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13 | MODELLING THE
ECOLOGICAL CONTEXT
OF EVOLUTIONARY
CHANGE: DÉJÀ VU OR
SOMETHING NEW?
Troy Day

13.1 | INTRODUCTION

A principle interest in evolutionary ecology is to understand how eco-
logical interactions within and between species generate natural selec-
tion and, in turn, how such natural selection shapes these ecological
interactions through evolutionary change (MacArthur 1972; Pianka
1974; Roughgarden 1979; Cockburn 1991; Bulmer 1994; Real 1994; Fox,
Roff, & Fairbairn 2001). This feedback between ecological and evolu-
tionary processes lies at the heart of this area of research. Creating a
theory that adequately represents this mutual dependence, and that
makes testable predictions about ecological and evolutionary processes,
has presented a considerable challenge. It is difficult enough to obtain a
faithful theoretical description of either ecological or evolutionary
processes, let alone a coherent melding of the two. The development of
such a theory is desirable because presumably the resultant bridge
between ecology and evolutionary biology will inject new ideas into both
fields and lead to an important consolidation and extension of our
understanding of the earth’s biota.

Given the complexity of both ecological and evolutionary processes,
it is necessary to make several simplifying assumptions in the develop-
ment of theory. In this chapter I will describe various theoretical devel-
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opments in this area, organizing and presenting them in a fashion that
is chronological and is meant to illustrate the connections, similarities,
and differences among them. My treatment is by no means an exhaus-
tive review, and the perspective taken is necessarily biased towards areas
in which I have some knowledge (and thus is biased towards my inter-
ests). Although I was alive throughout most of these developments, the
earliest of them happened when I was too young to be fully cognizant
(or even interested) in such arcane topics; therefore, much of my his-
torical perspective has been gleaned from the literature and talking with
more senior scientists.

I begin by briefly presenting some background on theoretical ecology
and theoretical evolutionary biology as independent fields of study, and
I introduce some examples that will illustrate various approaches later in
this chapter. In the bulk of this chapter, I consider the various ways in
which researchers have sought to merge these two areas. I conclude by
asking where we stand, by asking where we go next, and by considering
whether there have been quantum leaps or paradigm shifts along the way.

13.2 | THEORETICAL ECOLOGY

There are many processes and types of interactions between organisms
that have been the focus of ecological theory. A few of the most impor-
tant include competition for resources, predation, parasitism, mutual-
ism, and facilitation (Begon, Harper, & Townsend 1986). Although each
process is distinct from the others, the ecological theories developed for
each of them share at least one common feature: They have been
directed towards describing and explaining the distribution and abun-
dance of different kinds of organisms (typically species) as a result of
these processes. Individuals within a given species (or sometimes within
an age, condition, or size class of that species) are treated as being 
effectively identical. No allowance is made for genetic variation among
individuals in traits that affect these ecological interactions, thereby pre-
cluding any evolutionary change.

At first this neglect of evolutionary potential might appear surprising.
When theoretical ecology was born, it was well appreciated that popu-
lations can and have evolved. The reason for this omission was a feeling
(by some, at least) that evolutionary change proceeds on a timescale
much longer than that of ecological change. Therefore, the inclusion of
evolutionary change is not critical for understanding the implications of
various ecological interactions. After all, the point of theory is to simplify
reality in a way that captures only those features important for the ques-
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tion at hand. It is now well recognized that this separation of timescales
is artificial and that rapid evolution can (and often does) occur (see
Hendry & Kinnison 1999 for a review). This recognition formed an
important part of the motivation for the development of theoretical evo-
lutionary ecology. (Ironically, the most recent theoretical developments
in evolutionary ecology have returned to the assumption of a separation
of timescales, but I will explain this later.)

To better illustrate these ideas, I will consider one of the simplest
examples in theoretical ecology: a discrete-time version of logistic
growth (Case 2000). This model is meant to capture the population
dynamics of a single species under density dependence. There are many
formulations of this model, and one possibility that has been used exten-
sively in the literature is to suppose that the number of individuals in the
next generation is given by the number in the current generation plus
the number of new individuals produced. Suppose that each individual
in generation t gives rise to r(1 - N(t)/K) new individuals, where r and 
K are constant parameters representing the number of individuals 
produced in the absence of competition and the population carrying
capacity, respectively, and N(t) is the population size in generation t.
Then you have the following:

(13.1)

The effects of within-species competition are represented by the fact
that an individual’s reproductive output, r(1 - N(t)/K), declines (linearly)
as population size increases, and it reaches zero when the population
attains carrying capacity (i.e., N = K ). Equation 13.1 can be rewritten as
follows:

(13.2)

The quantity in the braces of Equation 13.2 is the total contribution of
an individual (i.e., per capita) to the next generation (i.e., it is the total
per capita number of individuals produced in generation t, including an
individual’s own survival—which happens with probability 1 in this
model). The absence of the possibility for evolutionary change is
reflected by the fact that this per capita production is identical for all N
individuals of the population.

The analogous model for both intra- and interspecific competition has
also received a large amount of attention in the ecological literature. 
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I present this here because it features prominently in the merger of 
ecological and evolutionary theory:

(13.3A)

(13.3B)

Here, aij (the competition coefficients) represents the competitive
effect of an individual of species j on an individual of species i, relative
to a conspecific individual i. The subscript numbers refer to species 1
and 2. Equations 13.3A and B are often referred to as the Lotka–Volterra
competition equations (Case 2000), and like the logistic-growth model
in Equation 13.1, this model is phenomenological because it does not
treat the dynamics of resource consumption and the competition that
results in mechanistic manner. Rather, this is described qualitatively
because higher densities of individuals (of either species) reduce the per
capita production of individuals of either species. The strength of these
effects is controlled by the parameters aij. More realistically, I could con-
struct a mechanistic model of competition for resources by modelling
the resource dynamics, leading to a so-called consumer–resource model
(MacArthur 1972). Interestingly, it has been shown (MacArthur 1970,
1972) that if the dynamics of the resource turnover are fast relative to
those of the consumer, then a system analogous to Equations 13.3A and
B can be obtained from consumer–resource models.

As with the logistic model, the assumption of a separation of
timescales between ecological and evolutionary processes in Equations
13.3A and B is reflected by the lack of within-species variation in the
traits that affect competition for resources. Thus, the parameters 
governing the interactions between the two species (e.g., r, K, and aij)
remain constant during the ecological dynamics. There is an enormous
number of extensions and further developments of this sort of model,
but all are dynamic systems (often in continuous time) in which there
are several state variables describing the density of different organisms
and in which all parameters governing the interactions are treated as
constants. In other words, the parameters do not change during the
dynamics. This theory is typically used to understand and predict 
population dynamics over time (or space or both). For example, do 
you expect stable equilibrium population sizes, cycling, or other more
complex nonequilibrium behaviour? Moreover, how do the various
parameters affect the outcome? Issues surrounding this last question are
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of interest to evolutionary ecologists because the community dynamics
themselves will generate natural selection on these parameters, causing
them to evolve and thereby altering these dynamics. Thus, you need to
include evolutionary change to understand how ecological interactions
shape their own evolutionary trajectories.

13.3 | THEORETICAL EVOLUTIONARY BIOLOGY

As with theoretical ecology, the field of theoretical evolutionary biology
is now enormous. Here I restrict attention to two relatively self-
contained and influential areas: classical population genetics (which has
developed into its own subdiscipline) and optimization–game theory. To
my knowledge there is not yet a comprehensive treatment of the history
and development of game theory in evolutionary biology, but interested
readers should consult the book by William Provine (2001) for a 
wonderful historical account of the development of population genetics.

13.3.1 | Classical Population Genetics
Most theory in population genetics (and virtually all such theory in the
classical population-genetic literature) treats population densities as
being either constant or irrelevant (Hartl & Clark 1989). In addition,
although ecological interactions will often be important causes of
natural selection through their effects on the fitness of different individ-
uals, most population-genetic theory ignores the particular causes of
natural selection and instead treats it in a phenomenological fashion.
The most frequent approach is to suppose that different alleles (or geno-
types) have different fitnesses, then to simply specify what these fit-
nesses are. Thus, the fitnesses of various alleles are specified as constant
parameters in classical population genetics in much the same way that
the parameters governing ecological interactions are treated as con-
stants in ecological theory.

