974) and Theorem 1 can be different. For the vaccination
model however, the PMP relations are necessary and sufficient.

Another interesting aspect of the isolation only model is that for certain parameter
values, small changes in wmax can cause large changes in the value of the minimal
cost. To see this, notice that setting uv ≡ 0 and ui ≡ umax in (1) gives,

w[umax](T ) =
T∫

t0

umax I[umax]dt = −umax

β
ln

(
S[umax](T )

S0

)
. (35)

Rearranging Eq. 35 gives, S[umax](T ) = S0exp
(−βw[umax](T )

umax

)
which expresses the

final number of susceptibles for the case when ui ≡ umax, in terms of w[umax](T ).
Figure 1 shows that if S[umax](T ) >

μ
β

, then as wmax switches from less than
w[umax](T ) to greater than w[umax](T ), there will be a jump in S[u∗

i ](T ). That is, if
S[umax](T ) >

μ
β

, then there is a range of values of the final number of susceptible
individuals, S[u∗

i ](T ), that cannot be attained, regardless of the value of wmax. Finally,
it is worth pointing out that whether or not S[umax](T ) >

μ
β

can be determined directly
from the model parameters (without resorting to simulations). To see this, notice that
combining Eqs. 13 and 35 shows that S[umax](T ) >

μ
β

if and only if

− umax

β
ln

(
μ

βS0

)
> S0 − μ

β
+ μ

β
ln

(
μ

βS0

)
− IT + I0. (36)

The top panel of Fig. 1 shows a scenario when Eq. 36 is not satisfied and the bottom
panel of Fig. 1 shows a scenario when Eq. 36 is satisfied.
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Fig. 1 Top panel: The final number of susceptibles depends only on the total number of isolated individuals
(see Eq. 13). For parameter values, I0 = 10, S0 = 5000, umax = 0.3, μ = 0.334 and β = 0.0003, the
dashed curve describes this relationship. The diamond marks the point (w[umax](T ), S[umax](T )). Since
ui ≡ umax is the optimal solution for the unconstrained model and since minimizing the total number
of infected is equivalent to maximizing S(T ), the diamond marks the largest attainable S(T ). The solid
thick curve (which lies directly on top of the dashed curve) therefore denotes all possible optimal pairs
(w(T ), S(T )) for our specific choice of parameters. The point marked by the diamond is also the intersec-
tion of the dashed curve and the solid thin curve. The solid thin curve plots the final number of susceptibles
under the assumption that ui ≡ umax. S(T ) = μ

β
at the right-most point of the dashed curve. Since the point

(w(T ),
μ
β

) on the solid thin curve lies to the left of the right-most point on the dashed curve, all optimal

values of S(T ) must be less than μ
β

. Bottom panel: This plot shows the same information as the plot on
the left-hand side but for the case when umax = 1. For this case the intersection of the solid thin curve and
the dashed curve occurs at an S(T ) larger than μ

β
. The solid thick curve shows all possible optimal pairs

(w(T ), S(T )) for cases when wmax < w[umax](T ). For cases when wmax ≥ w[umax](T ), the optimal pair
is (w[umax](T ), S[umax](T )) (that is, the point marked by the diamond). Therefore, as wmax is increased
past the value w[umax](T ) the final number of susceptibles jumps from a small value (less than 500) to a
large value (greater than 3500)
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The non-uniqueness of u∗
i when wmax < w[umax](T ) means that epidemics with

different dynamics can still optimize the cost function of Problem 1. The top panel in
Fig. 2 shows three different optimal isolation strategies for a case were wmax = 1450
and w[umax](T ) = 2072. In all three cases the total infectious burden is 9884.9 and the
total number of infected is 4742.4.

The top panel in Fig. 2 shows that very different dynamics result from these three
different controls even though all three are optimal. For example the length of the
epidemic described by the dotted curve is significantly shorter than the other two epi-
demics but it reaches a higher peak intensity (as measured by the maximum number of
infected). Although the epidemics described by the dashed and solid curves are very
similar, the dashed curve describing the number of infectives is distinctive because it
has two peaks. Finally, notice that all three isolation strategies result in the same value
S(T ) = 258, as must be the case for all of them to be optimal.

