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Abstract: Coevolutionary interactions, such as those
between host and parasite, predator and prey, or plant
and pollinator, evolve subject to the genes of both
interactors. It is clear, for example, that the evolution of
pollination strategies can only be understood with
knowledge of both the pollinator and the pollinated.
Studies of the evolution of virulence, the reduction in host
fitness due to infection, have nonetheless tended to focus
on parasite evolution. Host-centric approaches have also
been proposed—for example, under the rubric of
‘‘tolerance’’, the ability of hosts to minimize virulence
without necessarily minimizing parasite density. Within
the tolerance framework, however, there is room for more
comprehensive measures of host fitness traits, and for
fuller consideration of the consequences of coevolution.
For example, the evolution of tolerance can result in
changed selection on parasite populations, which should
provoke parasite evolution despite the fact that tolerance
is not directly antagonistic to parasite fitness. As a result,
consideration of the potential for parasite counter-
adaptation to host tolerance—whether evolved or
medially manipulated—is essential to the emergence of
a cohesive theory of biotic partnerships and robust
disease control strategies.

Introduction: What Controls Virulence?

Evolutionary biologists define the virulence of a parasite as the

reduction in host fitness caused by infection. When this reduction

in host fitness is due to an increased mortality rate, the

consequences for parasite evolution are clear; host death means

parasite death [1]. However, virulence can also include reductions

in host fecundity [2,3], which is relevant for some parasites such as

castrating parasites and obligate killers [4,5]. In either case,

typically, virulence is reasoned to increase with an increasing

parasite burden. Thus, conceptually, virulence may be viewed as

resulting from the density of parasites within a host (I) and the

degree of damage caused by each parasite (a, the per-parasite

virulence):

Virulence~Ia ð1Þ

This simple equation offers considerable insight into parasite

evolution. For instance, it is generally assumed that parasites can

achieve higher transmission success the more numerous they are

within a host (higher within-host density), but that this will in turn

lead to higher virulence, which may kill hosts more rapidly and

compromise transmission success [6]. The resulting idea is that the

most successful parasites cause an intermediate level of virulence,

which encapsulates the trade-off model of virulence evolution

(reviewed in [7]).

However, virulence is ultimately a pathology of the host [8], and

thus will be jointly determined by both the parasite and host. The

density of parasites within hosts, I, is controlled both by intrinsic

replication rates of parasites and by the rate at which hosts kill

parasites (e.g., [9]), while per-parasite virulence, a, can be

controlled by parasite ‘‘virulence factors’’ such as toxins as well

as host anti-toxin molecules. Some theoretical work has acknowl-

edged this joint control of virulence—for example, by examining

how host control of I via recovery rate affects coevolution [10,11],

or how host control of a via avoidance of immunopathology can

shape parasite evolution [12]. Such studies, however, are in the

minority, and the virulence literature has focussed primarily on

parasite-controlled traits, despite the fact that virulence is of clear

relevance to host evolution.

When thinking about host evolution, it can be helpful to discuss

host fitness directly, rather than virulence. A simple linear model

of host fitness is:

Host Fitnessj,n~vo,n{Ij,naj,n, ð2Þ

which is host fitness in the absence of infection (vo,n, the y-

intercept) minus the terms that comprise virulence. Here n is the

nth host genotype, and j is the jth parasite genotype. Many

approaches to the study of host–parasite interactions have been

less general than this. For example, much of the work on virulence

has assumed constant a, or that I depends only on parasite

genotype (e.g., [7]); work on host genetic control of resistance has

often assumed that a is constant, but allowed I to depend on both

parasite and host genotype (e.g., [13]); finally, work on the

parameter an (often referred to as tolerance) tends to assume that it

is a function only of host genotype (or that vo,n is constant [e.g.,

[14]]). While we appreciate that not every study needs to be

holistic or coevolutionary, much might also be learned from a

synthetic approach (see also [10,15]).

In the following sections we emphasise why a full picture of the

causes and consequences of virulence requires consideration of all

components of Equation 2. We draw attention to the term vo,n,

which is not directly influenced by the parasite, and our discussion

is weighted towards host genetic variation for tolerance (i.e., an),
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both in terms of measurement and the evolutionary inferences that

are possible. Despite these leanings, we aim to reinforce the notion

that coevolutionary outcomes depend upon contributions from

both interactors. Host-centric and parasite-centric views of

virulence evolution have often been disconnected in the study of

disease evolution, which has provided too narrow a perspective on

the potential for interactions to generate dynamic coevolution. For

example, the evolution of tolerance (i.e., selection on an) has been

thought of as having the potential to dampen coevolutionary

dynamics, but this has rarely been with a full consideration of all

the conditions that favour intense host or parasite counter-

adaptation. Ultimately, host–parasite coevolution is about two

interacting organisms gaining fitness at each other’s expense, and a

more holistic approach could unite a large range of perspectives on

the evolutionary ecology of attack, defence, and commensalism.