To illustrate this approach, consider a single-locus, diallelic model for
a diploid species with nonoverlapping generations. For simplicity I focus
on an autosomal locus with alleles “A” and “a.” As a result there are three
genotypes: “AA,” “Aa,” and “aa.” In such models I specify the fitness of
these three genotypes: WAA, WAa, and Waa. If you are measuring the 
frequency of the “A” allele in each generation (denoted by p(t)) in the
gamete pool, then you can view Wij as the number of gametes produced
by an individual with genotype ij. Letting N(t) denote the population size
in generation t, there will be N(t)p(t)2 “AA” homozygotes in that genera-
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tion, N(t)2p(t)(1 - p(t)) “Aa” heterozygotes, and N(t)(1 - p(t))2 “aa”
homozygotes. Each “AA” homozygote will produce WAA gametes (all of
which carry the “A” allele), each heterozygote will produce WAa gametes
(only half of which carry the “A” allele), and each “aa” homozygote will
produce Waa gametes (none of which carry the “A” allele). Thus, the total
number of “A”-carrying gametes in generation t + 1 will be N(t)p(t)2WAA

+ N(t)p(t)(1 - p(t))WAa, whereas the total number of gametes in genera-
tion t + 1 will be N(t)p(t)2WAA + N(t)2p(t)(1 - p(t))WAa + N(t)(1 - p(t))2Waa.
Thus, the frequency of the “A” allele in generation t + 1 is as follows:

(13.4A)

Here, W̄(t) = p(t)2WAA + 2p(t)(1 - p(t))WAa + (1 - p(t))2Waa is the average
fitness of the population at time t (see Hartl & Clark 1989, p. 151). Equa-
tion 13.4A reveals that if fitnesses Wij do not depend on population
density, the evolutionary dynamics of the population are unaffected by
population density.

Further insight can be gained by dividing the numerator and the
denominator of Equation 13.4A by Waa to obtain the following:

(13.4B)

In this case, wij = Wij/Waa. Wij is referred to as the absolute fitness of
genotype ij, where wij is the relative fitness of genotype ij (i.e., relative to
genotype “aa,” although you can use any genotype as the “standard” in
this normalization). Equation 13.4B reveals that relative fitness, not
absolute fitness, determines the evolutionary dynamics. Thus, even if
the absolute fitnesses depend on the population density (i.e., Wij is a
function of N), the evolutionary dynamics will still be independent of
this “ecological” variable provided that the relative fitnesses do not. For
example, if the genotypic absolute fitnesses depend on population
density and have the form Wij = F(N)cij, where cij is a genotype-specific
constant and F(N) is some function of population density, then the 
evolutionary dynamics will still be independent of population density
because the relative fitnesses are wij = caa/cij. This observation, that 
population density often cancels out the equation for allele frequency
change, has lead to the widespread use of evolutionary models that
ignore explicit ecological interactions involving population densities.
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Another useful formulation for the evolutionary dynamics is obtained
by deriving an equation for the change in allele frequency in one gen-
eration—that is, Dp(t) = p(t + 1) - p(t). Equation 13.4A, after some
rearrangement, yields Wright’s equation (Wright 1935, 1969):

(13.5A)

From Equation 13.4B, you find the equivalent equation in terms of 
relative fitness:

(13.5B)

Equations 13.5A and B reveal that natural selection results in a change
in allele frequency such that mean absolute fitness, W̄, and mean 
relative fitness, w̄, increase (Crow & Kimura 1970, Hartl & Clark 1989,
Hofbauer & Sigmund 1988). Moreover, because Equation 13.4B or 13.5B
reveals that relative fitness (rather than absolute fitness) is the determi-
nate of evolutionary change, many researchers standardize the fitnesses
such that wAa = 1 + s, wAa = 1 + s/2, and waa = 1, where s is the selective
advantage (or cost, if it is negative) of the “A” allele and the s/2 for the
heterozygote assumes that alleles act additively (Crow & Kimura 1970).
In this case, Equation 13.5 reduces to the following, particularly simple
form:

(13.6)

From Equation 13.6 you can clearly see that the ecological dynamics
(in terms of population density) can be safely ignored when trying to
understand evolutionary change (in this simple model, at least) provided
that population density has no effect on the relative selective advantage
of the “A” allele, s.

Equation 13.6 represents a simple evolutionary model, but it has been
widely used to address a variety of issues and partly forms the basis for
the initial neglect of ecological details when studying evolutionary
dynamics. As with ecological theory, evolutionary theory has gone far
beyond this simple incarnation to explore how a range of other factors
affects evolutionary change. It was the recognition that the selective
advantage of any given allele, s, likely will depend on ecological context
in many circumstances that lead to the first attempts to integrate the
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two. Treating the effects of natural selection arising from ecological
interactions as a constant parameter, s, is simply not good enough for
many situations.

13.3.2 | Optimization and Game Theory
An alternative approach for modelling evolution is the use of opti-
mization and game-theoretic models. I treat them together because
optimality models can be viewed as a special case of game-theoretic
models. Typically, optimality models ignore the details of how the geno-
type of an organism gives rise to its phenotype and simply seek to char-
acterize the phenotype that yields the highest fitness. Thus, optimality
models require the specification of a fitness function, and the underly-
ing assumption is that natural selection proceeds so as to maximize this
function (Maynard Smith 1978, Parker & Maynard Smith 1990).

Optimality thinking and modelling has a long history in evolutionary
biology, but the introduction of game-theoretic thinking and modelling
to evolutionary biology took this approach to an entirely new level. Opti-
mization models assume that the fitness of an individual depends only
on that individual’s phenotype, but it has long been appreciated that an
individual’s fitness is determined by the phenotypes of other individu-
als in the population as well. The introduction of game-theoretic ideas
addressed this complexity, and it was motivated largely to model the
evolution of social interactions for which optimality models were simply
not tenable (Maynard Smith & Price 1973, Maynard Smith 1982). An indi-
vidual’s fitness as a result of some social interaction depends on the
behaviours of all individuals involved; therefore, it no longer even makes
sense to ask the question of what is optimal. The optimal behaviour is
context specific, depending upon the behaviour of other individuals. As
a result, focus moved from optimal phenotypes to evolutionarily stable
phenotypes (Maynard Smith 1982). An evolutionarily stable strategy
(ESS) is one such that if all individuals are using this phenotype, then no
single individual can do better by unilaterally altering its phenotype
(Maynard Smith 1982, Bulmer 1994). Optimality models are then a
special case of such game-theoretic models in which the fitness of an
individual depends only on its own phenotype.

As with optimality models, these original game-theoretic ideas were
focused on the end point of evolution. The underlying idea was that new
mutations periodically arise, and these either sweep to fixation or die
out. Thus, the population is imagined as being monomorphic with the
periodic introduction of new mutations. Eventually, after a series of new
mutations and periodic allelic replacements, you might expect the 
population to arrive at a phenotype that is evolutionarily stable.

280 V | EVOLUTIONARY ECOLOGY

P088459-Ch013.qxd  3/9/05  07:51 PM  Page 280



13 | Modelling the Ecological Context of Evolutionary Change 281

The game-theoretic approach has been extended to many other situ-
ations involving different roles played by individuals (e.g., male versus
female) and the possibility that a single phenotype is not an ESS but,
rather, that a polymorphism is maintained. In addition, although this
approach was often used to model the evolution of social interactions,
it was soon appreciated that its utility extended well beyond this (e.g.,
see Lawlor & Maynard Smith 1976 and Reed & Stenseth 1984). For this
chapter’s purposes, it is important to note that this approach also proved
useful for modelling ecological interactions because, for example, the
resources available to an individual depend not only on its phenotype
but also on the phenotypes of other individuals in the population (e.g.,
a particular resource will be abundant if few other individuals use it; see
Lawlor & Maynard Smith 1976). Analogous considerations hold for other
ecological interactions, making this a powerful approach for developing
theory in evolutionary ecology (Abrams 2001).

13.4 | THEORETICAL EVOLUTIONARY ECOLOGY

A primary motivation for the development of theoretical evolutionary
ecology was the realization that the separation of timescales assumed in
much of the ecological literature, with the lack of explicit ecological
detail in the evolutionary literature, was unrealistic. Are there new
insights to be gained by creating a theory that bridges these two areas?
Can evolutionary biology inform ecology by providing a new perspective
on the study of the distribution and abundance of organisms? Can
ecology inform evolutionary biology by providing a new perspective on
the study of how natural selection guides evolutionary change? To
answer these questions, a theory was built that explicitly examines the
feedback between ecological and evolutionary processes.

