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Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of

parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes.

Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence,

have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day

et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance

functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria

infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance

in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary

predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively,

and that “simple” virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by

trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications.

There has been a great deal of interest in developing the-

ory that bridges within- and between-host dynamics to study

infectious disease evolution. Explicitly tracking dynamics at

both scales is important because between-host parameters, such

as transmission and virulence, are intimately tied to pro-

cesses occurring at the within-host level (Ewald 1983; Bre-

mermann and Pickering 1983; van Baalen and Sabelis 1995;

Frank 1996; Antolin 2008). Further, these parameters are likely

to vary over the course of an infection due to correspond-

ing changes in the within-host interactions between parasites,

host resources, and host immunity. The resulting infection-

age-specific patterns of transmission and virulence are re-

ferred to as the disease’s life history (Day 2003; Mideo et al.

2008a).
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A considerable body of work has been developed that nests

within-host models into between-host frameworks, allowing for

explicit interactions between these levels (Sasaki and Iwasa 1991;

Day 2001; 2002; Gilchrist and Sasaki 2002; Ganusov et al. 2002;

André et al. 2003; Alizon and van Baalen 2005; Gilchrist and

Coombs 2006; André and Gandon 2006; Coombs et al. 2007;

Alizon and van Baalen 2008; reviewed in Mideo et al. 2008a).

However, these results remain somewhat unconnected with em-

pirical research, meaning predictions made are often qualitative

and not disease specific. Part of the reason for this is the difficulty

that researchers face when attempting to connect models with

data. For many pathogens of interest, the required information

about the mechanistic details of the within-host dynamics is of-

ten not available. Indeed, even for very well-controlled laboratory

systems, for which many sophisticated experimental approaches

are often available, we still lack a complete understanding of the

factors that determine the within-host infection dynamics (e.g.,

Levin et al. 1997; Grant et al. 2008; Mideo et al. 2008c; Reece

et al. 2009).

These difficulties motivated the development of the so-called

function-valued trait approach that is presented in a companion

paper (Day et al. 2011). This approach captures the relevant evolu-

tionary information about the within-host aspects of disease in a

phenomenological way, through the use of statistical estimates

of genetic covariance functions for disease life-history traits.

This formulation alleviates the need to understand the mecha-

nistic processes through which these disease life-history traits

arise.

Here, we make use of two detailed datasets from experiments

that measured within-host dynamics of rodent malaria infections

across a number of parasite genotypes (Bell et al. 2006; Reece

et al. 2008), allowing for a robust quantification of the requisite

covariance functions. Using these data, our goal is to demonstrate

how the theory developed in the companion article can be applied,

and to encourage the collection of further data that might be used.

Our analyses reveal some interesting and biologically significant

aspects of disease life-history evolution. We provide an example of

how epidemiological dynamics and patterns of genetic covariance

can interact to generate patterns of disease life-history evolution.

The patterns of genetic covariance depend importantly on the

precise within-host interactions between parasites and host factors

and the data clearly demonstrate that the direction of evolution

of disease life-history traits (their “evolutionary trajectories”) can

be qualitatively altered when parasites infect different types of

hosts. For rodent malaria, specifically, this work also goes beyond

previous empirical estimates of the genetic correlations between

life-history traits (Mackinnon and Read 1999) by measuring how

those correlations change over the course of infection and by

emphasizing that genetic correlations within a single trait may

constrain (or accelerate) evolution.
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Figure 1. Dynamics of asexual parasite densities over the course

of experimental infections in (A,B) female C57 mice or (C) male

MF1 mice. Data presented are means from infections with a par-

ticular genotype (5–10 mice per treatment) ± 1 standard error of

the mean. Genotypes are denoted by different colored lines, as

indicated by the legends. Note that (B) is the same dataset as in

(A), but for only a subset of the days.

Methods
EXPERIMENTAL DATA

We use two previously published datasets of rodent malaria

(Plasmodium chabaudi) infections in laboratory mice (Fig. 1).
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The first dataset is a composite of two independent experiments

tracking P. chabaudi infections in 8-week-old female C57Bl/6J

mice (Bell et al. 2006). Individual mice were inoculated with 106

parasites of a single genotype. The genotypes used were AS, AJ,

AT, CB, and CW. This dataset provides 10 independent time se-

ries (i.e., 10 replicate infections in mice) for genotypes AS, AJ,

and AT, and five time series for genotypes CB and CW. Asexual

parasite densities were monitored over the first 35 days of infec-

tion using real-time quantitative PCR (see Bell et al. 2006, for

details).

The second dataset also tracks the density of single genotype

P. chabaudi infections; however, the hosts were 8 to 10-week-

old male MF1 mice (Reece et al. 2008). Individual mice were

inoculated with 106 parasites of one of the following genotypes:

AS, AJ, CW, CR, ER, or DK (five replicate mice per treatment).