Interestingly, this non-uniqueness means that policy makers have the freedom to
optimize other cost functions in addition to (2). For example, as mentioned earlier,
in this case it is possible to simultaneously minimize the total outbreak size, as well
as the average number of infected individuals per unit time over the entire outbreak
(which is a measure of its “peakedness”). The optimal strategy for doing so is to isolate
individuals with maximal effort for as long as possible (Appendix).

The top panel of Fig. 2 also emphasizes the difference between the optimal iso-
lation only policy and the optimal vaccination only policy. Notice that even though
the dotted isolation strategy does not begin until the epidemic is well under way, it
still minimizes the total number of infectives (and therefore also the total infectious
burden). This result is very different from the vaccination results.

The bottom panel in Fig. 2 shows the results for three different isolation strategies
for the mixed model. All three scenarios use an optimal vaccination strategy with
zmax = 2500. All of the isolation strategies isolate 350 infectives, but not all of these
strategies are optimal. The dashed and the solid curves illustrate dynamics for optimal
control strategies and the total number of infected for both of these control strategies
is 1861. On the other hand, the control strategy denoted by the dotted line is not opti-
mal (notice that the isolation control is off when the vaccination control is on) and
consequently the total number of infected is larger, 1870.

It is also worth highlighting the significance of how disease characteristics place
upper bounds on the control variables. As an example, suppose that a disease of interest
is such that the maximum possible rate of isolation is umax = 0.3 as in Fig. 2. In this
case (assuming wmax = 1450 as in Fig. 2), the optimal isolation policy will result in
a total outbreak size of 4742 individuals. This yields the counterintuitive finding that,
although we have enough resources to isolate 1450 individuals, and although there
are only 10 infected individuals that initiate the outbreak, we are nevertheless unable
to use isolation to prevent the epidemic. More surprising still, our resources turn out
to be insufficient for the outbreak that develops. In other words, even though only 10
individuals start the epidemic, and even though we have enough resources to isolate
1450 individuals, our lack of ability to quickly isolate these initial 10 infections results
in an outbreak so large that our resources are then insufficient. This clearly highlights
the importance of constraints on the rate of isolation (and vaccination) in addition
to constraints on the total amount of resources that are available. Indeed, given the
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Fig. 2 Top panel: Dynamics of the isolation only model for three different, optimal isolation strategies. All
three isolation strategies are purely bang-bang and switch between the values umin = 0 and umax = 0.3.
The bottom plot shows the form of the different control strategies. The control strategies have been plotted
offset from each other. The parameters used in these simulations are I0 = 10, S0 = 5000, umax = 0.3,
μ = 0.334, wmax = 1450 and β = 0.0003. Bottom panel: Dynamics of the mixed model for three differ-
ent isolation strategies. All three isolation strategies are purely bang-bang and switch between the values
umin = 0 and umax = 0.3. All three isolation strategies isolate 350 infected. The vaccination strategy is
the same for all three cases. The bottom plot shows the form of the different control strategies. The control
strategies have been plotted offset from each other. The solid curve and the dashed curve denote optimal
strategies, the dotted curve shows a non-optimal strategy. The dash-dot curve in the bottom plot is the
vaccination strategy, uv . The parameters used in these simulations are I0 = 10, S0 = 5000, umax = 0.3,
μ = 0.334, wmax = 350, zmax = 2500 and β = 0.0003

likelihood of a large amount of uncertainty in umax, these considerations provide a
justification for using up all of the isolation resources as quickly as possible, despite
the fact that ultimately this might not reduce total outbreak size any more that using
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all the resources in some other temporal fashion, just in case umax is larger than we
think.

