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Evolution of cooperation in a finite homogeneous
graph
Peter D. Taylor1, Troy Day1 & Geoff Wild1

Recent theoretical studies of selection in finite structured popu-
lations1–7 have worked with one of two measures of selective
advantage of an allele: fixation probability and inclusive fitness.
Each approach has its own analytical strengths, but given certain
assumptions they provide equivalent results1. In most instances
the structure of the population can be specified by a network of
nodes connected by edges (that is, a graph)8–10, and much of the
work here has focused on a continuous-time model of evolution,
first described by ref. 11. Working in this context, we provide an
inclusive fitness analysis to derive a surprisingly simple analytical
condition for the selective advantage of a cooperative allele in any
graph for which the structure satisfies a general symmetry con-
dition (‘bi-transitivity’). Our results hold for a broad class of popu-
lation structures, including most of those analysed previously, as
well as some for which a direct calculation of fixation probability
has appeared intractable. Notably, under some forms of popu-
lation regulation, the ability of a cooperative allele to invade is
seen to be independent of the nature of population structure (and
in particular of how game partnerships are specified) and is identical
to that for an unstructured population. For other types of popu-
lation regulation our results reveal that cooperation can invade if
players choose partners along relatively ‘high-weight’ edges.

In evolutionary biology an individual’s behaviour is termed ‘social’
if it affects the reproductive success of other individuals in the popu-
lation, and one of the most enduring puzzles is the existence of social
behaviours such as cooperation and altruism. Hamilton’s12 pioneer-
ing work on inclusive fitness demonstrated that, if individuals tend to
interact with genetic relatives, then such behaviours can often evolve.
Interactions with relatives might occur as a result of kin recognition,
but they might also occur simply as a result of limited dispersal13–16.

Recent studies in evolutionary game theory8–10 have provided
some interesting new results on the evolution of cooperation, by
describing patterns of interaction among individuals in terms of
graphs. A graph is simply a set of nodes (representing the indivi-
duals), each of which is connected to other nodes with edges (Box
1). These edges provide the relationships among individuals and are
of two types: the dispersal patterns of offspring, and the patterns of
social interaction among individuals. The probability of fixation of a
cooperative allele can then be determined, as a function of the struc-
ture of the graph, so that we might understand how different kinds of
networks of interactions affect the evolution of social behaviour8–10.
Here we demonstrate that Hamilton’s notion of inclusive fitness12

provides a natural way to understand evolution on such graphs,
and that it provides simple analytical conditions for the evolution
of any trait (including cooperation) for a large class of graphs. The
primary process at work in such systems can thus be viewed as a case
of interactions among related individuals as a result of limited dis-
persal. A schematic summarizing our main results is provided as
Supplementary Fig. 1.

In the graphs considered here, the edges represent patterns of
dispersal and social interactions given by the weights dij and eij

respectively. Specifically, the weights dij determine (in a way made
precise below) the probability that a birth at node i replaces the
individual at node j. Furthermore, individuals i and j interact
at each time step with probability eij. We assume dii 5 eii 5 0,P

j dij~
P

j eij~1, and dij 5 dji and eij 5 eji. We suppose that the

fecundity fi~F(Xi,Yi) of individual i (where F is the fecundity func-
tion specified by the model) is determined by its own phenotype Xi

and by the average phenotype Yi 5
P

j eijXj of the individuals with
whom it interacts.

We assume that individuals are haploid with one of two alleles A or
B, and offspring are identical to parents except for a small symmetric
probability of mutation. We consider two versions of fecundity selec-
tion. In the BD process, births are allocated to the population at a
fixed, fitness-independent rate and are given to individual i with
relative probability fi, replacing a neighbour j of i with probability
dij. In the DB process, individuals die at a fixed, fitness-independent
rate and a death at node j is replaced by an offspring from node i with
relative probability fidij. In both cases, the population size remains
constant. Take note that fi measures fecundity, but this is only one
component of fitness, the other being mortality.

Our results apply to an arbitrary fecundity function F(X, Y) pro-
vided that the ‘effect’ of the A allele is both small and additive. For

example, our results apply to the general matrix game10 a11 a12

a21 a22

� �

(where the first row gives the pay-off to an A player against an A or
B opponent, and the second row gives the same pay-offs to a B
player), provided both that the ahk values are small and that
a11 1 a22 5 a12 1 a21. We work here with the ‘cost–benefit’ matrix

b{c {c

b 0

� �
. A second example is found in Box 2.