Tolerance and Intercepts

A recent experimental study of virulence in a rodent defined

tolerance as the slope of the regression of host fitness on I [14].

This definition is similar to that from studies on plant responses to

infection or herbivory (e.g., [16,17]) and assumes that host

differences in vo,n represent underlying differences in general

vigour [14,16,17]. In addition to being measured as a slope, i.e.,

estimated across a range of parasite densities (range tolerance),

tolerance has also been measured at one single parasite density

(point tolerance) [18,19], but depending on the relationship

between aj,n and vo,n, the conclusions drawn from the different

measures may not be the same (Box 1, Figure 1). There are yet

further definitions of tolerance, and the possibility that different

measures of tolerance will not always provide the same

information presents challenges for reconciling theory with data

and vice versa. A key step towards suitable comparison of the

Box 1. Density Ranges and Definitions of
Tolerance

The study of host-controlled a has been described as the
study of tolerance: the ability of hosts to limit the damage
caused by a given parasite burden, which is essentially the
ability to minimize per-parasite virulence. It has been
studied as a mean, i.e., where two genotypes carry the
same parasite burden, but one genotype achieves higher
fitness. We call this point tolerance. An empirical
example of point tolerance is the striking genetic variation
among strains of laboratory mice in the per-parasite
virulence of Streptococcus pneumoniae infection [18].
Tolerance has also been studied as a slope to depict
how quickly fitness falls as parasite density increases; more
tolerant genotypes lose their fitness less quickly as
densities increase (implying less sensitivity to changes in
parasite numbers). We call this range tolerance. This has
recently demonstrated for rodent malaria [14], using an
approach in line with studies of tolerance to herbivory
[16,17].
Schematic examples of range and point tolerance are
presented in Figure 1. The differences in interpretation
implicit in these scenarios are important, as they would
lead to different predicted evolutionary or epidemiolog-
ical outcomes. These examples are meant to merely
illustrate the potential confusion that may arise depend-
ing on how tolerance is measured, and we emphasise that
this is not just a quibble about definitions. If we are to
draw general conclusions about tolerance evolution, we
need to resolve when empirical studies of point tolerance
(e.g., [19]) should be freely compared with studies of
range tolerance (e.g., [14]), and when either can inform
theory that uses yet other definitions (e.g., [33]; see also
[21]).

Figure 1. The importance of intercepts: point versus range tolerance. To understand differing interpretations of the evolutionary
consequences of tolerance, it is necessary to consider when point and range tolerance will disagree. Below is one scenario where they will agree,
and two where they may not. (A) With fitness in the absence of infection identical, at whichever parasite density measured, the fitness of the
genotype with the flatter slope will be higher; here, genotype a1 is more tolerant than b1 regardless of how it is assessed. Both point and range
tolerance measures therefore agree over the more tolerant genotype. (B) Here genotypes differ for their intercept, and the genotype with the
higher point tolerance differs depending on whether parasite density is measured at d1 (where b2.a2) or d2 (where a2.b2). The fitness at d1 is
strongly influenced by fitness in the absence of infection, while fitness at d2 is more strongly influenced by how fitness declines with increasing I.
Under range tolerance, however, a2 is more tolerant, despite the fact that it is less (point) tolerant at low densities. (C) Here the point tolerance is
always higher for a3, but the range tolerance depends upon the range of I considered; if tolerance is measured across the range depicted by d1,
genotype b3 would be considered less tolerant, but it would be considered more tolerant if the range measured was d2. Genotype b3 is always less
fit, however.
doi:10.1371/journal.ppat.1001006.g001
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different tolerance measures will be to always measure host fitness

when infected alongside fitness when uninfected, vo,n (Equation 2),

although even this may be of limited value if per-parasite virulence

(a) varies non-linearly with parasite density (I) (parasites get

proportionally more or less benign with increasing density; Box 1,

Figure 1C).

Tolerance, by definition, does not include vo, but inference

about host evolution will be restricted when vo is not considered.

First, there may be a biological relationship between tolerance and

vo due to the effects of pleiotropy, in particular if defence is

traded-off with other fitness traits (Figure 2). In this case, we could

not disregard variation in vo,n as variation in general vigour that is

independent of parasite-mediated selection. Moreover, variation in

vo,n, whether or not pleiotropy plays a role, will be crucial for

determining evolutionary trajectories. Consider two host geno-

types that differ for a but have equivalent vo, so that one genotype

has higher fitness across all values of I (compare genotypes in

Figure 1A or 1C). In this case, the evolutionary outcome for hosts

is certain, and a only determines the rate at which one host

genotype replaces another. The more plausible and interesting

scenario is where host genotypes differ for both a and vo, but no

genotype is the fittest across all parasite densities (Figure 1B).