Asexual parasite densities were monitored over days 5–16 postin-

fection using real-time quantitative PCR (see Reece et al. 2008,

for more details). To better compare the evolutionary predictions

from these hosts with those from the former, we also perform all

analyses using only measurements from days 5–16 of the first

dataset from C57 mice. In this way, we can directly compare evo-

lutionary predictions from infections in different types of hosts,

as well as from full and truncated datasets.

TRAIT DEFINITION

To explore models of evolutionary dynamics in the mouse-malaria

system, we need to define how measures at the level of the host

are related to both disease transmission and virulence. Malaria

transmission occurs through specialized parasite forms known

as gametocytes, but time series for gametocytes were not avail-

able for both datasets. For rodent malaria, there is some evi-

dence that the dynamics of gametocyte densities track those of

the asexual parasites, though they tend to be two or three or-

ders of magnitude lower (e.g., Wargo et al. 2007). Assuming

this is true, then defining transmission by a log-linear relation-

ship captures at least one of the key aspects of natural malaria

biology, namely that infectivity to mosquito vectors is a satu-

rating function of (unlogged) gametocyte densities (Barnes and

White 2005; Paul et al. 2007; Sinden et al. 2007). We there-

fore assume that transmission rate is proportional to the log10 of

asexual parasite densities with a coefficient of 10−4 day−1. This

translates, on average, to roughly one new transmission event

every 3 to 30 days of infection (depending on the epidemiologi-

cal scenario). These values fit with what has been estimated for

malaria transmission in the field (e.g., Smith et al. 2007), al-

though our modeling approach greatly simplifies the biology (see

below).

We consider virulence as the rate of disease-induced mor-

tality in the host, and we assume that it is constant over the

duration of the infection. We use this definition of virulence be-

cause our theory builds on previous theory for disease evolu-

tion, almost all of which equates virulence with disease-induced

mortality (Day 2002). Our approach allows for time-dependent

disease traits, but for simplicity we here assume that virulence

is constant with respect to infection age for each genotype in

this “proof-of-concept” example. While mortality does vary with

infection age in P. chabaudi, genotypes tend to maintain their

relative virulence rankings across all infection ages (i.e., a strain

that is virulent at one infection age tends to be virulent at all

infection ages). As a result, accounting for infection age depen-

dence does not alter the qualitative results (Mideo et al, unpubl.

data). Virulence was estimated using survival data from experi-

mental infections. Specifically, we calculated a daily host mortal-

ity rate for each parasite genotype from the proportion of hosts

surviving to the end of the experiment, under the assumption

that the mortality rate is constant over time. Note that this pro-

cedure results in the virulence in C57 mice differing between the

full and the truncated datasets because the duration of the ex-

periment changes while the proportion of hosts surviving does

not (because all host mortality occurred in the first eight days of

infection).

MODELING APPROACH

The above laboratory experiments tracking parasite density pro-

vide an account of within-host disease dynamics of different

parasite genotypes for the mouse-malaria system. The between-

host disease dynamics, however, are more challenging to model

because they involve potentially many aspects of parasite life

history and host life history for which there are less empirical

data. Here, we consider a simple SIR (Susceptible-Infected-

Recovered) epidemiological model that assumes instantaneous

mass action transmission. The model therefore does not ac-

count for all of the complexity of the malaria life cycle, such

as the intricacies of sexual reproduction, or lags in between-

host transmission due to development in the mosquito vector.

Nevertheless it probably does capture some of the most im-

portant aspects of malaria transmission from the standpoint of

disease life-history evolution. In particular, it captures the posi-

tive association between gametocyte levels within hosts and dis-

ease transmission (Robert et al. 1996; Collins and Jeffery 2003;

Paul et al. 2007), under the assumption that gametocyte densi-

ties are proportional to asexual parasite densities. In principle,

extending the epidemiological model to explicitly include vec-

tor dynamics poses no additional difficulty if such data were

available.

Following the analyses of the theoretical examples in the

companion paper (Day et al. 2011), we structure the analyses

here into two parts: first, we study the evolution of transmission

rate alone and, second, we study the joint evolution of transmis-

sion rate and virulence. Both analyses were performed on the two
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experimental datasets described above, and we take the perspec-

tive that the set of genotypes from each experiment represents a

different parasite population.

Equation (10) from the companion paper describes the evolu-

tionary dynamics of the within-host parasite density, as a function

of infection age. Here, we use an analogous equation to model

the evolutionary dynamics of transmission rate as a function of

infection age, β(a). We use a discrete-time version of equation

(10) in Day et al. (2011) because the data are collected in discrete

time (i.e., each day during the infection) to account for the 24 hour

life cycle of this parasite. In this case, the evolutionary dynamics

of the average parasite transmission rate, denoted by the overbar,

are given by

�β̄(a) ≈ 1

k

(
S

∞∑
s=0

q(s)Gβ,β(a, s)

)
, (1)

as a change per unit time. In the above expression, k is a combined

measure of transmission and generation time of infections (Day

et al. 2011). Roughly speaking, k is large when the product of the

rate of generation of new infections and the generation time is

large. q(s) describes the stable age distribution of infections, S is

the number of susceptible hosts, and Gβ,β(a, s) describes any ge-

netic autocovariance in transmission rates across infection ages.