We consider graphs with a large amount of internal symmetry as
described by an isomorphism. An isomorphism T of a graph is a
bijection of the node set that preserves the dispersal and interaction
parameters, that is, dT(i)T(j) 5 dij and eT(i)T(j) 5 eij. A graph is called
(node) transitive if, for every ordered pair of nodes (i, j), there is an
isomorphism T for which T(i) 5 j; it is called (node) bi-transitive if,
for every ordered pair of nodes (i, j), there is an isomorphism T for
which T(i) 5 j and T(j) 5 i. The graphs given in Box 1 are all trans-
itive and all but panel e are bi-transitive.

Our objective is to measure the selective advantage of the allele A.
We begin in the neutral population (c 5 b 5 0) in which A and B are
equally fit, and ask: what is the effect of increasing b and c above 0? We
focus attention on three different selective measures. First, the change
in b and c will cause the expected long-term frequency of A (E(A);
under mutation-selection balance) to differ from E(B), the long-term
frequency of B, and we might use that difference as a measure.
Second, we define the fixation probability rA of A (rB of B) to be
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the probability that a single randomly placed A allele in an otherwise
B population (B allele in an otherwise A population) will become
fixed in the absence of mutation. In the neutral case, rA 5 rB 5 1/N
as all N individuals have an equal chance of contributing the gene that
will ultimately become fixed, and we might measure the advantage of
A with the difference rA – rB

4,10. Third, we might use the inclusive
fitness effect12 WIF of the change from B to A (see Methods). To
summarize, we might say that A has a selective advantage over B in
any of the following situations: E(A) . E(B), rA . rB, and WIF . 0. It
is known1 that for sufficiently small mutation rates in a discrete-
generations finite-population model, these three conditions are

equivalent to first order in the behavioural deviations b and c. The
importance of this for us is that it allows us to use the more easily
calculated inclusive fitness effect to measure the direction of change
in expected frequency or fixation probability of A. We remark that
when b and c are small, the second condition (rA . rB) can be shown
to be equivalent to rA . 1/N in any finite population that can be
modelled as a graph (P.D.T. et al., manuscript in preparation).

This is not the case4 for the more general matrix
a11 a12

a21 a22

� �
(with

ahk small) unless a11 1 a22 5 a12 1 a21.
The inclusive fitness effect of an action by a focal individual is

defined to be the sum of the fitness effects of this action on all
individuals in the population, each effect weighted by its relatedness
to the focal individual. To give a simple example, a fecundity gift of b
from i to a neighbour j will increase the probability that j will have an
offspring but that offspring will replace another neighbour h, so that
the inclusive fitness effect will be the extra fecundity to j minus the
extra mortality to h, each weighted by the relatedness to i. Of course,
if the action has other effects as well, such as a cost c to i, then the
effects of that must be accounted for in the same way, and the weak
selection assumption (small b and c) will allow us to add these two
kinds of effects to obtain the overall inclusive fitness effect. These
calculations (see Methods) give us the following simple expressions
for the inclusive fitness effect of the allele A in any bi-transitive graph:

BD model: WIF 5 –b – c(N – 1) (1)
DB model: WIF 5 b[N�dd – 2] – c(N – 2) (2)

where, in equation (2), �dd 5Sjeijdij is the average d-weight of the edge
between i and a random interactant, and under transitivity is inde-
pendent of i. Alternatively, if we pick a random interactant j of i,
then �dd is the probability that i’s next offspring will displace j.

It is interesting that, in the BD model, the inclusive fitness effect is
independent of the structure of the population and of the distri-
bution {eij} of interactants. It is therefore the same as in a random

Box 2 | Frank’s island model of competition16,18,19

In more general phenotypic models, fecundity is expanded in a Taylor
series:

F(X,Y)~F0z
LF

LX
dXz

LF

LY
dY

where we take the differential phenotype to be proportional to
genotype x (frequency of A): dX 5 dx where d is small. This allows us to
ignore higher order terms in the phenotypic change and we get weak
selection and additivity all at once. In this case, our equations (1) and

