Polynomial Bounds for Invariant Functions
Separating Orbits

Harlan Kadish

University of Michigan

July 3, 2010
Outline

Briefing on Separating Orbits
A New Algorithm
Complexity via Straight Line Programs
How the Algorithm Works
Briefing on Separating Orbits

Let G be an algebraic group acting rationally on a variety V.

Definition

The orbit of a point $x \in V$ is the set

$$G \cdot x = \{g \cdot x \mid g \in G\}.$$

1. If $x, y \in V$, can we find out if x and y lie in the same orbit?
2. How easily can we find out?

Question (1) is asked and answered:
- Applications include structural chemistry, computer vision, and dynamical systems.
- Potentially answered by the invariant subring,

$$k[V]^G = \{f(p) \in k[V] \mid f(g^{-1} \cdot p) = f(p) \forall g \in G\}$$
Let G be an algebraic group acting rationally on a variety V.

Definition

The orbit of a point $x \in V$ *is the set*

$$G \cdot x = \{ g \cdot x \mid g \in G \}.$$

1. If $x, y \in V$, can we find out if x and y lie in the same orbit?
2. How easily can we find out?

Question (1) is asked and answered:

- Applications include structural chemistry, computer vision, and dynamical systems.
- Potentially answered by the invariant subring,

$$k[V]^G = \{ f(p) \in k[V] \mid f(g^{-1} \cdot p) = f(p) \ \forall \ g \in G \}.$$
Definition

A set S of invariant functions on V separates orbits if whenever $x \not\in G \cdot y$, then $\exists f \in S$ such that $f(x) \neq f(y)$.

- If G is reductive,
 - $k[V]^G$ is finitely generated, so generators may separate orbits.
 - Can compute generators using Gröbner bases.
- If G not reductive, still \exists finite $S \subset k[V]^G$ such that for each $x, y \in V$,
 - If $\exists h \in k[V]^G$ such that $h(x) \neq h(y)$,
 - Then $\exists f \in S$ such that $f(x) \neq f(y)$.
- So S separates orbits as precisely as $k[V]^G$.
Definition

A set S of invariant functions on V separates orbits if whenever $x \not\in G \cdot y$, then $\exists f \in S$ such that $f(x) \neq f(y)$.

- If G is reductive,
 - $k[V]^G$ is finitely generated, so generators may separate orbits.
 - Can compute generators using Gröbner bases.

- If G not reductive, still \exists finite $S \subset k[V]^G$ such that for each $x, y \in V$,
 - If $\exists h \in k[V]^G$ such that $h(x) \neq h(y)$,
 - Then $\exists f \in S$ such that $f(x) \neq f(y)$.

- So S separates orbits as precisely as $k[V]^G$.
Definition

A set S of invariant functions on V separates orbits if whenever $x \notin G \cdot y$, then $\exists f \in S$ such that $f(x) \neq f(y)$.

- If G is reductive,
 - $k[V]^G$ is finitely generated, so generators may separate orbits.
 - Can compute generators using Gröbner bases.
- If G not reductive, still \exists finite $S \subset k[V]^G$ such that for each $x, y \in V$,
 - If $\exists h \in k[V]^G$ such that $h(x) \neq h(y)$,
 - Then $\exists f \in S$ such that $f(x) \neq f(y)$.
- So S separates orbits as precisely as $k[V]^G$.
Limitations of theory: regular functions may fail to separate orbits.

- Let $G_m = k^*$ act on \mathbb{A}^2 by
 \[g \cdot (x, y) = (gx, gy). \]

- Then $k[x, y]^{G_m} = k$.

- In general, failure when \(\exists \, z \in \overline{G \cdot x} \cap \overline{G \cdot y} \neq \emptyset \):

- For if $f \in k[V]^G$, then $f(G \cdot x) = f(z) = f(G \cdot y)$.
Limitations of practice:

- Gröbner basis calculations are costly in principle.
- Only have algorithms for S or $k[V]^G$ generators if G reductive.
- For general G, can’t predict number of separating or generating invariants.
Extend the regular functions on V with a quasi-inverse:

$$\{f\}(p) = \begin{cases}
\frac{1}{f(p)} & f(p) \neq 0 \\
0 & f(p) = 0
\end{cases}$$

Definition

For $R = k[V]$, let \hat{R} denote the ring of functions $V \to k$ obtained by applying the quasi-inverse iteratively on elements of R. Call these functions **constructible**.