Specifically, Gβ,β(a, s) gives the autocovariance between transmis-

sion rate at age a and transmission at age s over the distribution

of all parasite genotypes. Note that we have removed time de-

pendencies of some of the parameters as compared with equation

(10) of Day et al. (2011) because we assume the epidemiological

dynamics is fast relative to evolution in the following examples.

The set of equations governing the joint evolutionary dy-

namics of the mean parasite transmission rate and mean virulence

are given by the discrete-time analogues of equations 16 of the

companion paper (Day et al. 2011):

�β̄(a) ≈ 1

k

(
S

∞∑
s=0

q(s)Gβ,β(a, s) −
∞∑

s=0

q(s)σ(s)Gβ,v(a, s)

)

(2)

�v̄(a) ≈ 1

k

(
S

∞∑
s=0

q(s)Gv,β(a, s) −
∞∑

s=0

q(s)σ(s)Gv,v(a, s)

)
,

(3)

where Gβ,v(a, s) and Gv,β(a, s), give the cross-covariances between

transmission and virulence at infection ages a and s, with each

matrix being the transpose of the other, and where σ(s) represents

the reproductive value of an infection of age s. Gv,v is the autoco-

variance in virulence and, given that we have defined virulence as

being constant across infection ages, each element of this matrix

is identical and positive. Expressions for k and σ(s) are given in

Appendix S1.

We define a matrix to describe the transitions between infec-

tions of different ages. Formally, this is similar to a Leslie matrix

and has the general form

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

Sβ̄(0) Sβ̄(1) . . . Sβ̄(n − 1) Sβ̄(n)

(1 − μ − v̄) 0 · · · 0 0

0 (1 − μ − v̄) · · · 0 0
...

...
. . .

...
...

0 0 · · · (1 − μ − v̄) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(4)

where n is the maximum age of infection and μ is the background

host mortality rate. The long-term growth rate of the infected host

class is described by the dominant eigenvalue of this matrix, λ,

and we note that q(s) in the earlier expressions is its associated

eigenvector.

Epidemiological dynamics
One of our main aims is to demonstrate how changes in the

within-host dynamics can interact with changes in the epidemio-

logical dynamics to affect evolutionary trajectories. Therefore our

analyses focus on predicting disease life-history evolution in two

different epidemiological settings: an expanding epidemic and an

endemic situation.

In an expanding epidemic, the number of infected hosts is

increasing. We assume in the analyses below that these dynamics

have reached a stable infection age distribution quickly, relative to

the speed of evolutionary change. At this stable age distribution,

the number of infected hosts in each infection age class grows at

a rate given by the eigenvalue of L with the largest magnitude,

that is, the dominant eigenvalue. The distribution of hosts in each

infection-age class is then given by the eigenvector of L associated

with the dominant eigenvalue. We set the number of susceptible

hosts in the population, S, to 1000, allowing us to then define L.

We calculate λ and q(s) as the dominant eigenvalue and associated

eigenvector of L. We are then able to calculate all of the other

required quantities in equation (1) or (2) and (3). We note that our

choice of S = 1000 is arbitrary in this proof of concept analysis

and choosing larger values of S increases the strength of selection

on transmission and vice versa.

In an endemic scenario, the number of infected hosts even-

tually stabilizes. Thus, in our analysis, we assume that these

epidemiological dynamics have stabilized quickly relative to the

speed of evolutionary change. Mathematically, this occurs when

the dominant eigenvalue of L is equal to 1. For a given set of

estimates of average transmission rate, β̄, average virulence, v̄,

and mortality rate, μ, there is a unique value of S that satisfies

this requirement. This value of S can be solved for explicitly

(Appendix S1). For all simulations, S in the endemic case was

between 100 and 200. We can then define L and calculate q(s) as

EVOLUTION NOVEMBER 2011 3 3 0 1
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the eigenvector associated with λ = 1. All other required quanti-

ties in equation (1) or (2) and (3) can then be calculated.

STATISTICAL METHODS

We accounted for any error in the measured infection dynamics

using parametric bootstrapping. The process started by fitting a

semiparametric time series model to log10-density parasite dy-

namics of each mouse (Wood 2001). In this system, observation

error is normally distributed on the log-scale (Mideo et al. 2008b;

Miller et al. 2010), and we used general additive models (GAMs)

to represent parasite densities. This approach enables a good sta-

tistical description of the time series trends where there is no a pri-

ori expectation of the dynamics. GAMs use a modified objective

function that includes a likelihood term measuring fidelity to the

data, as well as a term that penalizes excessive curvature (Wood

2001; 2006). The parameter that defines the relative weightings

of these terms was estimated from generalized cross-validation

(Wood 2001). For individual mice with less than 12 data points,

the GAM models tended to overfit the data, as evidenced by a pro-

nounced drop in the standard errors of residuals relative to other

mice. To circumvent this problem, we used cubic polynomial for

time series with less than 12 data points. A reanalysis of all data

using cubic polynomials yielded no qualitative difference.