The above observations suggest a number of interesting areas that would benefit
from further analysis. For example, the non-uniqueness of the optimal isolation pol-
icy, coupled with the fact that various optimal strategies yield dramatically different
dynamics, suggests that aspects of the outbreak “shape” should be included in the
optimization problem, and not simply outbreak size or infectious burden. It is also
interesting to note that in the General Problem discussed in this paper, the values of
umax, zmax and wmax are predetermined and fixed. It would be worthwhile to investi-
gate the effects of varying these parameters and describing the interplay between umax
and the maximum possible number of isolated (wmax) and vaccinated (zmax) individ-
uals. For example, if the optimal isolation policy is non-unique, then increasing the
value of umax (while keeping wmax fixed) will not change the value of the cost function
provided that the new optimal control is still not unique. Conversely, increasing umax
(while keeping zmax fixed) will always improve the vaccination only policy. The effect
of changing umax for the mixed policy is not as easily understood nor is the effect of
changing both umax and wmax (or zmax). Furthermore, it might also be interesting to
examine what happens if the cost associated with using a control depends on the value
of wmax (or zmax) and not just on the total number of individuals that are isolated (or
vaccinated). For instance, even if there is a fixed stockpile of vaccine, it is presumably
more costly (in terms of needing nurses etc) to have a high vaccination rate than a
low one at any given time. Lastly, the solution to the mixed model presented here
assumes that the maximum allowed number of isolated and vaccinated individuals are
constrained separately. It would be interesting to determine how to optimally divide a
total resource pool into separate isolation and vaccination resource pools. This would
be useful for example, when only the total amount of resources have been allocated and
the policy-maker is free to choose how to divide these resources between vaccination
and isolation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

The remaining details of the proofs of Theorems 1, 2 and 3 are presented here.

Details for Proof of Theorem 1

To derive Eq. 13 from Eq. 9 first note that Eq. 8 can be rearranged to give (i) −Ṡ = βSI

and (ii) I = − Ṡ
βS . Substituting these two expressions into Eq. 9 gives,

İ = −Ṡ + μ

β

Ṡ

S
− ui I. (37)
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Rearranging Eq. 37 and integrating from t = t0 to t = T results in:

T∫

t0

ui I dt = S0 − S(T ) + I0 − I (T ) + μ

β
ln

(
S(T )

S0

)
. (38)

The only detail that remains to be proved for Theorem 1 is that the optimal isolation
strategy for the unconstrained problem is u∗

i ≡ umax.

Claim 1.1 The optimal control for Problem 1 with wmax = ∞ is u∗
i ≡ umax.

Proof The PMP relations for Claim 1.1 are given by the PMP relations in Sect. 4 with
λw = 0. Substituting Eq. 12 into Eq. 11 gives,

λ̇S = −(−λ0 − λS + λI )β I

= λ̇I
I

S
− λI (μ + ui )

I

S
(39)

The first step is to show that the optimal control is purely bang-bang (that is, it has no
singular components). Since, by Eq. 10, λI is a constant, if ui is singular then it must
be singular on the entire interval [0, T ]. This implies, by Eq. 39, that λS is constant
and since λS(T ) = 0 it must be that λS ≡ 0. Equation 11 then gives that λ0 = 0. This
is not possible since (λ0, λI (t), λS(t)) must be nonzero for all t ∈ [0, T ]. Therefore,
u∗

i cannot be singular.
The optimal control will be determined once the sign of λI is determined. To

determine the sign of λI , use the transversality condition λS(T ) = 0. Since λI is
a constant, Eq. 12 gives that λI = (λ0+λS)βS

βS−u−μ
= λ0βS(T )

βS(T )−ui (T )−μ
. This implies that

sign(λI ) = sign
(

S(T ) − ui (T )+μ
β

)
. By Eq. 1, λI is negative if and only if İ (T ) < 0.

Since T is the smallest time that I = 0.5 (and I (0) > 0.5) it must be that İ (T ) is
negative. Therefore, u∗

i ≡ umax. ��

Details for Proof of Theorem 2

The only detail that remains to be proved for Theorem 2 is that the vaccination strategy
uv ≡ 0 is not optimal.

Claim 2.1 The control uv ≡ 0 is not a solution for Problem 2.

Proof From the PMP relations given in Sect. 5, if u∗
v ≡ 0 then λz ≤ λS . Also, since

uv ≡ 0 means that none of the vaccination resources are used, it must be that λz = 0.
This implies that λS ≥ 0.