(2) apply with c 5 –d
LF

LX
and b 5 d

LF

LY
. In Frank’s island model (Box 1

Fig. 1d with n demes of size m, so that population size is N 5 nm) the
reproductive resources, S 5 S(Z), available to a deme decrease with
average deme phenotype Z, whereas an individual’s share of the
deme’s resources is proportional to X/Z, its relative competitiveness in

the deme; thus F(X, Y) 5
X

Z
S(Z). We take an individual’s interactants

to be its deme mates, so that mZ 5 X 1 (m – 1)Y. With a BD protocol,
equation (1) easily shows that, no matter what the pattern of offspring
dispersal, the level of competitiveness X0 will increase provided

BD :
X0({S0(X0))

S(X0)
v

(m{1)n

n{1
ð4Þ

For the DB protocol, we need to specify the dispersal pattern. If h is the
probability an offspring remains on its natal deme, then equation (2)
shows that X0 will increase provided

DB :
X0({S0(X0))

S(X0)
v

(m{1{h)n

n(1zh){2
ð5Þ

Provided h . 1/N, the right side of equation (4) exceeds that of
equation (5), giving a higher evolutionarily stable level of
competitiveness in the BD model.

Box 1 | Transitive graphs

Roughly speaking, a graph is transitive if it globally ‘looks the same’
from any node; that is, if you placed an individual at a node and then
blindfolded him and perhaps moved him to another node, he would be
unable to tell, using only information about total configuration of edges
and their weights, whether or not he had been moved. A graph is bi-
transitive if it ‘looks the same’ from any pair of nodes. That is, if you
placed two individuals at any two nodes and then blindfolded them and
perhaps interchanged them, they would be unable to tell whether or
not they had been interchanged. In the examples shown, different
weights (both d and e weights) are represented by different colours,
although the d values and the e values might be different. All graphs are
transitive and all except panel e are bi-transitive.

a b

d

e

c

Box 1 Figure 1 | Examples of transitive graphs. a, A ‘complete’ graph.
b, A cycle. Nodes are joined only to immediate neighbours. c, An island
structure16. Here there are three demes of size 4. Within each deme, all
edges have equal weight; edges between demes have another weight. d, Two
pentagonal cycles with constant edge weights. Edges between cycles have
another weight. This is a version of the Petersen graph. e, This graph can
be thought of in different ways, but we have drawn it to emphasize its
relation to the Petersen graph in d. In this case there are two cycles of size 3
(triangles), and each node is joined to two nodes in the other triangle with
edges of different weights. This graph is symmetric and transitive, but
when the blue and amber edges have different d or e weights it is not bi-
transitive. If one takes two nodes in different triangles, one can find an
isomorphism that interchanges them, but this is not true for two nodes in
the same triangle. Nevertheless, it turns out that equations (1) and (2) do
hold for this graph.

LETTERS NATURE | Vol 447 | 24 May 2007

470
Nature   ©2007 Publishing Group



mixing population in which all d-weights are dij 5 1/(N – 1) for i ? j.
This generalizes known results13–15 for an infinite population with an
island or stepping-stone structure, and reveals that, under BD, the
‘cooperative’ allele A can never be selected for positive values of b
and c.

In the DB model, the condition does depend on i’s interactants,
and when these are sufficiently ‘close’ to i (�dd is large), A can be
selectively advantageous for positive b and c with a high enough b/c
ratio. The difference between these results for the BD and DB models
has to do with where the competitive effects of a ‘gift’ from i to j are
felt. Under BD these are felt by j’s neighbours (who, because they
include i, have a higher average relatedness to i than does j), whereas
under DB these are felt by the neighbours of j’s neighbours (who do
not, in fact, have a higher average relatedness to i than does j).

These results extend previous results for the case in which selection
is both weak and additive. A previous study10 uses analytical methods
to calculate fixation probabilities on the cycle (Box 1 Fig. 1b) for both
the BD and the DB models. Our equation (1) is their equation (2.4)
and our equation (2), with �dd 5 K, is their equation (4.4). Their
approach works well on the cycle essentially because a population
that starts with a single A player will always have the property that the
A players are found in a single connected cluster. For more compli-
cated graphs, such as those that involve deme structure (Box 1 Fig. 1c,
d), this is not the case and their approach appears to be less tractable.
The inclusive fitness analysis continues to hold in these cases as well,
however, allowing one to analyse evolution relatively easily in these
more complex scenarios provided one has both weak selection and
additivity (Box 2).