As seen in the previous section, both ecological and evolutionary
theory has centred on the development of dynamic systems models
describing population dynamics and allele frequency dynamics, respec-
tively. (Although game-theoretic models originally had no explicit
dynamic, there was an implicit underlying dynamic.) As a result, from a
mathematical standpoint, the mutual dependence and feedback
between ecological and evolutionary processes has typically been 
modelled using some form of a coupled dynamic system between the
two. As you will see here, this general structure underlies virtually all of
the various approaches used in theoretical evolutionary ecology. In 
this section I highlight and explain four of these: (1) single-locus 
theory, (2) quantitative-genetic theory, (3) game theory, and (4) adaptive
dynamics.
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13.4.1 | Single-Locus Theory
Some of the earliest attempts to create a synthetic theory in evolution-
ary ecology simply merged models of classical population genetics with
those from ecology (Roughgarden 1996). Underlying this idea was the
recognition that the per capita production of an individual in models
such as that of Equation 13.2 (i.e., {1 + r - r(N/K )}) is the absolute fitness,
W, in classical population-genetic models. Therefore, you can construct
an ecological–evolutionary model by specifying different per capita pro-
ductions (i.e., different fitnesses) for different potential genotypes. For
example, in the logistic model of Equation 13.2 you might use the 
following:

(13.7A)

(13.7B)

(13.7C)

In these equations, the parameters of the per capita production are
now genotype specific. You can still define the population average fitness
as follows:

(13.8)

Equation 13.5A is still valid for the evolutionary dynamics. Now,
however, you must also have an equation that governs the ecological
dynamics because the population density, N, does not cancel out the
equation for allele frequency change. Adding up the production of the
three different genotypes in the population yields the following 
equation:

(13.9)

If you instead derive an equation for the change in population size,
DN(t) = N(t + 1) = N(t), you get the coupled evolutionary–ecological
model:

(13.10A)

(13.10B)Dp
p p

W N p
W
p

=
-( )

( )
∂
∂

1
2

1
,

.

DN W N p N= ( ) -( ), 1

N t W N t p t N t+( ) = ( ) ( )( ) ( )1 , .

W N p p W N p p W N p W NAA Aa aa, .( ) = ( )+ -( ) ( )+ -( ) ( )2 2
2 1 1

W N r r N Kaa aa aa aa( ) = + - ( ){ }1 .

W N r r N KAa Aa Aa Aa( ) = + - ( ){ }1

W N r r N KAA AA AA AA( ) = + - ( ){ }1

282 V | EVOLUTIONARY ECOLOGY

P088459-Ch013.qxd  3/9/05  07:51 PM  Page 282



13 | Modelling the Ecological Context of Evolutionary Change 283

Equations 13.10A and B represent one of the first attempts to construct
a theory of evolutionary ecology (Roughgarden 1971, 1996; Charlesworth
1971). Notice, however, that the form of the fitness functions in Equa-
tion 13.7 is somewhat restrictive in that a genotype’s reproductive
success depends only on the total density of the population but not on
its genetic composition. More generally, you might expect different
genotypes to have different competitive effects on one another (e.g.,
perhaps similar genotypes compete more strongly with one another). In
this case, the fitness of an “AA” homozygote would generalize to the 
following:

(13.11)

Here, aij,kl is the competitive effect of genotype ij on genotype kl, 
and āAA(p) = (aAA,AAp2 + aAA,Aa2p(1 - p) + aAA,aap(1 - p)) is the population
average competitive effect on genotype “AA.” Thus, in general, you have
the following:

(13.12)

Here, āij(p) = (aij,AAp2 + aij,Aa2p(1 - p) + aij,aap(1 - p)).
Notice that the fitness of each genotype is now both density and fre-

quency dependent (i.e., it depends on allele frequency, p); therefore,
Equation 13.5A is no longer valid because it was derived under the
assumption that the genotypic fitnesses were not functions of allele 
frequency. You can generalize this equation for the present purposes,
however, to obtain the following (e.g., see Taper & Case 1992):

(13.13A)

(13.13B)

This is the coupled ecological–evolutionary model, where W̄̄(N, p) =
p2WAA(p,N) + 2p(1 - p)WAa(p,N) + (1 - p)2Waa(p,N) and =
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One limitation of the preceding approach is that the evolutionary
dynamics are restricted to those alleles that start in the system. No
allowance is made for the introduction of new alleles through mutation.
As a result, the model makes explicit predictions about short-term evo-
lutionary change, but it has nothing to say about the more long-term
process of evolutionary change that occurs as a result of continued
mutation and repeated allelic replacements. This difficulty has been 
alleviated to some degree by considering multiple alleles; still, mutation
and longer-term evolution are neglected using this approach.

Interestingly, the single-locus approach has been used to make pre-
dictions about the ultimate end point of long-term evolution by using
what amounts to a game-theoretic argument. You would ask, is there an
allele that, if present, can exclude all other possible mutations? For
example, in some models similar to Equation 13.10B, it can been shown
that the allele that can exclude all others is that which sustains the
highest population density (Roughgarden 1971, Charlesworth 1971).
Once this allele is determined, you can then use the preceding theoret-
ical framework to predict its short-term dynamics in terms of its 
frequency. Of course, this theoretical approach still cannot make 
predictions about the long-term evolutionary dynamics of a population
towards this end point as a result of recurrent mutation and selection.
For that, an alternative approach is required.

13.4.2 | Quantitative-Genetic Theory
The underpinnings of quantitative-genetic theory date back to the
development of classical population genetics (Provine 2001), but the
specific incarnation most frequently used today was developed at
roughly the same time as the preceding single-locus theory in evolu-
tionary ecology (Kimura 1965; Lande 1976a, 1976b, 1979; Lande & Arnold
1983). The initial development of this theory was not motivated by (or
even clearly suited to) modelling in evolutionary ecology. Rather, the first
versions of this theory took the population geneticist’s perspective of not
treating ecological interactions explicitly (for reasons outlined earlier)
and simply assuming a largely fixed selective regime under which a 
population evolves. A major advantage of this theory was that it allowed
for standing genetic variation in a trait (as is commonly observed), and
this variation was maintained through a balance between mutation 
and recombination, with selection. Also, as opposed to the single-locus
theory, the quantitative-genetic approach typically supposed that there
were numerous loci affecting the trait of interest, with each locus having
a small effect. As a result, the distribution of genotypes in the popula-
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tion could often be well approximated by a Gaussian (normal) distribu-
tion with a particular mean and variance.

The central question of interest in this framework is, then, How does
the distribution of genotypes (and the resulting distribution of pheno-
types) evolve over time? (Lande 1976a). As selective conditions change,
evolutionary change occurs, with abundant genetic variation being
maintained through a balance between loss of alleles and mutational
input. If a researcher is willing to assume that this distribution remains
Gaussian, then its evolutionary dynamics can be tracked simply by fol-
lowing the evolution of the mean and the variance of this distribution
(because these two parameters completely specify a Gaussian distribu-
tion). Even more simply, many researchers have further assumed that
the variance of the distribution remains largely constant over the time
span of interest and, therefore, that evolutionary change can be tracked
simply by following the population mean.

This quantitative-genetic framework was soon generalized to allow
ecological interactions. One of the primary interests in doing so was to
model competition for resources and character displacement (Brown &
Wilson 1956, Slatkin 1980). When two species compete for a common
resource pool, do you expect evolutionary divergence in their resource
use? If so, then you would expect the phenotypic characteristics related
to resource extraction in such species to be divergent where their 
geographical ranges overlap (Brown & Wilson 1956, Grant 1972).