Relationships such as these can lead to the maintenance of host

polymorphism, because the superiority of a genotype is entirely

context dependent. Selection on tolerance traits can also maintain

polymorphism when hosts recoup fitness in terms of fecundity

instead of mortality [2]. In general, accurate estimates of

evolutionary outcomes require that the slope of the parasitic

relationship a (per-parasite virulence, or tolerance) be considered

alongside the intercept vo.

The Problem of Intimacy

As with any symbiosis, when measuring genetic variation and

inferring selection on disease-related traits, it is impossible to

escape the issue that infection phenotypes represent the dual

contribution of host and parasite. For example, when parasite

burdens are measured in the field or as an experimental outcome (as

opposed to an experimentally controlled variable), how can we

know if parasite burden determines host fitness, or if host fitness,

itself affected by a variety of environmental factors, is mediating

parasite burden? Stressed hosts, for example, may express

sensitivities that lead to differences in parasite load. Here, we

would be examining genetic variation in laboratory-mediated

stress; it would not be clear what defence trait would be selected

upon and what evolutionary response we should expect to see. In

this sense, the parasitic relationship is more comparable to

correlated traits than to a norm of reaction.

The difficulty of using correlations to elucidate the trait under

selection is evident when trying to envision the selection process that

has shaped an and vo,n in a population. For example, host

genotypes might differ in the fat reserves that are mobilized only in

periods of stress (e.g., food shortage, temperature stress, and, of

course, infection). If the effect of differences in fat reserves happen to

scale with stress level and stress escalates with parasite density, then

hosts would differ in range tolerance. Whilst this would be tolerance

of infection in a very broad sense, it might have evolved for reasons

independent of infection. Conversely, differences in general vigour

might arise via parasite-mediated selection. For example, a

molecule that mops up pathogen-produced toxins without depress-

ing pathogen numbers (clearly a tolerance mechanism that could

affect the slope, a), might later be recruited to mop up free radicals

produced during respiration in the absence of infection (raising vo).

These simple hypothetical examples reinforce the problem of

separating slopes from intercepts when inferring selection: variation

in vo,n can appear as just variation in general vigour, and not

subject to parasite-mediated selection (when in fact a process of

parasite-mediated selection has modified vo), whilst slopes may

appear to be subject to parasite-mediated selection (when in fact

slope differences arose through selection on vo).

It is thus difficult to infer an underlying mechanism from

correlational estimates of tolerance, and it is likely to be important

to delve into mechanistic studies (e.g., [19]). For many, the terms

‘‘resistance’’ and ‘‘tolerance’’ carry with them some connotation of

mechanism (e.g., [20,21]), and, just as different mechanisms of

resistance (e.g., when a lack of infection comes about via

behavioural avoidance versus an immune reaction [22]) should

predict very different trajectories of selection, different mecha-

nisms of tolerance also predict different evolutionary trajectories.

Knowing the mechanisms that confer tolerance or resistance will

Figure 2. The importance of intercepts: pleiotropy. Host
genotypes will almost certainly show differences in vo,n (genetic
variation for life history characteristics is ubiquitous [37]), and in some
cases these differences will be linked to variation in the traits that
contribute to virulence (an or In) via pleiotropy (where one gene
influences more than one trait). For example, hosts that possess alleles
that confer more potent defences (ability to control I or a) may be less
fit when parasites are not around because the allele that aids defence
compromises the performance of other traits (compare voR and voS; R
denotes resistance, S denotes susceptible). In other words, there may
be a cost of possessing a defence mechanism [38], often referred to as a
trade-off. It is even conceivable that vo,n is lower than host fitness at
low I, because individuals without enough parasites can experience
difficulty with immune regulation: the hygiene hypothesis posits that
allergy and autoimmunity result from immune systems lacking direction
from parasites ([39]; see voH, which denotes hygiene). Thus, the rank
order of vo,n may be the opposite of the rank order of fitness when
infected. Moreover, von may not be easily predicted from the
relationship between parasite density and host fitness when infect-
ed—for example, when just a small number of parasites stimulates a
damaging or energy-sapping immune response that is little amplified
by further infection. Generally, the fitness of uninfected individuals
need not be a linear extrapolation of the relationship between fitness
and parasite density (I).
doi:10.1371/journal.ppat.1001006.g002
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shed light on host evolution, and ultimately coevolution.