Furthermore, by Eq. 14, u∗
v ≡ 0 implies that λ̇I ≡ 0. Rearranging Eq. 16 and

setting t = T gives λI (βS(T ) − μ) = λ0βS(T ). There are two possible scenarios:

(i) If λ0 = 0 then λI ≡ 0 but since λS(T ) = 0 this implies that the adjoint vector
is zero at t = T . Therefore this scenario is not possible.
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(ii) If λ0 = 1 then λI < 0 (since S(T ) <
μ
β

) and this implies, by Eq. 14, that

λ̇S > 0. Therefore, since λS(T ) = 0, it must be λS(t) < 0 for all t < T . But
this contradicts the fact that u∗

v ≡ 0 implies that λS ≥ 0. ��

Details for Proof of Theorem 3

We now prove the claims in Sect. 6 (i.e., Claims 3.1–3.6) that were used to prove
Theorem 3. Throughout this section the notation specified in Remark 3 will hold and
the PMP relations will be the ones given Sect. 6.

Claim 3.1 If uv is singular on some interval J then ui is not singular on J and ui = 0
on J .

Proof Suppose uv is singular on some interval J , then λ̇S = 0 and therefore Eq. 27
implies that λI = λw

ui
μ+ui

. Now if λw = 0 then λI = 0. Since λ̇S = 0 it must be that
λI = λ0 + λz and therefore λ0 = −λz . Furthermore, since T ∈ J (see Remark 5) it
must be that λz = 0 (because λS(T ) = 0) so the adjoint vector is identically zero on
J . Since this is not possible it must be that λw < 0 and therefore λw < λw

ui
μ+ui

= λI

so ui = 0. ��
Remark 5 If uv is singular then λ̇S = 0. The only way for uv to change from being
singular to being nonsingular is if λI becomes nonconstant. But, by Eq. 28, if both
λ̇S = 0 and λ̇I = 0 then λ̇I must remain zero. This implies that if uv is singular on
some maximal interval J then T ∈ J .

Claim 3.2 If ui is singular on an interval J , then uv = 0 on J .

Proof If ui is singular on some interval J , then λ̇I = 0 on J . This implies by Eq. 27,
that either uv is singular or uv = 0 on J . Since by Claim 7, ui and uv cannot be
singular at the same time, it must be that uv = 0 on J . ��
Claim 3.3 When ui is singular, denote it by us . If ui has a singular component then
ui has one of the following forms:

umax → us

us → us.

Proof Pick any τ ∈ J . Claim 7 follows directly from the following two observations.
Firstly, notice that if ui is singular on some interval J then, by Eq. 27, λ̇S ≥ 0 on J .
This implies that uv(t) = 0 for all t > τ and therefore, by Eq. 27, λ̇I (t) = 0 for all
t > τ . That is if ui is singular on J then T ∈ J . Secondly, by Eq. 27, λ̇I ≥ 0 (even
when ui is not singular). ��
Claim 3.4 If there exists a ts ≥ 0 such that ui is constant for all t ∈ (ts, T ] then
uv(t) = u∗

v(t) for all t ∈ (ts, T ].
Proof Once t > ts the mixed isolation–vaccination model becomes a vaccination only
model and therefore the optimal uv is the optimal control for the vaccination only model
with parameters t̃0 = ts , z̃max = zmax − ∫ ts

t0
uv S[ui ,uv]dt and μ̃ = μ + ui (T ). ��
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Claim 3.5 If there exists a ts ≥ 0 such that uv(t) = 0 for all t ∈ (ts, T ] then
ui (t) = u∗

i (t) for all t ∈ (ts, T ].
Proof Once t > ts the mixed isolation–vaccination model becomes an isolation only
model with parameters t̃0 = ts , w̃max = wmax −∫ ts

t0
ui I[ui ,uv]dt and μ̃ = μ. Therefore

the optimal ui is the optimal control for the isolation only model. ��
Claim 3.6 Let J be any maximal interval such that

(i) ui = umax on J and
(ii) ui is nonsingular on J .

If T /∈ J then uv = umax on J .

Proof Conditions i and ii imply that λI (t) < λw for all t ∈ J . Therefore, by Eq. 27,
λ̇S(t) > 0 for all t ∈ J . Therefore, while t ∈ J , uv must have one of the following
forms:

umax → umax,

umax → 0,

0 → 0.