To gain an appreciation for how this theoretical approach is used, con-
sider a model analogous to that of the logistic growth model used earlier.
Now, rather than having a few discrete genotypes (and thus phenotypes),
you have a continuous distribution of genotypes (and thus phenotypes;
Roughgarden 1983; Taper & Case 1992). An individual’s fitness might be
density dependent, in which case you have the following fitness of an
individual with quantitative trait z:

(13.14)

Now, r and K are functions of the quantitative trait z.
Denote the average phenotypic value in the population in generation t

by z̄(t). This will also be the average genotypic value in the population in
that generation if you assume that an individual’s phenotype, z, is equal
to its genotype, x, plus some random environmental deviation, e; that is,
z = x + e. Also denote the average phenotypic value in the population after
selection has occurred by z̄̄(t)s. Importantly, this is no longer the average
genotypic value of the population because natural selection has acted on
the phenotypes, and if, for example, it favoured larger phenotypes, then
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some of the “selected” population will have genotypes coding for small
traits because they happened to have a large positive environmental 
deviation. Thus, the average phenotype in the next generation, z̄̄(t + 1),
(which is equivalent to the average genotype after selection assuming
random mating) is given by z̄̄(t + 1) = z̄̄(t) + h2(z̄̄(t)s - z̄̄(t)), where h2 is the
heritability of the trait given by h2 = sg/sp. Here, sg is the additive genetic
variance of the trait, and sp = sp + se is the total phenotypic variance of the
trait (assumed to equal the additive genetic variance plus the variance in
the environmental deviation, se) (Lande 1976a, 1976b). Therefore, the
evolutionary change in one generation is as follows:

(13.15)

In the present model, population average fitness is 

; therefore, you can verify that, under theassumption
that the phenotypic trait distribution, p(z), is Gaussian with mean z̄ and
variance sp, Equation 13.15 can be rewritten in terms of the population
average fitness, giving the following coupled evolutionary–ecological
system (Slatkin 1980, Taper & Case 1992):

(13.16A)

(13.16B)

Note the similarity between Equations 13.16A and B and the single-
locus system in Equations 13.10A and B. The ecological dynamics and
evolutionary dynamics take an identical form in each. This is readily
apparent for the ecological dynamics, and the evolutionary dynamics
can both be viewed as the genetic variance in trait (p(1 - p)/2 versus sg)
multiplied by the proportional increase in mean fitness that occurs with
an increase in population mean trait value.

Interestingly, you can also account for frequency-dependent selection
using this approach, just as you did in the single-locus approach. In this
case, the fitness of an individual with trait z is as follows (Slatkin 1980,
Taper & Case 1992):

(13.17)
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Now, a(z, y) is a function of two variables, giving the competitive effect
of an individual with phenotype y on an individual with phenotype z,

and I have defined to be the average competitive 

effect on an individual with trait z. You can verify that because Equa-
tions 13.16A and B now become the following (Taper & Case 1992):

(13.18A)

(13.18B)

Here, . Again, when there is both frequency 

and density dependence, note the correspondence between the quanti-
tative-genetic system in Equations 13.18A and B and the single-locus
system in Equations 13.13A and B.

The preceding case of intraspecific competition (i.e., Equation 13.18A
or B) has received considerable attention as an example of quantitative-
genetic theory in evolutionary ecology; therefore, it is worth examining
in more detail. To do so, you need to specify explicit functions for r(z),
a(z,y) and K(z) in the fitness function of Equation 13.17. Common
assumptions are that r is independent of z, that K (the carrying capac-
ity) is maximal for some intermediate value of z, and that a(z, y) is a 
unimodal function with a value of unity when y = z (the competitive
effect of any individual on an individual with phenotype z is one when
the two have identical phenotypes) and it decreases to zero as the dif-
ference between the two phenotypes increases (Roughgarden 1972,
Taper & Case 1992). With these assumptions, Equations 13.18A and B
predict that the species will evolve towards a phenotype that maximizes
the carrying capacity. Note that here I have focused solely on the evolu-
tion of the mean trait value, and I have assumed that the distribution
remains Gaussian (in accord with most quantitative-genetic models).

Interestingly, some of the earliest work in this area examined the
simultaneous evolution of the genetic variance in the trait as well, and
these results demonstrated that some parameter values result in a stable
equilibrium variance whereas others result in the variance decreasing to
zero (Slatkin 1980). The latter case occurs whenever the carrying capac-
ity function, K(z), is very narrow relative to the competition coefficient
function a(z,y). Conversely, variation is maintained in the former case
when the resource base is broad enough to support the evolution of a
variety of resource extraction strategies (relative to the competition co-
efficient function).
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As mentioned earlier, a two-species version of the preceding model has
received the most attention in the literature, particularly in the context of
studying interspecific competition and evolutionary character displace-
ment (Slatkin 1980; Roughgarden 1983; Brown & Vincent 1987; Taper &
Case 1992; Vincent, Cohen, & Brown 1993). The details of such models are
a natural extension of Equations 13.18A and B but for the Lotka–Volterra
competition Equations 13.3A and B. If you assume that the genetic vari-
ance does not evolve (or does so slowly enough that you can ignore it and
simply follow the mean phenotype), such models have demonstrated that
evolutionary character displacement occurs for some parameter values
and not for others (Taper & Case 1992). Moreover, character displacement
occurs precisely for those conditions under which the natural selection
favours a stable level of genetic variance for the single-species model
(Slatkin 1980). This is intuitively reasonable. If the resource base is broad
enough relative to the spectrum of resource use by any given species (i.e.,
the carrying capacity function, K, is wide relative to the width of the com-
petition coefficient functions, a), then the system can support two differ-
ent (i.e., divergent) resource extraction phenotypes. Indeed, as you will see
shortly in the section on adaptive dynamics, natural selection favours this
evolutionary divergence into two phenotypes in the single-species model,
but the assumptions of sexual reproduction and recombination that
underlie the use of a Gaussian distribution in quantitative genetics prevent
a single species from evolving such a dimorphism. Assortative mating
within phenotype would also have to evolve to allow such divergence
when starting with a single species (e.g., see Dieckmann & Doebeli 1999).

The quantitative-genetic framework has been extremely influential in
evolutionary ecology, and it has been extended and used for a variety of
questions and ecological interactions. In more complex models,
however, Equations 13.18A and B (or analogous equations for the eco-
logical situation of interest) become difficult to use because it is often
not possible to explicitly calculate the expression on the right-hand 
side of Equation 13.18B. As a result, some researchers have begun to 
use an approximation of this equation. This approximation is most 
easily derived by first noting that Equation 13.18B can be rewritten as
follows:

(13.19)

Here, (Lande & Arnold 1983; Iwasa, Pomi-
ankowski, & Nee 1991; Taylor 1996). Notice the subtle distinction between
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this and the second term on the right-hand side of Equation 13.18B. In
Equation 13.18B, the expectation (over the distribution p) is of the deriv-
ative of W with respect to z̄ (the population mean phenotype), whereas in
Equation 13.19, both terms on the right-hand side of Equation 13.18B
have reduced to the expectation (again over the distribution p) of the
derivative of W with respect to z (an individual’s phenotype). Importantly,
Equations 13.18B and 13.19 are equivalent, but Equation 13.19 is written
in a much simpler form. It reveals that evolutionary change in the popu-
lation mean phenotype occurs in a direction given by the sign of the
change in fitness that occurs with an increase in an individual’s pheno-
type, averaged over all individuals in the population (Lande & Arnold
1983).

An approximation to Equation 13.19 is then easily obtained under the
condition that the variance among phenotypes in the population is rel-
atively small. In such cases, the expectation of any function is approxi-
mately equal to the function evaluated at the mean; therefore, you
obtain the following approximation (Iwasa, Pomiankowski, & Nee 1991;
Taylor 1996):

(13.20)

Because the right-hand side of Equation 13.20 is readily calculated
under most circumstances, this approximation has been used exten-
sively in recent years as a simpler means for constructing quantitative-
genetic models (reviewed in Abrams 2001).

13.4.3 | Game Theory
The introduction and development of game theory in evolutionary
biology essentially paralleled the development of the single-locus and
the quantitative-genetic theories. As with quantitative genetics, the
game-theoretic approach was not originally devised explicitly for mod-
elling in evolutionary ecology. Rather, its initial focus was largely on the
evolution of social traits (Maynard Smith & Price 1973, Maynard Smith
1982). Nevertheless, it was occasionally used to model the evolutionary
consequences of ecological interactions (e.g., see Lawlor & Maynard
Smith 1976; Reed & Stenseth 1984; Brown & Vincent 1987a, 1987b;
Vincent, Cohen, & Brown 1993; and Abrams et al. 1993), and the most
recent incarnation of the game-theoretic approach (which will be
described shortly under the heading “adaptive dynamics”) focuses
largely on such ecological interactions.
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Although one of the main motivations for the original development of
theoretical evolutionary ecology was to dispense with the artificial sep-
aration of timescales between ecological and evolutionary processes, it
is interesting to note that such a separation is invariably used in game-
theoretic models of ecological interactions (e.g., see Lawlor & Maynard
Smith 1976 and Reed & Stenseth 1984). The typical approach is to
suppose that the population in question is monomorphic (i.e., all indi-
viduals have identical phenotypes, and this phenotype is termed the
“resident”) and then assumes that this population reaches a population
dynamic equilibrium in terms of the underlying ecological model of
interest. Then imagine introducing a rare mutant allele coding for 
different phenotypes and ask if this mutant can increase in numbers 
(i.e., if it can invade).