E.g., if $f, g \in R$, then $\{f + \{g\}\} \in \hat{R}$.
Over $k = \overline{k}$, let $G \hookrightarrow \mathbb{A}^\ell$ be an m-dimensional algebraic group.

Let G act rationally on \mathbb{A}^n via the representation $\rho : G \hookrightarrow GL_n$.

Let $N = \max\{\deg(\rho_{ij})\}$.

Let r be the maximal dimension of an orbit.

Theorem

There is an algorithm to produce a finite set $\mathcal{C} \subset \hat{R}$ of invariant, constructible functions with the following properties:

1. The set \mathcal{C} separates orbits.
2. The size of \mathcal{C} grows as $O(n^2 N^{(\ell+m+1)(r+1)})$.
3. The $f \in \mathcal{C}$ can be written as straight line programs, such that the sum of their lengths is $O(n^3 N^{3\ell(r+1)+r})$.
A New Algorithm for Separating Orbits

- Over \(k = \overline{k} \), let \(G \hookrightarrow \mathbb{A}^\ell \) be an \(m \)-dimensional algebraic group.
- Let \(G \) act rationally on \(\mathbb{A}^n \) via the representation \(\rho : G \hookrightarrow GL_n \).
- Let \(N = \max\{\deg(\rho_{ij})\} \).
- Let \(r \) be the maximal dimension of an orbit.

Theorem

There is an algorithm to produce a finite set \(C \subset \hat{R} \) of invariant, constructible functions with the following properties:

1. **The set \(C \) separates orbits.**
2. **The size of \(C \) grows as** \(O(n^2 N^{(\ell+m+1)(r+1)}) \).
3. **The \(f \in C \) can be written as straight line programs, such that the sum of their lengths is** \(O(n^3 N^{3\ell(r+1)+r}) \).
Let $G_m = k^*$ act on \mathbb{A}^2 by

$$g \cdot (x, y) = (gx, gy), \text{ so } k[x, y]^{G_m} = k.$$

The functions in C simplify to

$$x\{x\} \text{ and } y\{y\} \cdot (1 - x\{x\} + y\{x\}).$$

Recall $\{f\}(p) = \begin{cases} 1/f(p) & f(p) \neq 0 \\ 0 & f(p) = 0 \end{cases}$

- If $x \neq 0$, then $x\{x\} = x/x = 1$ and $y\{x\} = y/x$.
- Invariance: $x \neq 0 \implies (gx)\{gx\} = 1$, $gy\{gx\} = y/x$.
- Separation:

$$x, y \neq 0 \implies y\{y\} \cdot (1 - x\{x\} + y\{x\}) = 1 \cdot (1 - 1 + y/x) = y/x.$$
The theorem says more than the existence of \mathcal{C}:

$$|\mathcal{C}| = O\left(n^2N^{(\ell+m+1)(r+1)}\right)$$

Still, how practical is it to use \mathcal{C}?
- How long does it take to write down the functions?
- How complicated is the evaluation of the functions?
The theorem says more than the existence of C:

$$|C| = O \left(n^2 N^{(\ell+m+1)(r+1)} \right)$$

Still, how practical is it to use C?

- How long does it take to write down the functions?
- How complicated is the evaluation of the functions?
Definition

An **SLP** is a finite list of ring operations (and the quasi-inverse) to perform on a finite input sequence of ring elements.

E.g., write \(x\{y\} + \{z\} \) as an SLP:

1. Input \((x, y, z)\).
2. Compute \(\{y\}\).
3. Multiply \(x\) and \(\{y\}\).
4. Compute \(\{z\}\).
5. Add \(x\{y\}\) to \(\{z\}\).