Let t1 ∈ J . Suppose uv(t) = 0 for all t ∈ J̃ = {t | t > t1 and t ∈ J } then, by Eq. 27,
λ̇I = 0 on J̃ . This implies that max{λI (t) | t ∈ J̃ } < λw, since if max{λI (t) | t ∈
J̃ } ≥ λw either i or ii would be violated. But if max{λI (t) | t ∈ J̃ } < λw then either
J is not maximal or T ∈ J . Since both of these possibilities lead to a contradiction,
the only possible form for uv is uv = umax on J . ��

Isolation policy that minimizes average number of infectives

By introducing the variable m = t , the problem of minimizing the average number
of infectives becomes the problem of finding the control ui that maximizes S(T )−S0

m
subject to the constraints that I (T ) ≤ 0.5 and w(T ) ≤ wmax. The PMP provides the
following relations:

The Hamiltonian is

H(t) = βSI (λI − λS) + (λw − λI )ui I − λI μI + λm = −λ̇I + λm = 0, (40)

where the adjoint variables are defined by, λ̇S = −β I (λI −λS), λ̇m = 0, λ̇w = 0 and
λ̇I = −β I (λI − λS) − (λw − λI ) + λI μ. The transversality conditions are

(λ0, λS(T ), λI (T ), λw, λm) =
(

λ0,
λ0

m
, λI (T ), λw, λ0

S0 − S(T )

m2

)
,

where λI (T ), λw ≤ 0. The optimal control therefore satisfies

u∗
i =

⎧⎨
⎩

umax λw − λI > 0
? λw − λI = 0
0 λw − λI < 0.
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The first step is to show that the optimal control is strictly bang-bang. Suppose u∗
i

is singular on an interval J , then λw − λI = 0 on J . This implies that λ̇I = 0 on J .
By Eq. 40, this implies that λm = 0 which (by the transversality conditions) implies
that λ0 = 0. Furthermore, since H = 0 and λ̇m = 0 this implies that T ∈ J . Substi-
tuting (λ0, λS, λI , λw, λm)|t=T = (0, 0, λw, λw, 0) into H = 0 gives that λw = 0
and therefore the optimal control must be strictly bang-bang (since the adjoint vector
must always be nonzero).

Since λm ≥ 0, Eq. 40, implies that λ̇I ≥ 0 and therefore the switch function is
non-increasing. This implies that the optimal control is either u∗

i ≡ umax, u∗
i ≡ 0 or

u∗
i switches once from umax to 0. To further constrain the form of the optimal control,

consider the case when λw = 0. Since λI (T ) ≤ 0 and λ̇I > 0 it must be that λI (t) < 0
for all t < T and therefore SF(t) ≥ 0. Therefore, if λz = 0 the optimal control is to
isolate with maximal effort for the entire epidemic.

Now consider the case when λw < 0. If λw < 0 then all of the control resources
are used therefore the optimal control is to isolate with maximal effort until all of the
resources are used.

Combining both cases, gives that the optimal control is to isolate with maximal
effort until either all of the resources are used or the epidemic is over.

Simulations for more detailed models

Here we consider two more detailed versions of model (1). The first version includes
more detailed isolation dynamics and allows for the possibility that isolated individu-
als may still transmit infection. The more detailed isolation model is described by the
following set of equations:

Ṡ = −(β I + βJ J )S − uv S,

İ = (β I + βJ J )S − (μ + ui )I, (41)

J̇ = ui I − μJ,

where S, I and J are the numbers of susceptible, infected and isolated hosts, β is the
transmission constant for infected hosts, βJ is the transmission constant for isolated
hosts, μ is the per capita loss rate of infected individuals through both mortality and
recovery, and ui is the per capita rate of isolation.

Perhaps the most important result for the isolation model is that if there are not
enough resources to isolate for the entire outbreak then any isolation strategy that uses
the maximum amount of resources is optimal. Figure 3 suggests that this result also
holds for the more detailed isolation model. More specifically, if E∗

i is the number of
individuals isolated when ui ≡ umax, then Fig. 3 suggests that all isolation strategies
that isolate Ei < E∗

i result in the same outbreak size. It is important to emphasive that
these results are only suggestive and that much more detailed analysis is required in
order to make a stronger statement.