Generally, it will be interesting to understand why the relationship

between I and host fitness might become steeper or change shape:

is it due to an immune system molecule that blocks toxins, for

example, or prevents immunopathology [23], but only over certain

parasite density ranges? Or is it simply that the environment and

subsequent condition of the host mediate a change in the severity

of parasitism? Indeed, it is easy to envision an additional factor

added to Equation 2: the subscript e denoting the effects of the

environment on the parasitic relationship. The effects of factors

such as host density, resource availability, and temperature are

obvious avenues of study here [24–26].

This problem of intimacy will often extend to the study of

genetic variation: Ij,n, and aj,n are the product of two interacting

genomes (Equation 2), and it is often difficult to identify which

antagonist is controlling the infection phenotype due to genotype-

by-genotype interactions. For example, the defence capabilities of

a host genotype often depend on which parasite genotype is

involved, while at the same time the impact of a particular parasite

genotype depends on the host genotype it infects [9,15,27–30].

Nonetheless, previous definitions of tolerance have implicitly

assumed that the sensitivity of host fitness to parasite burden (i.e.,

a) is entirely determined by host genotype [14]. But this sensitivity

could plausibly depend on an interaction between the host and

parasite genotypes as well, further calling into question simplified

measures of tolerance.

Coevolution

Far from just presenting challenges for the study of parasitism,

genotype-by-genotype interactions actually represent the founda-

tion of most host–parasite coevolutionary models [9,27,28].

Usually this is studied in the context of resistance to infection,

where the relative performance of different parasite genotypes (in

terms of Ij,n) depends on which host genotype they infect. If Ij,n and

thereby virulence are determined by a host–parasite genetic

interaction, then this can lead to antagonistic coevolutionary

dynamics and provide a mechanism for the maintenance of

genetic polymorphism (specifically, negative frequency-dependent

selection [e.g., [31]]). Above and in Figure 1, we highlighted how

some scenarios of variation in a and vo should also promote host

polymorphism (see also [2]), and this can be extended to a full

treatment of host-parasite coevolution. Here, coevolutionary

dynamics will be driven by the rules of virulence optimisation.

Selection for tolerance will change the selection gradient on

parasites, and present them with a new optimum (or adaptive

peak), towards which they will evolve. It has been suggested [14]

that the evolution of tolerance dampens coevolution by not

directly reducing parasite numbers, but we posit that any host

evolution that knocks parasites away from their evolutionary

optimum (or creates a new one) will be countered by parasite

evolution.

We do not yet have a clear view on the nature of the dynamics

generated by parasite evolution in response to new adaptive peaks

that arise due to tolerance evolution. The tolerance theory thus far

largely omits host (e.g., [32]) or parasite (e.g., [33]) counter-

adaptations. Where coevolution has been permitted in optimality

models, however, it has been clearly shown that parasite evolution

is highly sensitive to host evolution [34]. Further investigation of

host–parasite coevolution that allows host genotypes to exhibit

heterogeneity in tolerance is needed, for both theoretical and

practical reasons.

For instance, we do know that one step of host evolution

towards greater tolerance can select for parasites with higher

replication rates and populations that suffer a greater parasite

burden [32]. Thus, one plausible coevolutionary scenario is that

hosts that evolve ever greater tolerance can select for the evolution

of parasites with higher growth rates and increased transmission

[32] because the cost of virulence, in terms of killing the host prior

to transmission, will be reduced. In this way, the evolution of

tolerance mirrors attempts made by medical interventions

(particularly vaccination) to ameliorate the pathology associated

with infection, without necessarily eradicating the infection or

reducing parasite densities. Such vaccination strategies can select

for more virulent pathogens, presenting grave risks for those who

come into contact with the more virulent parasite but are not

vaccinated [35,36]. The same is true for the spread of tolerance

through populations: tolerant individuals may allow parasites to

evolve greater virulence, likewise causing grave risks for intolerant

or migrant individuals that become exposed to the disease [32].

Such an outcome could be important for human disease risk.

Thus, although local tolerance evolution can even lead to

commensalisms [32,33], when it is coupled with geographic

structuring of populations or infrequent contact between species,

tolerance evolution in one population might underlie why some

zoonoses or other emerging diseases are particularly devastating to

other populations. Indeed, apparent paradoxes such as ‘‘tolerance

evolution might be bad’’ represent key lessons from viewing

disease in a coevolutionary context. The risk that tolerance

evolution could increase disease severity in intolerant hosts may be

just scratching the surface. Equation 2 suggests a set of critical

components that can be compared across host and parasite

genotypes (or environments) to gain insight into host evolution,

parasite evolution, or coevolution. We encourage use of such a

unified, coevolutionary framework, rather than host-centric or

parasite-centric alternatives, to achieve a true understanding of

tolerance and to shed light on disease control strategies that will

not provoke undesirable pathogen evolution. Ultimately, unifica-

tion is essential if we are ever to achieve a universal theory of

disease severity, or indeed a universal theory of biotic partnerships.
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