As a simple example, consider the logistic model of one species pre-
sented earlier (i.e., Equation 13.1), but where the carrying capacity, K,
depends on some quantitative trait, ẑ (“hats” are often used to signify the
phenotype of the resident in game theory):

(13.21)

At ecological equilibrium, the population size will be N = K(ẑ), which
reveals that the equilibrium density depends on the resident phenotype.
Then you can ask what the growth rate of a rare mutant will be if it has
phenotype z. When rare, it will have a negligible effect on the population
size; therefore, its initial (i.e., invasion) dynamics will be governed by the
following equation:

(13.22)

Here, you use the equilibrium density of the resident type as the
mutant’s per capita growth factor because the mutant is rare and there-
fore the density of the resident type will be the main determinate of the
mutant’s growth factor. Thus, you can see that the mutant will invade if
(and only if) the following is true:

(13.23)l z z r r
K z
K z

, ˆ
ˆ

.( ) ∫ + -
( )
( ) >1 1

N t N t r r
N
K z

N t r r
K z
K z

mut mut
res

mut

+( ) = ( ) + - ( )
Ï
Ì
Ó

¸
˝
˛

= ( ) + -
( )
( )

Ï
Ì
Ó

¸
˝
˛

1 1

1
ˆ

.

N t N t N t r
N

K z

N t r r
N

K z

+( ) = ( )+ ( ) - ( )
Ê
Ë

ˆ
¯

= ( ) + - ( )
Ï
Ì
Ó

¸
˝
˛

1 1

1

ˆ

ˆ
.

290 V | EVOLUTIONARY ECOLOGY

P088459-Ch013.qxd  3/9/05  07:52 PM  Page 290



13 | Modelling the Ecological Context of Evolutionary Change 291

I have defined l(z, ẑ) to be the growth factor of a rare mutant using
strategy z in a population dominated by strategy ẑ. l(z, ẑ) is sometimes
called the “mutant’s invasion fitness” (Metz, Nisbet, & Geritz 1992) or the
“mutant’s fitness,” but it (and more general extensions of it for other eco-
logical interactions) have also been referred to as the fitness “generat-
ing-function” or “G-function” in the literature (Brown & Vincent 1987a,
1987b; Vincent, Cohen, & Brown 1993). Notice that the mutant dies out
if l(z, ẑ) is less than one, and it is neutral if l(z, ẑ) equals one (which, of
course, occurs when z = ẑ).

The primary goal of the game-theoretic approach is to character-
ize phenotypes that are evolutionarily stable (i.e., ESSs). An ESS has 
the property that, if all individuals in the population adopt this strategy,
no alternative can invade (Maynard Smith 1982). Using the defini-
tion in Equation 13.23, you can see that an ESS, z*, must satisfy the 
following:

(13.24)

This must be satisfied for all mutant strategies z (and equality occurs
when z = z*). The inequality in Equation 13.24 is referred to as the Nash
equilibrium condition (Bulmer 1994), and using Equation 13.23 in this
produces the following:

(13.25A)

Alternatively, it can produce the following:

(13.25B)

This reveals that the ESS trait value in this model maximizes the 
carrying capacity.

Often it is difficult to use the condition in Equation 13.24 to charac-
terize the ESS; therefore, researchers use “local” conditions instead. In
particular, because the condition in Equation 13.24 states that l(z, ẑ)
must be maximized in its first argument (i.e., in z) at z = ẑ = z*, we know
from calculus that the first derivative at this point must equal zero. In
addition, if this point is to represent a maximum rather than a minimum,
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we know that the second derivative at this point must be negative. This
gives the following two conditions:

(13.26A)

(13.26B)

In the preceding example, you can verify that the conditions in 
Equations 13.26A and B evaluate to dK/dz = 0 and d 2K/dz2 £ 0.

The preceding game-theoretic approach was simple because the
underlying ecological model of interest was simple. As the ecological
scenario becomes more sophisticated, the underlying approach remains
the same, but the expression for a mutant’s fitness becomes more
complex (Metz, Nisbet, & Geritz 1992). This approach has also been used
to model the coevolutionary dynamics of more than one species, and
such cases are simply treated as “two-player” games in which each
species has an expression specifying mutant fitness and, in general,
depending on the densities of both species, the resident phenotypes of
both species, or the combination of these (Hofbauer & Sigmund 1988,
Abrams 2001).

The game-theoretic approach initially placed most emphasis on char-
acterizing ESSs with the underlying idea that such phenotypes would be
the ultimate end points of evolutionary change. Implicit in this tech-
nique is the notion that, when a new mutation invades, the evolution-
ary–ecological system is perturbed and the mutant strategy then sweeps
through to fixation (it is almost always assumed that a polymorphism
does not result). The ecological dynamics will then have reached new
equilibrium, and the invasion process occurs again. Thus evolution is
viewed as a succession of mutants arising, but on a timescale much
slower than the ecological dynamics, and the notion was that the system
would eventually attain the uninvadable strategy (i.e., the ESS).

Although the previously mentioned evolutionary processes implicitly
formed the foundation of game theory, initially little attention was paid
to the evolutionary dynamics of the population as it approached this
ESS. This shortcoming was recognized relatively early in the develop-
ment of game theory (Eshel 1983), and attempts were made to address
this issue more quantitatively. One of the most profound insights to
come out of this research was the finding that populations need not
evolve towards an ESS (Eshel 1983, Taylor 1989, Christiansen 1991,
Abrams et al. 1993, Geritz et al. 1998). Evolutionarily stable strategies can
be evolutionarily unattainable (Eshel 1983). This counterintuitive
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finding arises because natural selection in most game-theoretic models
is frequency dependent. As a result, a phenotype can be an ESS in that,
if most members of the population adopt this phenotype then no 
alternative can do better. Nevertheless, it can still be evolutionarily 
unattainable in the sense that, if most members of the population adopt
a phenotype slightly different from this ESS, only those phenotypes that
are even more different from the ESS can invade. Thus, natural selection
can drive the evolution of a population from an ESS even though, if the
population was started at the ESS, it would remain there (Taylor 1989,
Christiansen 1991).

Even more interesting, it was found that the conditions for evolution-
ary attainability and the ESS conditions (i.e., the Nash equilibrium con-
dition) are essentially independent. There can be phenotypes that are
evolutionarily attainable but not ESSs, phenotypes that are ESSs but not
evolutionarily attainable, and phenotypes that are both ESSs and evolu-
tionarily attainable (Geritz et al. 1998). As you will see later, the first 
of these situations has come to be the primary focus of adaptive 
dynamics.

As an example, again consider Equation 13.21, but now include the
assumption that selection is both density-dependent and frequency-
dependent as in Equations 13.12 and 13.13B and in Equations 13.17 and
13.18A and B. In this case, you have the following:

(13.27)

Again, a(x, y) is the competitive effect of an individual with phenotype
y on an individual with phenotype x (and a(x, x) = 1). The mutant’s fitness
function, Equation 13.23, then becomes as follows:

(13.28)

To be more concrete, I will use the particular functions 

and . These functions have been used numerous times
in the literature (reviewed in Day 2000) and are chosen largely for math-
ematical convenience. With these, the conditions in Equations 13.26A
and B become z* = 0 and sk £ sa, respectively. Thus, the phenotype “0”
is an ESS if (and only if) sk £ sa.

Now consider the question of the evolutionary attainability of z* = 0.
To begin, suppose that the majority of the population is using a pheno-
type slightly below z*; that is, ẑ < z*. For natural selection to drive the
population towards z*, mutants slightly above ẑ must be able to invade
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(i.e., have higher fitness than the resident) and mutants slightly below ẑ
must not be able to invade (i.e., have lower fitness than the resident).
Mathematically, you can express this by requiring the following:

(13.29A)

The inequality in Equation 13.29A states that the fitness gradient (i.e.,
the direction of increasing fitness) points towards z* when the resident
phenotype is below z*. An analogous consideration also leads to the 
following condition:

(13.29B)

This states that the fitness gradient points towards z* when the resi-
dent phenotype is above z* as well. Together, the conditions in Equations
13.29A and B imply that the fitness gradient (which is a function of the
population resident strategy ẑ only; i.e., ∂l/∂z|z=ẑ) decreases as the popu-
lation resident strategy, ẑ, increases, passing from positive to negative at
ẑ = z*. Locally (i.e., near ẑ = z*), you can express this by requiring that the
derivative of ∂l/∂z|z=ẑ with respect to ẑ be negative at ẑ = z*:

(13.30A)

This can also be expressed as follows:

(13.30B)

The condition in Equation 13.30A, or equivalently in Equation 13.30B,
is often referred to as the convergence stability condition (Bulmer 1994)
because it implies that natural selection acts in such a way as to cause
the population resident strategy to converge to z*.