A previous study9 used numerical methods and pair approxi-
mation techniques to investigate the b–c matrix game in a DB model
on a large variety of graphs. The main result of ref. 9 applies to graphs
of degree k (every node has k edges with equal weight d 5 1/k). In
their model, partners are always chosen along a connecting edge (that
is, dij 5 eij for all ij), and in this case, for k=N, they find that
rA . 1/N when b/c . k. They remark that this has the flavour of
Hamilton’s rule and, for bi-transitive graphs, we now see the con-
nection. Equation (2) tells us that for interactions along all edges (for
which dij 5 eij 5 1/k) the inclusive fitness effect of A is positive when

b

c
w

k(N{2)

N{2k
ð3Þ

For k=N this indeed approximates the ref. 9 condition b/c . k.
For example, with two connected cycles, each of size 18, and with
k 5 3, equation (3) gives b/c . 3.4, which is very nearly b/c . k. If the
cycles are only of size 5 however (as in the Peterson graph, Box 1
Fig. 1d), then we no longer have k=N and equation (3) gives b/c . 6.
Figure 1 presents simulation results illustrating that equation (3)
accurately predicts the spread of a cooperative allele across a range
of values of N, even with moderate fitness effects.

Equations (1) and (2) reveal that the ability of cooperation to
evolve depends critically on the nature of population regulation.
For some forms of population regulation (the BD protocol) equation
(1) demonstrates that population viscosity should not affect the
evolution of cooperation under a much broader range of conditions
than previously appreciated. At the same time, however, equation (2)
demonstrates that viscosity under other forms of population regu-
lation (the DB protocol) can facilitate the evolution of cooperation.
This inequality clearly delineates the conditions under which this will
occur for a quite general class of population structures. It shows that
in a sufficiently ‘homogeneous’ population, if viscosity acts so that
interactants have a high likelihood of displacing one another when
they reproduce, then cooperation can evolve regardless of the precise
form of population structure. Furthermore, although our main focus
has been on cooperation, these results apply to the evolution of any
trait. For example, in Box 2 we analyse Frank’s island model of
competition.

Considerable attention has been paid to the comparison of fixation
probabilities on graphs under different matrix games. Such probabil-
ities can be readily calculated only for a restricted class of simple
graphs in which each state (number of A alleles) occurs in only one
population configuration (for example, regular graphs and cycles).
For more general scenarios, simulations and pair approximations
have been used instead9. In this study, we use a different set of
approximations (gene action is weak and additive), and demonstrate
that inclusive fitness calculations can predict relative fixation prob-
ability in a large class of graphs. In particular, for graphs with a
particular homogeneity property, and for small b and c, allele A will
have a higher fixation probability than B (rA . rB) when the inclus-
ive fitness effect WIF in equations (1) and (2) is positive.

METHODS

Details of the methods used are found in Supplementary Information. The

inclusive fitness calculation has two technical components: the calculation of

relatedness17 and the calculation of the inclusive fitness effect of the A allele. For

the first, we let Gij be the coefficient of identity-by-descent between nodes i and j,

and we find the expected change in these coefficients owing to a single breeding

event (which displaces either i or j). The equilibrium condition is obtained by

setting this change to be zero. We simplify this condition with the observation

that bi-transitivity implies that the matrices [dij] and [Gij] commute, and we get

from this the two key relationships needed in the inclusive fitness analysis:X
j
djiGjk~Gikzm (i=k)

X
j
Gjkdjk~1{m(N{1)

valid to first order in the mutation rate m.

The inclusive fitness calculation begins with a uniform B population and

replaces B with A in a focal actor i. The inclusive fitness effect is the weighted

sum of the effects of this replacement on the fitness of each individual j, where the

weights are the relatedness between i and j, and we show that these can be taken to

be the coefficients Gij. In these calculations, we must keep in mind that any
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Figure 1 | Simulation results for the DB model with bi-transitive graphs of
degree 3, and population sizes N 5 6 to N 5 20. The solid line is an
analytical prediction from equation (3), above which the cooperative allele is
predicted to invade and below which it is not. The population was initialized
with one A allele at a randomly chosen node, and the DB process was
simulated until fixation of either A or B occurred. Individual fecundities
were calculated as fi~1{cIiz