The second version includes more detailed vaccination dynamics and allows for the
possibility that vaccinated individuals may still contract infection. The more detailed
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Fig. 3 Results suggesting that if there are not enough resources to isolate for the entire outbreak then
any isolation strategy that uses the maximum amount of resources is optimal. Each panel corresponds to
a different value of βJ . The upper left panel corresponds to βJ = 0 and therefore corresponds to the
situation when isolation is completely effective. The bottom right panel corresponds to βJ = 0.75β and
therefore corresponds to the situation when isolation is not very effective. E∗

i denotes the total number of
isolated individuals when isolation starts immediately and continues for the entire outbreak with maximal
effort. Each panel shows the attack rate as a function of total isolated (normalized by E∗

i ) and isolation start
time. Each point on the panels was generated by beginning isolation at the time indicated on the horizontal
axis and continuing to isolate with maximal effort until the number isolated is the value indicated on the
vertical axis. Once the total isolated has reached the number indicated on the vertical axis, no more hosts
are isolated. If the outbreak ends before enough individuals have been isolated, the corresponding point
on the plot has the same shade of gray as the background. Thus the background gray areas on the panels
should be ignored. All four panels suggest that all isolation strategies that isolate Ei < E∗

i result in the
same outbreak size (i.e., the shade of gray is constant for all isolation start times that correspond to the same
value of Ei ). Parameters used are S0 = 100000, I0 = 10, μ = 1

3.3 , β = 1.6μ
Sca0 , βv = 0.8β, umax = 0.05

vaccination model is described by the following set of equations:

Ṡ = −(β I + βv Iv)S − uv S,

Ṡv = uv S − (1 − r)(β I + βv Iv)Sv,

İ = (β I + βv Iv)S − (μ + ui )I,

İv = (1 − r)(β I + βv Iv)Sv − (μ + ui )Iv,

(42)

where S and I are the numbers of susceptible and infected hosts, Sv and Iv are the num-
bers of vaccinated susceptible and vaccinated infected hosts, r represents the reduction
in susceptibility of vaccinated individuals, β is the transmission constant for infected
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Fig. 4 Results suggesting that it is optimal to start vaccinating immediately and to vaccinate for the entire
outbreak. Each panel corresponds to a different value of r . The upper left panel corresponds to r = 1 and
therefore corresponds to the situation when vaccination is completely effective. The bottom right panel
corresponds to r = 0.25 and therefore corresponds to the situation when vaccination is not very effective.
E∗

v denotes the total number of vaccinated individuals when vaccination starts immediately and continues
for the entire outbreak with maximal effort. Each panel shows the attack rate as a function of total vacci-
nated (normalized by E∗

v ) and vaccination start time. Each point on the panel was generated by beginning
vaccination at the time indicated on the horizontal axis and continuing to vaccinate with maximal effort until
the number vaccinated is the value indicated on the vertical axis. Once the total vaccinated has reached the
number indicated on the vertical axis, vaccination is stopped. If the outbreak ends before enough individuals
have been vaccinated, the point is the same shade of gray as the background. Thus the background gray
areas on the panels should be ignored. All four panels suggest that starting vaccination immediately is best
(the smaller the vaccination start time the smaller the attack rate, or in other words the shade of gray lightens
as we move from left to right). All four panels show that, of the vaccination strategies represented on the
panels, vaccinating for the entire outbreak results in the lowest attack rate. For the bottom right panel, of the
vaccination strategies considered the only one that vaccinates E∗

v individuals is the one that the vaccinates
for the entire outbreak. Therefore, the entire upper row (except the point corresponding to a vaccination
start time of t = 0) is red. Parameters used are S0 = 100000, I0 = 10, μ = 1

3.3 , β = 1.6μ
S0

, βv = 0.8β,
umax = 0.05

hosts, βv is the transmission constant for vaccinated infected hosts, μ is the per capita
loss rate of infected individuals through both mortality and recovery, and uv is the
per capita rate of vaccination. Perhaps the most important result for the vaccination
model is that it is optimal to begin vaccination immediately and to vaccinate for the
entire epidemic. Figure 4 suggests that this result also holds for the more detailed
vaccination model. More specifically, if E∗

v is the number of individuals vaccinated
when uv ≡ umax, then Fig. 4 shows that vaccination strategies that vaccinate the same
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number of individuals result in different outbreak sizes. Furthermore, of the strategies
considered, it is always best to start vaccinating immediately and to continue vaccinat-
ing for longer. It is important to emphasize that these results are only suggestive and
that much more detailed analysis is required in order to make a stronger statement.
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