Returning to the example in Equation 13.28, you can use either 
Equation 13.30A or Equation 13.30B to show that z* = 0 is convergence
stable provided that -r/sk < 0, which is always satisfied. Therefore, you
have the following two possibilities: (1) sk < sa, in which case z* = 0 is
convergence stable and an ESS, or (2) sk < sa, in which case z* = 0 is con-
vergence stable but not an ESS. In case 1, you can expect the population
to evolve towards z* = 0 and to remain there indefinitely. In case 2, you
again can expect the population to evolve towards z* = 0, but once there,
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natural selection becomes disruptive, favouring any phenotype other
than z* = 0. At this point some form of evolutionary diversification will
occur (Taylor 1989, Christiansen 1991).

Biologically, case 2 can be understood as follows: Competition for
resources always makes it beneficial to have a phenotype that is differ-
ent from other individuals. At the same time, because the carrying
capacity is maximized at z = 0, natural selection favours evolution
towards this phenotype. When the population is not at this phenotype,
mutants closer to z = 0 gain in both ways (i.e., they have the benefit of
being different and the benefit of having a higher carrying capacity). This
is why z* = 0 is always convergence stable. If the width of the competi-
tion function is narrow relative to the carrying capacity function,
however (i.e., if sa < sk, meaning that any given phenotype is specialized
in its resource use), then once the population reaches z* = 0, the strength
of selection for being different is strong enough to more than outweigh
the loss in carrying capacity that comes from having a phenotype z π 0
and evolutionary diversification occurs (see Werner & Sherry 1986,
Bolnick et al. 2002, Bolnick et al. 2003, and Bolnick 2004 for interesting
empirical examples). At this stage, the preceding model no longer 
provides an adequate description of the evolutionary dynamics and
therefore must be extended in some way to allow for a polymorphism
(Christiansen 1991, Geritz et al. 1998).

This distinction between stability against invasion of rare mutants
(i.e., ESS) and convergence stability is biologically interesting because it
illustrates the potential for a trait to evolve to a point at which natural
selection becomes disruptive. This finding, that biological interactions
give rise to endogenously generated disruptive selection, was implicit 
in the early results of Ilan Eshel (1983), and it was noted more explicitly
by Peter Taylor (1989) that this should result “in a polymorphic popula-
tion which is [no longer] described by the [original fitness] function.”
Christiansen (1991) developed these ideas of the evolution of polymor-
phisms more explicitly and illustrated them with the preceding example,
as did Joel Brown and Tom Vincent (1987a, 1987b; Vincent, Cohen, &
Brown 1993; Abrams et al. 1993).

Researchers using the game-theoretic approach to modelling evolu-
tionary ecology have also noted the fundamental similarities between
the preceding results and the previous quantitative-genetic models
(Charlesworth 1990; Iwasa, Pomiankowski, & Nee 1991; Taper & Case
1992; Abrams et al. 1993; Abrams 2001; Taylor 1996; Taylor & Day 1997).
In particular, Eshel’s (1983) idea that natural selection should drive the
evolution of a population in a direction given by the sign of ∂l/∂z|z=ẑ

closely parallels the quantitative-genetic equation for the evolutionary
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dynamics of the mean trait value. More specifically, Eshel’s ideas were
based on the idea that the evolutionary change in the population 
resident strategy is proportional to ∂l/∂z|z=ẑ:

(13.31)

Note the correspondence between this equation and Equation 13.19
or its approximation, Equation 13.20. These results are identical if you
make the identification l = W except that, unlike quantitative-genetic
models, the game-theoretic approach assumes a separation of eco-
logical and evolutionary timescales and therefore does not have a
coupled equation for the ecological dynamics. This correspondence 
also reveals that the convergence stability condition of Eshel (1983) cor-
responds to the dynamics stability of equilibria in quantitative-genetic
models (provided that the ecological dynamics are fast relative to 
evolution).

It has also been shown that the ESS condition in Equation 13.26B cor-
responds to stability of the genetic variance in quantitative-genetic
models (Taylor & Day 1997). It should come as no surprise that the 
conditions under which evolutionary diversification occurs in game-
theoretic models of competition for resources are essentially identical 
to those in quantitative genetics under which a single species reaches an
equilibrium variance. The potential for evolutionary diversification into
a polymorphism was not fully recognized in single-species quantitative-
genetic models because sexual recombination maintained a unimodal
distribution of genotypes.

Lastly, it is important to stress that the preceding game-theoretic ideas
and techniques are often employed under the assumption of asexual
reproduction but this need not be the case. Indeed, several studies have
used this approach in the context of explicit classical genetic models
involving sexual populations with various forms of inheritance, includ-
ing diploidy and haplodiploidy (Taylor 1989, 1996; Christiansen 1991
and references therein; Eshel, Motro, & Sansone 1997). It is also inter-
esting to note that this game-theoretic approach is closely aligned with
more recent developments of Fisher’s geometrical model of evolution 
in which mutations periodically arise and either sweep to fixation or 
die out (Orr 1998). The chief difference with these recent developments
is the focus on making predictions about the distribution of sizes of
allelic effects for those mutations that reach fixation (Orr 1998, 2003).
These recent models do not involve frequency-dependent selection,
however, and it would be interesting to extend them in this direction so
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that they might be more readily applicable to modelling in evolutionary
ecology.

13.4.4 | Adaptive Dynamics
In recent years there has been a flood of interest in modelling ecologi-
cal–evolutionary feedbacks using a technique that has come to be
referred to as adaptive dynamics (Gavrilets & Waxman, in press). Differ-
ent researchers have different, and often strongly held, opinions about
what this approach represents and how it differs from previous theoret-
ical developments. In line with the motivation for the symposium that
spawned this volume, in this section I present these recent develop-
ments and consider the question of whether they represent a paradigm
shift from previous approaches or whether they are simply a refinement
and natural extension.

In short, my perspective is that adaptive dynamics as a field of study
best thought of as a natural outgrowth of previous game-theoretic ideas
(as they have been applied to evolutionary ecology). The seeds of, and
even some of the most fundamental developments in, adaptive dynam-
ics were clearly present in game-theoretic modelling and in some
aspects of quantitative-genetic modelling. That is not to say that the
developments embodied by adaptive dynamics have not been impor-
tant; instead, these contributions are better thought of as developments
within game theory rather than as a new approach.

One fundamental focal point of adaptive dynamics is on situations in
which a trait value is convergence stable but not an ESS (Geritz et al.
1998). Such trait values have been given various names within the game-
theoretic literature, but adaptive dynamics refers to them explicitly as
branching points under the idea that evolutionary branching (e.g., 
speciation) is favoured by selection at these points (Geritz et al. 1998).
As already mentioned, it was well known that such points occur within
game-theoretic models (Eshel 1983, Taylor 1989), including those for the
evolution of traits involved in ecological interactions such as exploita-
tive competition for resources (e.g., see Christiansen 1991 and Abrams
et al. 1993). It was also appreciated in this literature that such points will
tend to lead to some sort of evolutionary diversification, such as a
genetic polymorphism (Christiansen 1991). Thus, the existence of such
interesting phenomena, as well as their evolutionary significance and
implications, is not a finding that can be attributed to developments of
adaptive dynamics. There are, however, at least three important devel-
opments (in my opinion) that have grown out of this research. I consider
each of these in turn.
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First, research in adaptive dynamics has demonstrated that branching
points might be a general feature of natural systems, because it is
common for models of all sorts of ecological interactions, as well as all
sorts of traits, to give rise to such phenomena (Doebeli & Dieckmann
2000). Of course, these findings might just as well have been developed
within the game-theoretic approach of the previous section simply by
examining various models using this approach (and indeed, from a 
conceptual standpoint, that is what was done). Nevertheless, these
developments have been carried out largely by researchers who work
under the rubric of adaptive dynamics.