Uncertainty in the estimated auto- and cross-covariance ma-

trices, as well as the expected evolutionary dynamics, was then

calculated using parametric bootstraps of the mean parasite dy-

namics. For each bootstrap replicate, we generated an artificial

dataset from each of the fitted GAMs (i.e., a single paramet-

ric bootstrap draw from each replicate mouse of each parasite

genotype). A single mean bootstrap time series for each parasite

genotype was generated by averaging over mouse-specific time

series. The set of mean bootstrap time series from all parasite

genotypes was then used to create a single bootstrap G matrix,

as well as the accompanying evolutionary dynamics. Upper and

lower 95% confidence bands for the G matrices and evolutionary

dynamics were then calculated based on 10,000 of these bootstrap

replicates.

In the experiment with C57 mice, two individuals died before

day 8 postinfection. For these individuals, when considering only

the truncated dataset, there were not enough data points to fit even

cubic polynomials (i.e., there were three or fewer data points).

These infections were therefore not included in generating the

mean parasite dynamics or covariance matrices for the truncated

dataset.

All analyses and simulations were done in the R statistical en-

vironment (version 2.10.1; The R Foundation for Statistical Com-

puting, 2009, http://www.R-project.org), and the GAMs were fit

using the mgcv library (Wood 2006).

Results
EVOLUTION OF TRANSMISSION RATE

The patterns of autocovariance in transmission rates across in-

fection ages arising from the different datasets are presented in

Figure 2 (left panels). To interpret these figures, it may be helpful

to consider the genetic variance–covariance matrices common in

evolutionary quantitative genetics studies. Such matrices quantify

the extent to which selection acting on one trait will indirectly re-

sult in evolutionary changes to other traits (Lande, 1979; Lande

and Arnold 1983), where a “trait” in this case is measured as a

point estimate. To represent these matrices graphically, a set of

traits would lie along both the x and y axes. Values along the di-

agonal would then represent the variance in a given trait, whereas

off-diagonal values would represent covariances between traits.

It is these covariances that describe the genetic relationships be-

tween traits and determine correlated effects of selection. In an

analogous way, if a single trait is dependent on age (or, indeed,

another continuous variable), then that trait can covary with itself

across different ages (e.g., Kirkpatrick and Heckman 1989; Kirk-

patrick et al. 1990; Pletcher and Geyer 1999). The axes in Figure 2

(left panels) represent transmission at different infection ages. The

values along the diagonal represent the variance in transmission

rate at a given infection age, whereas the off-diagonals represent

the covariance between transmission rates at two different infec-

tion ages. It is these covariances that will determine whether, and

how strongly, selection acting on transmission at one age will indi-

rectly affect the evolution of transmission at other infection ages.

Qualitatively, the patterns of autocovariance across the three

datasets are quite different and, consequently, so are the evolu-

tionary predictions. For the full dataset in C57 mice, the autoco-

variance is nonnegative for most of the infection range; however,

there are small areas of negative autocovariances roughly between

infection ages (or days postinfection) 10 and 20, and between 10

and 35 (Fig. 2A). From the original data, this appears to be due to

the fact that some genotypes reached peak parasite densities about

two days later than others. This means that around infection age

10, those late-peaking genotypes have higher parasite densities,

and consequently higher transmission rates, than the others with

parasite densities that are already on the decline. Additionally,

these same genotypes tend to have lower densities at later infection

ages (e.g., genotype CW in Fig. 1A), resulting in the negative co-

variances between transmission at infection age 10 and later ages.

Responses to selection (or evolutionary trajectories) are de-

termined by a combination of the strength of selection, genetic

variation on which selection can act, and the genetic autocovari-

ances (trade-offs) that constrain evolution by reducing other com-

ponents of fitness (here, transmission at other infection ages). Pre-

dicted evolutionary responses (Fig. 2, right panels) reflect changes

in the parasite population average transmission rate as compared

3 3 0 2 EVOLUTION NOVEMBER 2011
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A