Output is a sequence: \((x, y, z, \{y\}, x\{y\}, \{z\}, x\{y\} + \{z\})\).

Definition

The **complexity** of an SLP is the non-input length of its output.
Straight Line Programs

Definition

An **SLP** is a finite list of ring operations (and the quasi-inverse) to perform on a finite input sequence of ring elements.

E.g., write $x \{y\} + \{z\}$ as an SLP:

1. Input (x, y, z).
2. Compute $\{y\}$.
3. Multiply x and $\{y\}$.
4. Compute $\{z\}$.
5. Add $x\{y\}$ to $\{z\}$.

Output is a sequence: $(x, y, z, \{y\}, x\{y\}, \{z\}, x\{y\} + \{z\})$.

Definition

The complexity of an SLP is the non-input length of its output.
Theorem

There is an algorithm to produce a finite set $\mathcal{C} \subset \hat{\mathbb{R}}$ of invariant, constructible functions with the following properties:

1. The set \mathcal{C} separates orbits.
2. The size of \mathcal{C} grows as $O(n^2 N^{(\ell+m+1)(r+1)})$.
3. The $f \in \mathcal{C}$ can be written as straight line programs, such that the sum of their lengths is $O(n^3 N^{3\ell(r+1)+r})$.

- Can write down \mathcal{C} for any algebraic group.
- Have a polynomial bound on $|\mathcal{C}|$.
- Number of steps to write down \mathcal{C} has a polynomial bound.
- Or, can evaluate all of \mathcal{C} at $p \in \mathbb{A}^n$ in polynomial time.
Fix $p \in \mathbb{A}^n$. To compute defining equations for the closure $\overline{G \cdot p}$,

1. From $\rho : G \rightarrow GL_n$, write down the orbit map
 \[\sigma_p : G \rightarrow \mathbb{A}^n \text{ defined by } \sigma_p : g \mapsto \rho(g) \cdot p. \]

2. Write down the ring map $\sigma_p^* : k[x_1, \ldots, x_n] \rightarrow k[G]$.

3. Then $\ker \sigma_p^*$ is the ideal vanishing on $G \cdot p$.
The Algorithm: Computing \(\ker \sigma^*_p \)

Lemma

For fixed \(G \), there exists an integer \(d = d(N) \), polynomial in \(N \), such that \(G \cdot p \) can be defined by polynomials of degree \(\leq d \).

1. Let \((\sigma^*_p)_{\leq d} \) denote a matrix for the \(k \)-vector space map

\[
k[x_1, \ldots, x_n]_{\leq d} \rightarrow k[G],
\]

\[
k[x]_{\leq d} = \{ f \in k[x] \mid \deg(f) \leq d \}
\]

where the basis on the left is \(x_1, \ldots, x_n, x_1^2, x_1 x_2, \ldots, x_n^d \).

2. Basis vectors in the kernel give relations on the monomials of \(k[x_1, \ldots, x_n] \).

3. These polynomials would define \(G \cdot p \).
Lemma

For fixed G, there exists an integer $d = d(N)$, polynomial in N, such that $G \cdot p$ can be defined by polynomials of degree $\leq d$.

1. Let $(\sigma_p^*)_{\leq d}$ denote a matrix for the k-vector space map

$$k[x_1, \ldots, x_n]_{\leq d} \rightarrow k[G],$$

$$k[x]_{\leq d} = \{ f \in k[x] \mid \deg(f) \leq d \}$$

where the basis on the left is $x_1, \ldots, x_n, x_1^2, x_1 x_2, \ldots, x_n^d$.

2. Basis vectors in the kernel give relations on the monomials of $k[x_1, \ldots, x_n]$.

3. These polynomials would define $G \cdot p$.

Harlan Kadish
2010 CMS Summer Meeting
The Algorithm: Controlling Monomials

A problem arises:

- The dimension of the k-basis $x_1, \ldots, x_n, x_1^2, x_1x_2, x_1x_3, \ldots, x_n^d$

 grows exponentially in n.