Second, although it was recognized that diversification is favoured by
selection at branching points by earlier game-theoretic approaches, and
even though some treatments even modelled the initial stages of such
diversification, this evolutionary divergence was not the focus of much
modelling until the field of adaptive dynamics began to grow (Geritz et al.
1998; Gavrilets & Waxman, in press). Again, I would argue that there is
nothing distinct in doing this that necessarily warrants giving it a name
other than game theory, but these developments have also been carried
out largely by researchers working in adaptive dynamics.

Third, and I would argue most significantly, researchers in this field
provided a coherent and explicit mathematical underpinning for the
somewhat heuristic evolutionary dynamic that Eshel implicitly used
(i.e., Equation 13.31). Eshel (1983) and subsequent authors (Taylor 1989,
Christiansen 1991, Abrams et al. 1993) identified branching points and
their evolutionary significance (using a different terminology), but it was
research within adaptive dynamics that provided an explicit account of
the implicit evolutionary dynamic used in game theory. I briefly review
this development here because it turns out to have a simple connection
to quantitative-genetic models.

The underlying notion in game-theoretic models is that evolution is a
mutation-limited process. The population (or community) reaches
demographic equilibrium while it contains only a single phenotype (per
species), and then a new mutation arises and either replaces the former
resident or dies out. If it replaces the resident, then a new population
dynamic equilibrium is attained. At this stage, another mutation arises
and the process repeats. As such, these models assume a separation of
ecological and evolutionary timescales.

Research in adaptive dynamics provided an explicit model of this
process (in continuous time), and it involves two important elements of
stochasticity (Dieckmann & Law 1996, Proulx & Day 2001): (1) stochas-
ticity in the mutations that arise and (2) stochasticity in whether or not
these mutations reach fixation. The stochasticity in element 1 is proba-

298 V | EVOLUTIONARY ECOLOGY

11

P088459-Ch013.qxd  3/9/05  07:52 PM  Page 298



bly clear, and the stochasticity in element 2 is meant to reflect that, in
real biological populations, even if the new mutant that arises is selec-
tively advantageous, it might still be lost because of chance events when
it is initially present in small numbers (Dieckmann & Law 1996).

To begin the derivation, imagine a very large number of independent
populations in which this mutation-limited evolutionary process occurs.
Each population can be viewed as following a series of successive
“jumps” to new resident phenotypes. Each population has its own series
of jumps, and populations differ in these patterns solely because of
chance in which mutations arise and in whether or not they reach fixa-
tion. Let p(z,t) be the frequency distribution of populations with a
current resident value of z at time t. The average resident value at time t

is therefore , and the rate of change in z̄ is given by the 

following:

(13.32)

You now need to obtain a more explicit expression for the right-hand
side of Equation 13.32.

The frequency of the collection of populations that has resident trait
value z after a small amount of time, Dt, has passed will be given by what
this frequency was initially, plus the frequency of all other types of 
populations that have moved into that state during this time interval,
minus the frequency all populations in that state that have moved to
other states in this time interval:

(13.33)

Here, W(z, z̃)Dt is the probability that a population in state z̃ moves to
state z in the time interval Dt. Rearranging, dividing by Dt, and taking the
limit Dt Æ 0 gives the following:

(13.34)

Therefore, Equation 13.32 becomes as follows:
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Now, if you assume that the frequency distribution, p(z, t), is tightly
centred around its mean, z̄ (analogous to the assumption in going from
Equation 13.19 to Equation 13.20 in quantitative-genetic models), then
Equation 13.35 can be approximated as follows:

(13.36)

To complete the derivation, you then need to be more explicit about
the function W(z, z̃). In particular, the probability that a population
moves to state z from state z̃ in the time interval Dt is the product of the
probability that a mutation occurs in that time interval (denoted by
r(z̃)Dt—this might depend on the current trait value, z̃), with the proba-
bility that this new mutation has trait value z (denoted by M(z, z̃)—this
might depend on the current trait value, (z̃) and the probability that 
this new mutation ultimately reaches fixation (denoted by U(z, z̃)—this
might depend on the resident trait value, z̃):

(13.37)

Now, because you are supposing that all population states are clus-
tered tightly around the mean, ¯̄z, you must at least also assume that the
allowable mutational jumps are not very large. In this case, the pro-
bability density M(z, z̃) must be narrowly clustered around its mean;
therefore, you can approximate Equation 13.37 using the first two terms
of a Taylor series in z near ¯̄z:

(13.38)

Substituting this into Equation 13.36 gives the final result (Proulx &
Day 2001):

(13.39)

Here, m(̄̄z)and s2(¯̄z) are the mean and variance in the mutational 
distribution, and M(z,¯̄z). Equation 13.39 reveals that the evolutionary
change in ̄̄ z is the result of two forces: any mutational bias (the first term)
and selection (the second term). In the absence of mutational bias you
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have m(¯̄z) = 0, and Equation 13.39 simplifies to the following (Dieckmann
& Law 1996, Proulx & Day 2001):

(13.40)

Notice that Equation 13.40 is analogous to Eshel’s equation (Equation
13.31) and to the approximated quantitative-genetic equation (Equation
13.20), where the probability of fixation, U(z,¯̄z), plays the role of the
fitness function.

You can obtain even closer correspondence between these modelling
approaches if you assume a particular model for the way in which sto-
chasticity affects the probability of fixation. It can be shown that, under
a stochastic model based on branching processes (and therefore one in
which selectively disadvantageous mutants never reach fixation; see
Proulx and Day 2001), you have the relationship U(z,¯̄z) = (b(z,¯̄z) -
d(z,¯̄z))/b(z,¯̄z), where b(z,¯̄z) and d(z,¯̄z) are the expected birth and death
rates of the mutant with trait z in a population with resident trait, ¯̄z
(Dieckmann & Law 1996). Using this relationship in Equation 13.40 gives
the following:

(13.41)

Here, V(¯̄z) = r(¯̄z)s2(¯̄z)/b(¯̄z,¯̄z) is a measure of the rate at which genetic
variation is introduced into the population through mutation, and l(z,¯̄z)
= b(z,¯̄z) - d(z,¯̄z) is the per capita growth rate of the mutant (i.e., its fitness)
(Dieckmann & Law 1996). This is identical in form to the quantitative-
genetic equation (Equation 13.20), as well as to Eshel’s (1983) equation
(Equation 13.31), and thus provides an explicit mathematical justification
for the evolutionary dynamic used by Eshel in distinguishing evolution-
ary stability from convergence stability. Notice, however, that unlike the
quantitative-genetic models, there is no corresponding equation for the
population dynamics because these are assumed to occur on a timescale
much faster than evolutionary change. Therefore, the population is
assumed to always be in population-dynamic equilibrium.

There have been other developments and elaborations on the 
adaptive-dynamic approach that take into account multiple species,
finite-population sizes, environmental stochasticity, and nonequilib-
rium attractors (e.g., limit cycles and chaos) for the ecological dynam-
ics, to name just a few (Metz, Nisbet, & Geritz 1992; Ferriere & Fox 1995).
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These results have broadened the scope of applicability of this approach
(but see Proulx & Day 2001 for a description of some limitations), but I
believe it is fair to say that all of these developments are well within the
normal scientific development of game theory and do not constitute a
fundamentally different approach to theoretical evolutionary ecology. I
would even question the need for using a separate (and potentially con-
fusing) new label for these developments. Nevertheless, the adaptive-
dynamic approach represents the latest development in theoretical
evolutionary ecology, and its results have contributed important and
interesting insights to this field.

13.5 | WHERE DO WE STAND? WHERE DO WE GO?
IS ANYTHING NEW?

13.5.1 | Future Empirical Directions
The existence of phenotypic values that are evolutionary attractors yet
give rise to disruptive selection is one of the most interesting findings to
come out of theoretical evolutionary ecology. There are still few explicit
tests of such predictions, but numerous opportunities exist for exploring
these issues empirically. Some steps have been taken in this direction,
with perhaps the most direct attempt being a study involving artificial
selection in Drosophila (Bolnick 2001; reviewed in Day & Young 2004).
Daniel Bolnick (2001) did not, however, address the critical prediction of
the occurrence of evolutionary diversification (Day & Young 2004).