B

C

Figure 2. Autocovariance in transmission (Gβ,β) and predictions for the evolution of transmission rate for (A) parasites in C57 mice,

given full infection data, (B) parasites in C57 mice, given truncated dataset, and (C) parasites in MF1 mice. In the left column, x and y

axes represent transmission rate at different infection ages. Values along the diagonal represent variance in transmission rate at a given

infection age; values in the off-diagonals represent covariances between transmission rates at two different infection ages. For each pair

of infection ages (each x–y combination) areas are either shaded blue or yellow to represent positive or negative covariances, respectively,

between transmission rates at those ages. Values are in units of (per susceptible host per day)2. Note that the scales are different across

the datasets. In the right column, red lines correspond to epidemic predictions, black lines correspond to endemic predictions. Solid

lines represent mean predictions and dotted lines indicate confidence intervals on those predictions. Horizontal gray lines are where no

evolutionary change is predicted; increased transmission is predicted above that line, and decreased transmission below it. Actual values

represent change per day in transmission rate at different infection ages.
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to the average when all genotypes infect the host population at

equal frequency. Equation (1) shows that the selection imposed

under either epidemiological scenario will favor the evolution of

increased transmission rates across all infection ages. Given the

genetic covariances present in the full C57 data (Fig. 2A, left

panel), the actual response to selection (Fig. 2A, right panel) will

be constrained to some extent by the negative genetic covariances.

In the epidemic case, most infections are young (Appendix S2),

making transmission at these ages evolutionarily most valuable.

Furthermore, because there is an abundance of susceptible hosts

in this case, the overall strength of selection for increased trans-

mission is relatively large overall. As a result, we expect evolution

to result in large increases in transmission rate at most infection

ages. In the endemic case, the age distribution of infections shifts

(Appendix S2), making late transmission play an important role.

In addition, the abundance of susceptible hosts is much reduced

in this case, thereby reducing the overall strength of selection

for increased transmission across infection ages. As a result, we

predict an evolutionary increase in transmission at most infection

ages, but the magnitude of the change is reduced as compared

with the epidemic case. Also notice that, in both the epidemic

and the endemic cases, very little evolutionary change in trans-

mission at infection age 10 is predicted. This is due to the relative

lack of genetic variance in transmission at this infection age, and

the negative autocovariance between transmission at this age and

transmission at ages 18–20. Evolutionary increases in transmis-

sion around ages 18–20 (for which there is substantial genetic

variation) will tend to hamper evolutionary increases in transmis-

sion at infection age 10 because of this negative autocovariance,

despite the fact that selection favors higher transmission rate at

all infection ages (eq. 1).

In the truncated dataset with C57 mice, the autocovariance

in transmission rates is nonnegative everywhere (Fig. 2B, left

panel) because the dataset now does not contain the infection

ages that negatively covaried with others. As a result, there is no

genetic tradeoff between transmission rate at different infection

ages. Nevertheless, we still predict relatively little evolutionary

response to selection for increased transmission around infection

age 10 because of the paucity of genetic variance for transmission

at this age (Fig. 2B, right panel). Furthermore, the genetic vari-

ance in transmission rates across infection ages in the truncated

dataset is relatively small compared with that at some infection

ages in the full dataset (e.g., infection ages above 20). Conse-

quently, the overall response of transmission to selection in the

truncated dataset is predicted to be smaller. Finally, notice that

the evolutionary response of transmission is again greater overall

in the epidemic case than in the endemic case because the higher

abundance of susceptible hosts increases the strength of selection.

The above results for infections in C57 mice differ in qualita-

tively interesting ways from the results for infections in MF1 mice

(Fig. 2C). In MF1 mice there is a pronounced genetic trade-off

between early and late transmission, as indicated by the nega-

tive autocovariance between transmission at infection ages 0 to 8

and transmission at infection ages 12–16 (i.e., the yellow areas in

the Gβ,β plot, left panel). As a result, any evolutionary increase

in transmission at early infection ages will tend to come at the

expense of reduced transmission at late infection ages and vice

versa, despite selection favoring increased transmission every-

where (eq. 1). Consequently, the qualitative evolutionary dynam-

ics we predict (Fig. 2C, right panel) depend very strongly on the

epidemiological dynamics. In the epidemic case, most infections

are relatively young, making selection strongest at these infection

ages. Thus, transmission at early infection ages is expected to

evolve upwards at the expense of reduced transmission late in the

infection. In the endemic case, however, the age distribution of

infections is more uniform, making selection at later infections

ages also important. In this case, the balance turns in the other

direction, and transmission at late infection ages is predicted to

evolve upwards at the expense of reduced transmission early in

the infection.

EVOLUTION OF TRANSMISSION RATE AND

VIRULENCE

To understand the evolutionary dynamics of transmission rates

when virulence can also evolve, we have to consider the patterns

of cross-covariance between the two traits (Fig. 3 ) in addition

to the patterns of autocovariance in transmission (Fig. 2, left col-

umn). In Figure 3, the x-axis represents virulence at different

infection ages, and the y-axis represents transmission at different

infection ages. The values along the diagonal represent the co-

variance between transmission and virulence at a given infection

age, whereas the off-diagonals represent the cross-covariance be-

tween transmission rate at a given infection age and virulence at a

different age. The patterns of cross-covariance show that for each

dataset a genetic trade-off between transmission and virulence

emerges over some infection ages but not others, as indicated by

the positive genetic covariances between the two for some infec-

tion age pairs (i.e., the darker blue areas of Fig. 3). Interestingly,

there is even a negative genetic covariance between transmission

at early infection ages and virulence in the dataset with MF1 mice

(Fig. 3C), meaning that strains with high early transmission also

tend to have lower virulence. This results from the fact that the

genotype with the highest virulence has one of the lower trans-

mission rates early on (see CR in Fig. 1C).