X
j
eij Ijb, where Ij is an indicator variable

equalling 1 if the allele at node j is A, and 0 otherwise. The b/c ratio was varied
from 1 to 10, with c 5 0.1 in all simulations. For each circle, 10,000
realizations of the simulation were run. The 95% confidence interval for the
probability of fixation of A was then calculated as r̂r+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂r(1{r̂r)=N

p
where

r̂r 5 the number of fixations/104. If the confidence interval contained the
neutral fixation probability, 1/N, the circle was coloured grey (not different
from neutral). If the confidence interval lay entirely below 1/N the circle was
coloured black (no invasion). If the confidence interval lay entirely above
1/N the circle was coloured white (invasion). Similar results are obtained if
we instead compare the fixation probability of allele A with that of allele B
(rather than comparing it to 1/N; T.D., unpublished data).
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change in fecundity of an individual will affect both the birth rate and the death
rate of neighbouring individuals. The precise effect on these individuals will

differ between our two protocols, BD and DB.
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Supplementary Methods 
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Supp Fig. 1.   
In finite structured populations, the following three common measures of the selective advantage of an allele A are known to be equivalent under 
conditions in which gene action is additive and of small effect: the inclusive fitness effect of A, the relative equilibrium allele frequency of A and 
the relative fixation probability of A.  In a large class of commonly studied populations of constant size, which includes cycles and island models 
(the latter illustrated in the figure) we have used an inclusive fitness analysis to establish a simple general condition for an altruistic allele A to be 
selectively favoured.  The condition has different algebraic forms depending on whether birth precedes (BD) or follows (DB) death.  This condition 
also generalizes to other additive models under weak selection (e.g. Box 2).  The indicated class of populations are those whose graph-
representation is bi-transitive.  Essentially, this means that the “universe” looks the same from any two nodes, in the sense that a pair of observers 
on those nodes who switched places would not be able to tell whether they had been switched.   
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Technical Recap.  In the graphs considered here, the edges represent patterns of dispersal and 

social interactions given by the weights dij and eij respectively.  Specifically, when there is a 

birth by the individual at node i, we assume that the offspring replaces the individual at node j 
with relative probability dij, where dii = 0, 1=∑ j ijd  and dij = dji.  Furthermore, individuals i 

and j interact at each time step with probability eij, where eii = 0, 1=∑ j ije  and eij = eji.  We 

suppose that the fecundity ),( iii YXFf =  of individual i is determined by its own phenotype 

Xi and by the average phenotype Yi = ∑ j jij Xe  of the individuals with whom it interacts.  An 

isomorphism T of a graph is a bijection of the node set which preserves the dispersal and 
interaction parameters, i.e. ijjTiT dd =)()(   and  ijjTiT ee =)()( .  A graph is called (node) 

transitive if, for every ordered pair of nodes (i, j), there is an isomorphism T for which T(i) = j 

and it is called (node) bi-transitive if, for every ordered pair of nodes (i, j), there is an 

isomorphism T for which T(i) = j and T(j) = i.  

Analysis of the relatedness recursions. In this section we assume neutrality (b = c = 0) so 

that all individuals have the same phenotype.  Our argument applies to both the BD and the 

DB models.  We let dα be the probability that any particular individual will reproduce in time 

dt.  We suppose that a mutation occurs in the making of an offspring with probability μ and 

otherwise, with probability 1–μ, the offspring is identical by descent18,19 (IBD) to its parent.  

This model can be translated to our two-allele situation by assuming that every mutant allele 

is a new (not IBD) version of A or B independent of its ancestral state.  If dG is the change in 

G in time dt, then  

[ ]∑∑ −−+−−= j ikijjkj kikjjiik GGdGGdG ])1[(])1[(dd μμα   (i ≠ k) (S1) 

This equation provides the two ways in which the coefficient between individuals i and k can 

change––if a neighbour of node i reproduces and colonizes node i and if a neighbour of node 

k reproduces and colonizes node k.  At equilibrium, (S1) is zero. 
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If T is an isomorphism for which T(i) = k and T(k) = i, then   

∑∑∑∑ === j jijkj iTjTkTjTj ijTkjTj jkji GdGdGdGd )()()()()()( . (S2) 

and we conclude that in a bi-transitive graph, the matrices [dij] and [Gij] commute.  It follows 

from this that at equilibrium, each of the summations in (S1) must be zero, and we conclude 

that to first order in μ: 

∑ +=
j ikjkji GGd μ   (i ≠ k) (S3) 

where we use the fact that Gij = 1 to zeroth order in μ.  Note that (S3) tells us that i is less 

related to k than it is, on average, to the neighbours of k, where the average is weighted by the 

dispersal coefficients of the edges at node k.  If we now take eq. (S3) and sum over all i ≠ k, 

we get, to first order in μ: 

)1(1 −−=∑ NdG
j jkjk μ . (S4) 

Equations (S3) and (S4) are the key results needed in the inclusive fitness analysis.   