Interestingly, there have been several experiments carried out for
reasons unrelated to this theory that nevertheless provide some of the
most relevant data for testing the predictions about such branching
points (Travisano & Rainey 2000, Rainey et al. 2000, Kassen 2002). Most
of these have been conducted using microbial cultures such as
Pseudomonas or Escherichia coli. Such model organisms are ideal for
testing this theory because their rapid generation times and well-defined
genetic stocks make appropriate evolutionary experiments feasible.
Also, because such organisms are asexual, they represent the most con-
ducive systems for finding evolutionary branching; unlike as occurs in
quantitative-genetic models, there is no sexual recombination to hinder
evolutionary diversification.

Several experiments have been conducted in which a single microbial
clone is propagated for several generations in some well-defined
resource medium. Although these experiments were not designed to
look for branching points, the theory based on exploitative competition
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outlined earlier predicts that researchers should initially observe an evo-
lutionary adaptation to the highest carrying capacity. At this stage, under
some conditions, evolutionary diversification should occur.

Several experiments display this sort of evolutionary diversification.
For example, in single strains of E. coli propagated in a glucose medium,
evolutionary diversification eventually took place, resulting in the stable
maintenance of two distinct physiological types (Turner, Souza, & Lenski
1996; Travisano & Rainey 2000). Similarly, in colonies of a single strain of
Pseudomonas propagated in a complex liquid medium, evolutionary
diversification eventually took place, resulting in three well-defined
types that appear to coexist indefinitely (the “fuzzy spreader,” “wrinkly
spreader,” and “smooth” types; see Rainey & Travisano 1998). These
morphs appear to exploit different spatial niches in the liquid medium.
Perhaps even more remarkably, these patterns of evolutionary diversifi-
cation appear to be highly repeatable between experiments.

These results are extremely exciting, and it has been noted that these
experiments have inadvertently provided empirical data consistent with
these recent theoretical predictions (Travisano & Rainey 2000). Diversi-
fication occurred as expected in accord with theory. It still remains,
however, to determine if this sort of phenomenon is relevant in organ-
isms other than microbes. There is clearly increasing interest in this issue
(Bolnick et al. 2003), and there are several documented examples of dis-
ruptive natural selection in the wild, but whether these examples are
best explained by the sort of endogenously generated selective pressures
predicted by the theory remains an open question deserving further
study. A preliminary survey of these examples indicates that most do 
not fit well within this theoretical explanation (Day and Abrams, un-
published results), but more rigorous examinations (and experiments)
are required to reach any definitive conclusion.

13.5.2 | Future Theoretical Directions
The preceding microbial examples clearly show that evolutionary diver-
sification in experimental systems occurs; however, it is important to ask
whether the ecological interactions embodied in the theory are likely to
be the cause of this diversification. Most theory has focused on evolu-
tionary diversification as a result of competition for resources, but is this
the primary reason for the diversification seen in microbial systems?

Importantly, facilitation has been well documented in many of the
aforementioned microbial experiments. Facilitation is an ecological
interaction in which the presence of one species enhances the fitness 
of another (Whittaker 1977; Bruno, Stachowicz, & Bertness 2003). For
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example, in the experiments in which E. coli diversified during pro-
pagation in glucose, it has been demonstrated that the new variants 
that arise are specialized on acetate, a metabolite produced by the 
consumption of glucose by the original strain. This is often referred to as
“cross-feeding” in the literature, and it demonstrates that evolutionary
diversification in this case occurred primarily as a result of the first
species having a facilitative effect on the second through its introduc-
tion of additional resources into the environment (Turner, Souza, &
Lenski 1996). Similar facilitative interactions are likely important in the
Pseudomonas system. For example, it has been demonstrated that the
“fuzzy spreader” type cannot invade a population of the “wrinkly
spreader” type without the third, “smooth” type also being present
(Figure 4 in Travisano & Rainey 2000).

These findings contrast with competitive diversification in which the
different consumer types do not introduce new resources; rather, they
affect the relative value of specializing on the various resources already
present. Under facilitation, the addition of new species creates new
niches (Levins & Lewontin 1985) and thereby represents a funda-
mentally different type of ecological interaction that likely plays an
important role in evolutionary diversification. To better understand 
the relative roles of competition and facilitation in diversification,
researchers require a clear approach for distinguishing between the two.
Currently, there is little theory addressing facilitative diversification in
evolutionary ecology (e.g., see Doebeli 2002), but it is likely that the two
interactions can be distinguished using relatively simple ecological
experiments (Day & Young 2004). Nevertheless, further theoretical
results in this area would be invaluable for better dissecting the causes
of evolutionary diversification.

One other area requiring further theoretical development is a better
characterization of the potential evolutionary outcomes at so-called
branching points. Evolutionary splitting is one possibility (even for sexual
populations; Dieckmann & Doebeli 1999), but it is not the only outcome
or even necessarily a likely one. Other possibilities include a simple
increase in genetic variance, the evolution of a within-species polymor-
phism among age or size classes (Taylor & Day 1997; Day, unpublished
results), and the evolution of within-species sexual dimorphism (Bolnick
& Doebeli 2003). All of these outcomes effectively fill the available niche
space, but the most likely end point of evolution will depend on the
specifics of within-species interactions, relative to between-species inter-
actions, coupled with the particular genetic constraints imposed by the
system of inheritance for the organism in question.

As seen in the description of the various approaches presented earlier,
one chief difference between quantitative-genetic and single-locus
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models versus game-theoretic and adaptive-dynamic models is that the
latter assume a separation of ecological and evolutionary timescales.
Ironically, these recent approaches in theoretical evolutionary ecology
have returned to using an assumption whose dubious validity was part
of the motivation for the development of theoretical evolutionary
ecology. An important question remains: What does this separation of
timescales do in terms of predictions? For example, are the evolutionary
consequences of branching points different if a researcher allows evolu-
tionary change to proceed on a timescale comparable with ecological
change? A powerful way to explore this question is through the use of
the quantitative-genetic approximation in Equation 13.20 because no
restriction on relative timescales is made in its derivation, and it is
directly comparable to the evolutionary dynamics for game-theoretic
and adaptive-dynamic models (i.e., Equations 13.31 and 13.41, respec-
tively). This is an interesting area deserving further attention.

Finally, recent studies based in adaptive dynamics have demonstrated
that sympatric speciation can occur seemingly easily in models of com-
petitive diversification (like that presented earlier) by allowing assorta-
tive mating to evolve simultaneously (Dieckmann & Doebeli 1999). To
some extent these results contradict earlier suggestions that sympatric
speciation is unlikely as a result of tension caused by the buildup of
linkage disequilibrium between alleles coding for ecological traits and
alleles at other loci coding for mate preferences (Felsenstein 1981). It
seems as though these recent models of sympatric speciation should
suffer from the same tension because the chief difference from earlier
theory on speciation is the inclusion of a mechanism by which the 
population is intrinsically maintained under disruptive selection (i.e., at
a branching point) rather than having disruptive selection imposed on
it. Presumably this should have no effect on the extent to which assor-
tative mating (and the requisite linkage disequilibrium) can evolve, so it
remains unclear why sympatric speciation appears to occur more readily
in this recent theory. Further research examining the relationship
between these results and those of earlier theory would help us under-
stand where this difference comes from.

13.5.3 | Conclusions: Déjà Vu or Something New?
As will be clear by now, it is my opinion that the most recent techniques
and approaches in theoretical evolutionary ecology do not represent a
fundamental change in the way scientists are thinking about and mod-
elling ecological–evolutionary feedbacks. Rather than being a paradigm
shift, I believe it represents “normal” science. What it truly fascinating,
however, is that the work on single-locus models, quantitative-genetic
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models, game-theoretic models, and adaptive-dynamic models has pro-
ceeded largely independent of one another, but these have led to what
is fundamentally the same mathematical description of evolutionary
change (compare the progression of results from the various modelling
approaches: Equations 13.13B, 13.18B, 13.19, 13.20, 13.31, and 13.41).
This suggests that there is something fundamental and robust being
described by the different approaches because they have all converged
on similar answers from different starting points. Indeed, the main 
differences in these approaches stem from their difference in the as-
sumption of a separation of timescales. Game-theoretic or adaptive-
dynamic models make such an assumption, whereas single-locus and
quantitative-genetic models do not (and therefore have additional
dynamic equations governing the ecological dynamics in conjunction
with the evolutionary dynamics). The ongoing union of ecology and evo-
lutionary biology is proving to be a fertile enterprise, and the most
important advances in the near future will likely continue to be refine-
ments, developments, and extensions of the important groundwork laid
over the past half-century.
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