The above patterns of cross-covariance reveal that, in C57

mice, there is predominately a positive genetic covariance be-

tween transmission and virulence across all infection ages. In

other words, strains with high transmission rates tend also to

induce high mortality rates, regardless of the infection ages of

interest. As a result, once the evolutionary dynamics of virulence
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Figure 3. Cross-covariance between transmission and virulence,

(Gβ,v), for (A) parasites in C57 mice, given full infection data,

(B) parasites in C57 mice, given truncated dataset, and (C) parasites

in MF1 mice. The x-axis represents infection ages for virulence, and

the y-axis represents infection ages for transmission. Values along

the diagonal represent covariance between transmission rate and

virulence at a given infection age; values in the off-diagonals rep-

resent cross-covariances between transmission rate at one infec-

tion age and virulence at another. For transmission at a given

age of infection (i.e., a particular y-value), there is no variation

in the value of the cross-covariance over the x-axis, because we

assume that virulence is constant over age of infection. For viru-

lence at a given age of infection (i.e., a particular x-value), there is

variation over the y-axis, because transmission does change with

age of infection. Actual values are in units of per susceptible host

(per day)2.

are also included, this dampens the extent to which transmis-

sion evolves when compared with the case where transmission is

assumed to evolve independently (compare Fig. 2A/B with 4A/B).

Notice that this is particularly apparent in the full dataset for trans-

mission at infection age 25, where the positive genetic covariance

between transmission and virulence is particularly strong (Figs.

3A and 4A).

In the truncated dataset for C57 mice, the same general con-

clusions apply but the effect of including the evolutionary dynam-

ics of virulence is even more pronounced. For example, in the

endemic case, we predict that transmission will evolve to lower

levels at most infection ages because of the trade-off between

transmission and virulence. The reason for this outcome is the

relatively small genetic variance in transmission across infection

ages 6–16 in the truncated dataset, as compared with the genetic

variance at ages 25+ in the full dataset (Fig. 2). In this case, the

effect of direct selection for increased transmission cannot com-

pensate for the effect of indirect selection that arises from selection

for lower virulence. On the other hand, in the epidemic case for the

truncated dataset, the strength of selection for increased transmis-

sion is larger owing to the higher abundance of susceptible hosts.

As a result, even though there is again relatively little genetic

variance in transmission rate in this case, the larger strength of

direct selection is better able to counterbalance the effect of indi-

rect selection on virulence. Indeed the two almost exactly cancel,

resulting in essentially no evolutionary response in transmission

rate at any infection age (Fig. 4B). These predictions can be quali-

tatively altered, for example, by changing the way that within-host

parasite densities are mapped to transmission rates. Increasing this

linear coefficient by one order of magnitude increases the genetic

variation in transmission rate, though the qualitative patterns of

auto- and cross-covariance remain unchanged. With this mapping,

selection for increasing transmission can overcome the effect of

indirect selection on virulence in the epidemic case, leading to the

evolution of higher transmission rates (Appendix S2, Figure S2b).

In contrast, the evolutionary predictions for transmission rates for

the other two datasets are not qualitatively altered, since these are

also constrained by negative covariances between transmission

at different ages which also increase with this different mapping

(Appendix S2, Figure S2).

For the dataset in MF1 mice, the evolutionary predictions for

transmission rate are qualitatively similar to the patterns we found

in the one trait case, i.e., increasing transmission early at the cost

of reduced transmission later in the epidemic case, and vice versa

for the endemic case (Fig. 4C). The biggest quantitative differ-

ence in predictions that occurs when we allow virulence to evolve

as well is that the response to selection for higher transmission at

late ages in the endemic case is now weaker. This is due to the fact

that the trade-off between transmission and virulence is strongest

for later infection ages (Fig. 3C), meaning that any increase in
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transmission rate at these ages comes with a high associated cost

of also increasing virulence. In the epidemic case, the predicted

response to selection for higher transmission rates early is not

constrained by this trade-off, since the cross-covariance between

transmission at early ages and virulence is actually negative, i.e.,

the strains that have the highest transmission at early infection

ages are least virulent. So, selection will favor these strains, re-

sulting in average transmission rates increasing at early ages, at

the cost of decreasing transmission rates at later ages, and with

the correlated effect of decreasing virulence.