- Instead, for every degree $i = 1, \ldots, d$,
 1. Compute the reduced row echelon form of $(\sigma_p^*)_{\leq i}$.
 2. Compute the kernel of $(\sigma_p^*)_{\leq i}$.
 3. Find a maximal set of monomials $M_i \subset k[x_1, \ldots x_n]_{\leq i}$ with linearly independent images in $k[G]$.
 4. Write $(\sigma_p^*)_{\leq (i+1)}$ in terms of M_i and

$$\{ m \cdot x_j \mid m \in M_i, j = 1 \ldots, n \}.$$

- From Hilbert polynomial of G, know $|M_i|$ is polynomial in i.

Harlan Kadish 2010 CMS Summer Meeting
A problem arises:

- The dimension of the k-basis

 \[x_1, \ldots, x_n, x_1^2, x_1 x_2, x_1 x_3, \ldots, x_n^d \]

 grows exponentially in n.

- Instead, for every degree $i = 1, \ldots, d$,

 1. Compute the reduced row echelon form of $(\sigma_p^*)_{\leq i}$.
 2. Compute the kernel of $(\sigma_p^*)_{\leq i}$.
 3. Find a maximal set of monomials $M_i \subset k[x_1, \ldots x_n]_{\leq i}$ with linearly independent images in $k[G]$.
 4. Write $(\sigma_p^*)_{\leq (i+1)}$ in terms of M_i and
 \[\{ m \cdot x_j \mid m \in M_i, \ j = 1 \ldots, n \} \).

- From Hilbert polynomial of G, know $|M_i|$ is polynomial in i.
Now, the degree bound d determines the dimensions of the matrices $(\sigma_p^*)_{\leq i}$.

For fixed G, the degree bound $d = d(N)$ is polynomial in $N = \max\{\deg(\rho_{ij})\}$.

Hence the dimensions of the $(\sigma_p^*)_{\leq i}$ have polynomial bounds in n and N.

Proposition

If A is an $s \times t$ matrix, then there exists an SLP (involving the quasi-inverse) for the reduced row echelon form and kernel of A, with complexity $O(st^2 + t^3)$.

So we can compute the $\ker(\sigma_p^*)_{\leq i}$ in polynomial time.
Now, the degree bound d determines the dimensions of the matrices $(\sigma_p^*)_{\leq i}$.

For fixed G, the degree bound $d = d(N)$ is polynomial in $N = \max\{\deg(\rho_{ij})\}$.

Hence the dimensions of the $(\sigma_p^*)_{\leq i}$ have polynomial bounds in n and N.

Proposition

If A is an $s \times t$ matrix, then there exists an SLP (involving the quasi-inverse) for the reduced row echelon form and kernel of A, with complexity $O(st^2 + t^3)$.

So we can compute the $\ker(\sigma_p^*)_{\leq i}$ in polynomial time.
The Algorithm: Output!

1. For \(p \in \mathbb{A}^n \), write down the orbit map \(\sigma_p : G \to \mathbb{A}^n \).
2. Write down matrices for \(\sigma_p^* : k[x_1, \ldots, x_n]_{\leq i} \to k[G] \) up to degree \(d \).
3. Now, the matrix entries are regular functions of \(p \).
4. So the entries of the \(\ker(\sigma_p^*)_{\leq i} \) vectors are constructible functions of \(p \).
5. Collect the kernel vectors’ entries into the set \(C \).
6. As functions of \(p \), they are \(G \)-invariant and separate orbits.
7. Their number and complexity are polynomial in \(n \) and \(N \).
1. For $p \in \mathbb{A}^n$, write down the orbit map $\sigma_p : G \to \mathbb{A}^n$.
2. Write down matrices for $\sigma_p^* : k[x_1, \ldots, x_n]_{\leq i} \to k[G]$ up to degree d.
3. Now, the matrix entries are regular functions of p.
4. So the entries of the $\ker(\sigma_p^*)_{\leq i}$ vectors are constructible functions of p.
5. Collect the kernel vectors’ entries into the set C.
6. As functions of p, they are G-invariant and separate orbits.
7. Their number and complexity are polynomial in n and N.

Harlan Kadish 2010 CMS Summer Meeting