Calculation of the Inclusive Fitness Effect.   Take a uniform B-population, let a random 

actor i switch to allele A, and calculate the resulting change in fitness ∆wj of j.  The inclusive 

fitness effect12 WIF of the allele A, is the sum of all these changes weighted by the relatedness 

to i.  We use the central observation that when the actor has A instead of B it gives fecundity 

increment b to its partner at personal incremental cost c.  In our calculations we use the 

coefficients Gij in place of relatedness2,19 
*1
*

G
GG

R ij
ij −

−
=  where G* is the population average 

G.  To justify this, note that when the population size stays the same, the average fitness 

change from any interaction must be zero.  In this case, a weighted sum of these fitness 

changes will be the same with weights Gij and with weights Gij + C for any constant C.   
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Let i have fecundity fi = 1 + εi where our calculations will be to first order in the εi.  We take 

the fitness increment Δwj of j to be the expected change in its genetic representation following 

the next reproductive event.  Our expressions for Δwj will differ in the two fecundity models. 

The BD model.  The fitness increment of j is 
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iijj d

N
εε1  (S5) 

to first order in the εi where ε  is the average of the εi.  The first term accounts for the 

probability that j wins the next reproductive event and the second accounts for the probability 

that there is another winner. 

Increment to another.  Suppose that i gives increment b to k for k ≠ i.  Then εk = b and εj = 0 

for j ≠ k .  Then from (S5) Δwk = b/N and Δwj = – dkj b/N for j ≠ k, and using (S3): 

WIF  =  [ ] [ ]
N
bGG

N
bGdG

N
b

ikikj ijkjik
μμ −=+−=− ∑ )(  

Increment to self.  Suppose that i gives loss c to itself.  Then εi = –c and εj = 0 for j ≠ i.  Then 

from (S5) Δwi = –c/N and Δwj = dij c/N for j ≠ i.  Using (S4): 

WIF  =  [ ] [ ]
N
NcN

N
cGdG

N
c

j ijijii
)1())1(1(1 −

−=−−−−=−− ∑ μμ  

Putting these together, if i gives benefit b to k at cost c, the inclusive fitness effect (omitting 

the scaling factor μ/N) is the sum 

WIF  =  – b – c(N–1). (S6) 
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The DB model.  The fitness increment of j is 
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to first order in the εi.  The first term accounts for the probability that j is selected to die and 

the second accounts for the probability that this falls to a neighbour of j.   

Increment to another.  Suppose that i gives increment b to k for k ≠ i.  Then εk = b and εj = 0 

for j ≠ k .  Then from (S7) Δwk = [ ]∑− i kikidd
N
b 1  and Δwj = [ ]∑− i kijidd

N
b  for j ≠ k.  Then 

WIF  =  [ ] [ ]∑∑ ∑∑ ∑ −−=−
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N
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Using (S3) twice and (S4), this simplifies as 

WIF  =  [ ]2−Nd
N
b

ki
μ . 

Increment to self.  Suppose that i gives loss c to itself.  Then εi = –c and εj = 0 for j ≠ i.  Then 

from (S7) Δwi =  [ ]∑−−
k ikik dd

N
c 1  and Δwj = [ ]∑−−

k ikjk dd
N
c  for j ≠ i.  Then: 

WIF  =  [ ] [ ]∑ ∑∑ ∑ ≠
−−=−−

ik j ijjkikj k ijikjkii Gdd
N
cGddG

N
c 1  

Using  (S3) and (S4), this simplifies as 

WIF  = )2( −− N
N
cμ . 

Putting these together, if i gives benefit b to k at cost c, the inclusive fitness effect (omitting 

the scaling factor μ/N) is the sum 

WIF  =  )2()2( −−− NcNdb ki . (S8) 
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