Discussion
We have shown that the function-valued trait approach for study-

ing disease life-history evolution (Day et al. 2011) can be applied

to real data. Unlike traditional approaches for studying disease

evolution that nest within-host models into between-host epidemi-

ological frameworks, this approach characterizes the within-host

dynamics through covariance functions measured at the level of

the host. Although this approach circumvents much of the need

for a mechanistic understanding of within-host processes, it still

requires a considerable amount of high-quality infection data.

Specifically, it requires long-term data collection that covers as

much of the normal course of infection as is logistically possible

(because evolutionary predictions were altered with the truncated

time series), and it requires data from replicated infections with a

number of different parasite genotypes to capture as much of the

natural genetic variation as possible.

We have used two comprehensive within-host infection

datasets (Bell et al. 2006; Reece et al. 2008) to demonstrate

the function-valued trait approach. However, there are still some

shortcomings with these data; in particular, definitions of disease

life-history traits were constrained by available measures. Ideally,

for malaria, one would have actual measures of transmission to

mosquitoes as a function of infection age (or within-host game-

tocyte densities as a reasonable proxy for transmission potential)

as well as infection-age dependent mortality rates. Further, our

results demonstrate that evolutionary predictions can depend on

how these host-level measures are mapped to disease life-history

traits, even when only the magnitudes of the variance–covariance

functions change with different mappings and not the qualitative

patterns (Appendix S2, Fig. S2).

Despite not having sufficiently complete datasets to make

broad conclusions about malaria evolution, we have still uncov-

ered some biologically interesting findings about disease life his-

tory evolution more generally. First, our results show that the

genetic covariance functions necessary for making evolutionary

predictions vary even within the same host–parasite system (com-

pare Fig. 2B,C and Fig. 3B,C). The qualitatively different patterns

of covariance in transmission and virulence apparent in the two

datasets could be due to a difference in the hosts used in each

experiment (e.g., different strains, different sex, likely different

initial sizes and ages, etc.) or it could be that the empirically

estimated covariance functions are not very repeatable across ex-

periments. Unfortunately, with these data, we simply cannot dis-

cern between these two possibilities. However, the differences we

observed, presumably a small subset of those possible, are impor-

tant: differences between the two studies produced qualitatively

different patterns of within-host dynamics that affect evolution

(see also Reece et al. 2009). This work therefore sets the stage for

asking which host, parasite, and environmental factors alter evo-

lutionary trajectories of disease life history. Of particular interest

would be precisely replicated datasets from experiments that ma-

nipulate a range of factors. For example, quantifying the relative

importance of host heterogeneity in systems where host genetics

can be controlled will be important for determining the ability of

this modeling framework to make accurate predictions for wild

systems. Once there is a clearer idea of the factors that generate

differences in genetic covariances and, therefore, of the stabil-

ity and repeatability of the genetic covariances involved, it will

be easier to interpret analogous experimental data. Experiments

that test the effects of interventions on dynamics, for example,

with vaccinated and unvaccinated hosts, or other manipulations

that mimic the natural variation in hosts that parasites might be

exposed to in real infections, for example, immunocompromised

versus immunocompetent, and anemic versus “healthy,” offer im-

portant opportunities to study disease life-history evolution.

Second, our results provide new perspectives on virulence

evolution theory. A main premise of this theory is that diseases

will evolve intermediate levels of virulence because of a trade-

off between this trait and transmission (e.g., Anderson and May

1982; Ewald 1983). Although discussions of this hypothesis are

not always cast in genetic terms, such trade-offs amount to pat-

terns of genetic covariance that constrain evolution. The predom-

inately positive covariance between virulence and transmission

across most infection ages documented here therefore supports

this hypothesis, and it also matches previous conclusions from

similar data that were analyzed differently (Mackinnon and Read

1999). At the same time, however, the age-specific patterns of

covariance presented here reveal important, and previously unap-

preciated, subtleties to the trade-off hypothesis. Data to support

this trade-off hypothesis have been limited (reviewed in Lipsitch

and Moxon 1997; Alizon et al. 2009). Alizon et al. (2009) dis-

cuss the many likely challenges to empirically demonstrating that

such a trade-off exists, but one possibility not discussed is that

any such trade-off may be obscured by the constraints acting on

a single trait alone. For example, our analyses clearly demon-

strate that even when a genetic virulence-transmission trade-off

exists (i.e., a positive covariance between the two traits), selec-

tion can increase transmission over some infection ages without
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Figure 4. Evolutionary predictions for transmission rate (top graphs) and virulence (bottom graphs). As before, (A) C57 mice, (B) C57

mice, truncated dataset, (C) MF1 mice. Red lines are predictions for epidemic conditions, black lines for endemic. Solid lines denote mean

predictions and dotted lines denote confidence intervals. Actual values represent change per day in transmission rate or virulence at

different infection ages. The scales in the top graphs are unchanged from Figure 2 to aid comparisons.
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Table 1. Estimates of virulence of different parasite genotypes

in different host backgrounds. For the C57 mice, the estimates in

parentheses represent virulences for the truncated dataset.

Host Genotype Proportion Virulence, v

surviving

♀ C57Bl/6J1

AS 1.0 0 (0)
AJ 0.3 0.034 (0.072)
AT 0.7 0.010 (0.022)
CB 0.4 0.026 (0.056)
CW 1.0 0 (0)

♂ MF12

AS 1.0 0
AJ 1.0 0
ER 1.0 0
CR 0.6 0.031
CW 1.0 0
DK 1.0 0

1 Bell et al. (2006). 2 Reece et al. (2008).

simultaneously increasing virulence (e.g., the patterns in Figure

4a and c). This could be interpreted as undermining the trade-off

hypothesis, however we have shown that it is actually the re-

sult of trade-offs between transmission rate across infection ages

(i.e., negative covariances between transmission at different ages).

When there are trade-offs within transmission across ages, as may

be expected, for example, if high parasite densities and high trans-

mission early induce immune response that later clear parasites,

then this alone can constrain evolution toward ever higher trans-

mission rates. The resulting patterns of evolutionary change in

transmission rates across infection ages will depend on the epi-

demiological dynamics, because these determine the strength of

selection at different infection ages.

These same “within-trait” constraints on evolution could also

occur for virulence or recovery (although we do not currently have

the data to address this question). For example, some parasites

may display intermediate levels of virulence, not because there is

a trade-off between virulence and transmission, but because there

are trade-offs within virulence alone, and therefore there are no

strains that have zero virulence at all infection ages. It is likely

that in natural infections, trade-offs exist both within and between

traits. As a result, it is perhaps not surprising that simple (i.e.,

nonfunction-valued) trade-offs are sometimes difficult to find—

the nature of the trade-off can be much more subtle and complex

once infection age is accounted for and infections are treated as

the dynamic phenomena that they are.

The approach we demonstrate here is similar to analyses of

function-valued traits in quantitative genetics (e.g., Kirkpatrick

and Heckman 1989; Kirkpatrick et al. 1990; 1994; Pletcher and

Geyer 1999). A considerable amount of work in that field has

focused on developing methods for describing estimated covari-

ance matrices with functions (reviewed in Jaffrézic and Pletcher

2000; Kingsolver et al. 2001; Meyer and Kirkpatrick 2005). Us-

ing G functions, rather than estimated G matrices, circumvents

problems that arise when traits are measured at irregular inter-

vals (Pletcher and Geyer 1999) and also takes into account any

measurement error in the data (Kirkpatrick and Heckman 1989).

Further, the G functions themselves can be used directly to iden-

tify the types of evolutionary change for which there is (and

is not) substantial genetic variation available (Kirkpatrick and

Heckman 1989; Kirkpatrick et al. 1990). In contrast, we make

explicit predictions for evolutionary change under different selec-

tion regimes, as determined by epidemiological dynamics. Our

approach accounts for measurement error at the level of the data:

by fitting spline functions to the original data (i.e., the traits them-

selves), we are able to simulate artificial datasets by incorporating

the known error structure of these measured data (Mideo et al.

2008b; Miller et al. 2010). This also allows us to generate data

for those infection ages where experimental measurements are

missing. Each set of simulated data generates a particular set of

parasite genotype average traits, a particular set of G matrices,

and a particular set of evolutionary predictions. By repeating this

process many times we are able to estimate the variation in the G
matrices (not shown) and the evolutionary predictions (shown as

confidence bands in Figures 2 and 4) that arises due to error in

the original experimental measurements. Given the discrete life

cycle of malaria parasites, it makes sense to think of infections

(and parasite traits) in discrete time steps, however, there is no

reason why future applications could not use standard quantita-

tive genetic approaches to fit functions to measured G matrices,

and then use these functions to generate evolutionary predictions

with the equations we develop in the companion paper (Day et al.

2011).

Approaches that account for the complex functional re-

lationships between traits are rapidly developing (e.g., Blows

and Hoffmann 2005; Walsh and Blows 2009; Agrawal and

Stinchcombe 2009). Such comprehensive approaches are impor-

tant, given the long-standing recognition that evolutionary trajec-

tories of particular traits can be altered when functionally related

traits are ignored (Lande and Arnold 1983). Our results reiter-

ate this point: evolutionary predictions for transmission can be

altered when we allow virulence to evolve and account for the ge-

netic relationships between these two traits. Standard evolutionary

quantitative genetic studies may be confronted with large numbers

of correlated life-history traits contributing to survival and fecun-

dity, and a main goal is determining which of these are the most

important (e.g., Hine and Blows 2006). Studies of disease life

history evolution may be slightly less complicated because only

three traits—transmission, virulence, and recovery—contribute to

a disease’s “surivival” and “fecundity”. Disease systems for which
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these traits are directly measurable offer exciting possibilities for

studying the joint evolution of all three traits.
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